1
|
Xu Z, Luan J, Wan F, Zhang M, Ding F, Yang L, Dai S. Vitamin D promotes autophagy to inhibit LPS-induced lung injury via targeting cathepsin D. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03619-1. [PMID: 39570382 DOI: 10.1007/s00210-024-03619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
Pneumonia is a frequent-occurring event in children death. Vitamin D (VD) can alleviate inflammatory response and it might be a promising adjunct to antibiotics for the treatment of acute childhood pneumonia. This study intended to uncover the relevant mechanism of VD in pneumonia. For simulating inflammatory condition, BEAS-2B cells were induced using lipopolysaccharide (LPS). Cell viability was detected using cell counting kit-8 (CCK-8) method, and cell apoptosis was detected using flow cytometry and western blot. Inflammatory cytokines as well as oxidative stress markers were detected using enzyme-linked immunosorbent assay (ELISA) and corresponding assays. Western blot evaluated the contents of cathepsin D (CTSD), apoptosis- and autophagy-related proteins. Through real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and western blot, the transfection efficiency of overexpression (OV)-CTSD was detected. Immunofluorescence assay detected light chain 3 (LC3II) level. Through SuperPred database analysis, VD can target CTSD. VD was revealed to suppress viability damage, inflammatory response, oxidative stress, and autophagy injury in BEAS-2B cells induced by LPS via targeting CTSD. However, the protective effects exhibited by VD against LPS-induced viability damage, inflammatory response, and oxidative stress in BEAS-2B cells were all counteracted by autophagy inhibitor 3-methyladenine (3-MA). Collectively, VD alleviated the severity of LPS-induced lung injury by promoting autophagy through targeting CTSD.
Collapse
Affiliation(s)
- Zijuan Xu
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Jinling Luan
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Fengyun Wan
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Meijie Zhang
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Fei Ding
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Ling Yang
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Shuxin Dai
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China.
| |
Collapse
|
2
|
Xia X, Ren P, Bai Y, Li J, Zhang H, Wang L, Hu J, Li X, Ding K. Modulatory Effects of Regulated Cell Death: An Innovative Preventive Approach for the Control of Mastitis. Cells 2024; 13:1699. [PMID: 39451217 PMCID: PMC11506078 DOI: 10.3390/cells13201699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Mastitis is a common disease worldwide that affects the development of the dairy industry due to its high incidence and complex etiology. Precise regulation of cell death and survival plays a critical role in maintaining internal homeostasis, organ development, and immune function in organisms, and regulatory abnormalities are a common mechanism of various pathological changes. Recent research has shown that regulated cell death (RCD) plays a crucial role in mastitis. The development of drugs to treat cell death and survival abnormalities that can be widely used in mastitis treatment has important clinical significance. This paper will review the molecular mechanisms of apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis and their regulatory roles in mastitis to provide a new perspective for the targeted treatment of mastitis.
Collapse
Affiliation(s)
- Xiaojing Xia
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Pengfei Ren
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Yilin Bai
- Laboratory of Indigenous Cattle Germplasm Innovation, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jingjing Li
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Huihui Zhang
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Lei Wang
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Jianhe Hu
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Xinwei Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ke Ding
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| |
Collapse
|
3
|
Cho S, Park DH, Park EK, Bae JS. The beneficial effects of lupeol on particulate matter-mediated pulmonary inflammation. Food Chem Toxicol 2024; 191:114893. [PMID: 39067743 DOI: 10.1016/j.fct.2024.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Particulate matter (PM) poses significant health risks, especially fine particles (PM2.5) that can cause severe lung injuries. Lupeol, a phytosterol from medicinal plants, has potential anti-cancer properties. This study investigated lupeol's protective effects against PM2.5-induced lung damage. Mice received lupeol following intratracheal PM2.5 exposure. Results showed lupeol reduced lung damage, lowered wet/dry (W/D) weight ratio, and suppressed increased permeability caused by PM2.5. Additionally, lupeol decreased plasma inflammatory cytokines, total protein concentration in bronchoalveolar lavage fluid (BALF), and PM2.5-induced lymphocyte proliferation. Lupeol also reduced expression of toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), and autophagy-related proteins microtubule-associated protein 1 A/1 B-light chain 3 (LC3) II and Beclin 1, while increasing phosphorylated mammalian target of rapamycin (mTOR) phosphorylation. These findings suggest lupeol's potential as a therapeutic agent for PM2.5-induced lung damage via modulation of the TLR4-MyD88 and mTOR-autophagy pathways.
Collapse
Affiliation(s)
- Sanghee Cho
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, 41940, South Korea
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
4
|
Nucera F, Di Stefano A, Ricciardolo FLM, Gnemmi I, Pizzimenti C, Monaco F, Tuccari G, Caramori G, Ieni A. Role of ATG4 Autophagy-Related Protein Family in the Lower Airways of Patients with Stable COPD. Int J Mol Sci 2024; 25:8182. [PMID: 39125750 PMCID: PMC11311497 DOI: 10.3390/ijms25158182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Autophagy is a complex physiological pathway mediating homeostasis and survival of cells degrading damaged organelles and regulating their recycling. Physiologic autophagy can maintain normal lung function, decrease lung cellular senescence, and inhibit myofibroblast differentiation. It is well known that autophagy is activated in several chronic inflammatory diseases; however, its role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and the expression of autophagy-related genes (ATGs) in lower airways of COPD patients is still controversial. The expression and localization of all ATG proteins that represented key components of the autophagic machinery modulating elongation, closure, and maturation of autophagosome membranes were retrospectively measured in peripheral lungs of patients with stable COPD (n = 10), control smokers with normal lung function (n = 10), and control nonsmoking subjects (n = 8) using immunohistochemical analysis. These results show an increased expression of ATG4 protein in alveolar septa and bronchiolar epithelium of stable COPD patients compared to smokers with normal lung function and non-smoker subjects. In particular, the genes in the ATG4 protein family (including ATG4A, ATG4B, ATG4C, and ATG4D) that have a key role in the modulation of the physiological autophagic machinery are the most important ATGs increased in the compartment of lower airways of stable COPD patients, suggesting that the alteration shown in COPD patients can be also correlated to impaired modulation of autophagic machinery modulating elongation, closure, and maturation of autophagosomes membranes. Statistical analysis was performed by the Kruskal-Wallis test and the Mann-Whitney U test for comparison between groups. A statistically significant increased expression of ATG4A (p = 0.0047), ATG4D (p = 0.018), and ATG5 (p = 0.019) was documented in the bronchiolar epithelium as well in alveolar lining for ATG4A (p = 0.0036), ATG4B (p = 0.0054), ATG4C (p = 0.0064), ATG4D (p = 0.0084), ATG5 (p = 0.0088), and ATG7 (p = 0.018) in patients with stable COPD compared to control groups. The ATG4 isoforms may be considered as additional potential targets for the development of new drugs in COPD.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, Section of Pneumology, University of Messina, 98125 Messina, Italy;
| | - Antonino Di Stefano
- Istituti Clinici Scientifici Maugeri, IRCCS, Respiratory Rehabilitation Unit of Gattico-Veruno, Section of Pneumology, Laboratory of Cytoimmunopathology in Cardio Respiratory System, 28013 Gattico-Veruno, Italy; (A.D.S.); (I.G.)
| | - Fabio Luigi Massimo Ricciardolo
- Department of Clinical and Biological Sciences, Severe Asthma, Rare Lung Disease and Respiratory Pathophysiology Unit, San Luigi Gonzaga University Hospital, University of Turin, 10043 Orbassano, Italy;
| | - Isabella Gnemmi
- Istituti Clinici Scientifici Maugeri, IRCCS, Respiratory Rehabilitation Unit of Gattico-Veruno, Section of Pneumology, Laboratory of Cytoimmunopathology in Cardio Respiratory System, 28013 Gattico-Veruno, Italy; (A.D.S.); (I.G.)
| | - Cristina Pizzimenti
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, Section of Pathology, University of Messina, 98125 Messina, Italy; (C.P.); (G.T.)
| | - Francesco Monaco
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, Section of Toracic Surgery, University of Messina, 98125 Messina, Italy;
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, Section of Pathology, University of Messina, 98125 Messina, Italy; (C.P.); (G.T.)
| | - Gaetano Caramori
- Department of Medicine and Surgery, Sections of Pneumology, University of Parma, 43126 Parma, Italy;
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, Section of Pathology, University of Messina, 98125 Messina, Italy; (C.P.); (G.T.)
| |
Collapse
|
5
|
Roth‐Walter F, Adcock IM, Benito‐Villalvilla C, Bianchini R, Bjermer L, Caramori G, Cari L, Chung KF, Diamant Z, Eguiluz‐Gracia I, Knol EF, Jesenak M, Levi‐Schaffer F, Nocentini G, O'Mahony L, Palomares O, Redegeld F, Sokolowska M, Van Esch BCAM, Stellato C. Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology. Allergy 2024; 79:1089-1122. [PMID: 38108546 PMCID: PMC11497319 DOI: 10.1111/all.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.
Collapse
Affiliation(s)
- F. Roth‐Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - I. M. Adcock
- Molecular Cell Biology Group, National Heart & Lung InstituteImperial College LondonLondonUK
| | - C. Benito‐Villalvilla
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - R. Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
| | - L. Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy research, Allergy, Asthma and COPD Competence CenterLund UniversityLundSweden
| | - G. Caramori
- Department of Medicine and SurgeryUniversity of ParmaPneumologiaItaly
| | - L. Cari
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - K. F. Chung
- Experimental Studies Medicine at National Heart & Lung InstituteImperial College London & Royal Brompton & Harefield HospitalLondonUK
| | - Z. Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical ScienceSkane University HospitalLundSweden
- Department of Respiratory Medicine, First Faculty of MedicineCharles University and Thomayer HospitalPragueCzech Republic
- Department of Clinical Pharmacy & PharmacologyUniversity Groningen, University Medical Center Groningen and QPS‐NLGroningenThe Netherlands
| | - I. Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de Málaga‐Instituto de Investigación Biomédica de Málaga (IBIMA)‐ARADyALMálagaSpain
| | - E. F. Knol
- Departments of Center of Translational Immunology and Dermatology/AllergologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - M. Jesenak
- Department of Paediatrics, Department of Pulmonology and Phthisiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in MartinUniversity Teaching HospitalMartinSlovakia
| | - F. Levi‐Schaffer
- Institute for Drug Research, Pharmacology Unit, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - G. Nocentini
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - L. O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - O. Palomares
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - F. Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - M. Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZürichDavosSwitzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - B. C. A. M. Van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - C. Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”University of SalernoSalernoItaly
| |
Collapse
|
6
|
Mohanan A, Washimkar KR, Mugale MN. Unraveling the interplay between vital organelle stress and oxidative stress in idiopathic pulmonary fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119676. [PMID: 38242330 DOI: 10.1016/j.bbamcr.2024.119676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by excessive accumulation of extracellular matrix, leading to irreversible fibrosis. Emerging evidence suggests that endoplasmic reticulum (ER) stress, mitochondrial stress, and oxidative stress pathways play crucial roles in the pathogenesis of IPF. ER stress occurs when the protein folding capacity of the ER is overwhelmed, triggering the unfolded protein response (UPR) and contributing to protein misfolding and cellular stress in IPF. Concurrently, mitochondrial dysfunction involving dysregulation of key regulators, including PTEN-induced putative kinase 1 (PINK1), Parkin, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and sirtuin 3 (SIRT3), disrupts mitochondrial homeostasis and impairs cellular energy metabolism. This leads to increased reactive oxygen species (ROS) production, release of pro-fibrotic mediators, and activation of fibrotic pathways, exacerbating IPF progression. The UPR-induced ER stress further disrupts mitochondrial metabolism, resulting in altered mitochondrial mechanisms that increase the generation of ROS, resulting in further ER stress, creating a feedback loop that contributes to the progression of IPF. Oxidative stress also plays a pivotal role in IPF, as ROS-mediated activation of TGF-β, NF-κB, and MAPK pathways promotes inflammation and fibrotic responses. This review mainly focuses on the links between ER stress, mitochondrial dysfunctions, and oxidative stress with different signaling pathways involved in IPF. Understanding these mechanisms and targeting key molecules within these pathways may offer promising avenues for intervention.
Collapse
Affiliation(s)
- Anushree Mohanan
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Wang LL, Mai YZ, Zheng MH, Yan GH, Jin JY. A single fluorescent probe to examine the dynamics of mitochondria-lysosome interplay and extracellular vesicle role in ferroptosis. Dev Cell 2024; 59:517-528.e3. [PMID: 38272028 DOI: 10.1016/j.devcel.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/21/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024]
Abstract
Ferroptosis is a non-apoptotic form of cell death characterized by iron-dependent lipid peroxidation and glutathione (GSH) depletion. Despite recent advances, challenges remain in understanding the bidirectional interactions or interplay between organelles during ferroptosis. In this study, we aimed to understand the interplay between mitochondria (Mito) and lysosomes (Lyso) in cell homeostasis and ferroptosis. For this purpose, we designed a single fluorescent probe that marks GSH in Mito and hypochlorous acid (HOCl) in Lyso with two distinct emissions. Using this dual-targeted single fluorescent probe (9-morphorino pyronine), we detected Mito-Lyso interplay in ferroptosis. We disclosed differences in Mito-Lyso interplay depending on the induction of ferroptosis. Although erastin treatment decreased GSH, RSL3 triggered a HOCl burst, and FIN56- and FINO2-induced ferroptosis increased GSH and HOCl. Additionally, we showed that only extracellular vesicles generated during erastin-induced ferroptosis could spontaneously move and dock to neighboring cells, resulting in accelerated cell death.
Collapse
Affiliation(s)
- Ling-Li Wang
- Research Centre of Chemical Biology, Yanbian University, Yanji 133002, Jilin, China
| | - Yu-Zhuo Mai
- Research Centre of Chemical Biology, Yanbian University, Yanji 133002, Jilin, China
| | - Ming-Hua Zheng
- Research Centre of Chemical Biology, Yanbian University, Yanji 133002, Jilin, China.
| | - Guang-Hai Yan
- Department of Anatomy, Histology, and Embryology, Jilin Key Laboratory of Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, Jilin, China.
| | - Jing-Yi Jin
- Research Centre of Chemical Biology, Yanbian University, Yanji 133002, Jilin, China.
| |
Collapse
|
8
|
Cho S, Choi HJ, Song GY, Bae JS. Therapeutic effects of hederacolchiside A1 on particulate matter-induced pulmonary injury. Toxicon 2024; 241:107650. [PMID: 38360299 DOI: 10.1016/j.toxicon.2024.107650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/21/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Particulate matter (PM) comprises a hazardous mixture of inorganic and organic particles that carry health risks. Inhaling fine PM particles with a diameter of ≤2.5 μm (PM2.5) can promote significant lung damage. Hederacolchiside A1 (HA1) exhibits notable in vivo antitumor effects against various solid tumors. However, our understanding of its therapeutic potential for individuals with PM2.5-induced lung injuries remains limited. Here, we explored the protective properties of HA1 against lung damage caused by PM2.5 exposure. HA1 was administered to the mice 30 min after intratracheal tail vein injection of PM2.5. Various parameters, such as changes in lung tissue wet/dry (W/D) weight ratio, total protein/total cell ratio, lymphocyte counts, inflammatory cytokine levels in bronchoalveolar lavage fluid (BALF), vascular permeability, and histology, were assessed in mice exposed to PM2.5. Our data showed that HA1 mitigated lung damage, reduced the W/D weight ratio, and suppressed hyperpermeability caused by PM2.5 exposure. Moreover, HA1 effectively decreased plasma levels of inflammatory cytokines in those exposed to PM2.5, including tumor necrosis factor-α, interleukin-1β, and nitric oxide, while also lowering the total protein concentration in BALF and successfully alleviating PM2.5-induced lymphocytosis. Furthermore, HA1 significantly decreased the expression levels of toll-like receptor 4 (TLR4), myeloid differentiation primary response (MyD) 88, and autophagy-related proteins LC3 II and Beclin 1 but increased the protein phosphorylation of the mammalian target of rapamycin (mTOR). The anti-inflammatory characteristics of HA1 highlights its potential as a promising therapeutic agent for mitigating PM2.5-induced lung injuries by modulating the TLR4-MyD88 and mTOR-autophagy pathways.
Collapse
Affiliation(s)
- Sanghee Cho
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hui Ji Choi
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea.
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
9
|
Zeyada MS, Eraky SM, El-Shishtawy MM. Trigonelline mitigates bleomycin-induced pulmonary inflammation and fibrosis: Insight into NLRP3 inflammasome and SPHK1/S1P/Hippo signaling modulation. Life Sci 2024; 336:122272. [PMID: 37981228 DOI: 10.1016/j.lfs.2023.122272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/31/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
AIMS Pulmonary fibrosis (PF) is a chronic interstitial lung disease with an increasing incidence following the COVID-19 outbreak. Pirfenidone (Pirf), an FDA-approved pulmonary anti-fibrotic drug, is poorly tolerated and exhibits limited efficacy. Trigonelline (Trig) is a natural plant alkaloid with diverse pharmacological actions. We investigated the underlying prophylactic and therapeutic mechanisms of Trig in ameliorating bleomycin (BLM)-induced PF and the possible synergistic antifibrotic activity of Pirf via its combination with Trig. MATERIALS AND METHODS A single dose of BLM was administered intratracheally to male Sprague-Dawley rats for PF induction. In the prophylactic study, Trig was given orally 3 days before BLM and then for 28 days. In the therapeutic study, Trig and/or Pirf were given orally from day 8 after BLM until the 28th day. Biochemical assay, histopathology, qRT-PCR, ELISA, and immunohistochemistry were performed on lung tissues. KEY FINDINGS Trig prophylactically and therapeutically mitigated the inflammatory process via targeting NF-κB/NLRP3/IL-1β signaling. Trig activated the autophagy process which in turn attenuated alveolar epithelial cells apoptosis and senescence. Remarkably, Trig attenuated lung SPHK1/S1P axis and its downstream Hippo targets, YAP-1, and TAZ, with a parallel decrease in YAP/TAZ profibrotic genes. Interestingly, Trig upregulated lung miR-375 and miR-27a expression. Consequently, epithelial-mesenchymal transition in lung tissues was reversed upon Trig administration. These results were simultaneously associated with profound improvement in lung histological alterations. SIGNIFICANCE The current study verifies Trig's prophylactic and antifibrotic effects against BLM-induced PF via targeting multiple signaling. Trig and Pirf combination may be a promising approach to synergize Pirf antifibrotic effect.
Collapse
Affiliation(s)
- Menna S Zeyada
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Salma M Eraky
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mamdouh M El-Shishtawy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
10
|
Cho S, Park YJ, Bae JS. Therapeutic Effects of (+)-Afzelechin on Particulate Matter-Induced Pulmonary Injury. Biomol Ther (Seoul) 2024; 32:162-169. [PMID: 38148560 PMCID: PMC10762276 DOI: 10.4062/biomolther.2023.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023] Open
Abstract
Particulate matter (PM) constitutes a hazardous blend of organic and inorganic particles that poses health risks. Inhalation of fine airborne PM with a diameter of ≤ 2.5 μm (PM2.5) can lead to significant lung impairments. (+)-afzelechin (AZC), a natural compound sourced from Bergenia ligulata, boasts a range of attributes, including antioxidant, antimicrobial, anticancer, and cardiovascular effects. However, knowledge about the therapeutic potential of AZC for patients with PM2.5-induced lung injuries remains limited. Thus, in this study, we investigated the protective attributes of AZC against lung damage caused by PM2.5 exposure. AZC was administered to the mice 30 min after intratracheal instillation of PM2.5. Various parameters, such as changes in lung tissue wet/dry (W/D) weight ratio, total protein/total cell ratio, lymphocyte counts, levels of inflammatory cytokines in bronchoalveolar lavage fluid (BALF), vascular permeability, and histology, were evaluated in mice exposed to PM2.5. Data demonstrated that AZC mitigated lung damage, reduced W/D weight ratio, and curbed hyperpermeability induced by PM2.5 exposure. Furthermore, AZC effectively lowered plasma levels of inflammatory cytokines produced by PM2.5 exposure. It reduced the total protein concentration in BALF and successfully alleviated PM2.5-induced lymphocytosis. Additionally, AZC substantially diminished the expression levels of Toll-like receptors 4 (TLR4), MyD88, and autophagy-related proteins LC3 II and Beclin 1. In contrast, it elevated the protein phosphorylation of the mammalian target of rapamycin (mTOR). Consequently, the anti-inflammatory attribute of AZC positions it as a promising therapeutic agent for mitigating PM2.5-induced lung injuries by modulating the TLR4-MyD88 and mTOR-autophagy pathways.
Collapse
Affiliation(s)
- Sanghee Cho
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yun Jin Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
11
|
Dong H, Lv X, Gao P, Hao Y. Potential role of irisin in lung diseases and advances in research. Front Pharmacol 2023; 14:1307651. [PMID: 38143500 PMCID: PMC10746167 DOI: 10.3389/fphar.2023.1307651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Irisin, a myokine, is secreted by the movement of skeletal muscles. It plays an important role in metabolic homeostasis, insulin resistance, anti-inflammation, oxidative stress, and bone metabolism. Several studies have reported that irisin-related signaling pathways play a critical role in the treatment of various diseases, including obesity, cardiovascular disease, diabetes, and neurodegenerative disorders. Recently, the potential role of irisin in lung diseases, including chronic obstructive pulmonary disease, acute lung injury, lung cancer, and their associated complications, has received increasing attention. This article aims to explore the role of irisin in lung diseases, primarily focusing on the underlying molecular mechanisms, which may serve as a marker for the diagnosis as well as a potential target for the treatment of lung diseases, thus providing new strategies for their treatment.
Collapse
Affiliation(s)
| | | | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Albano GD, Montalbano AM, Gagliardo R, Profita M. Autophagy/Mitophagy in Airway Diseases: Impact of Oxidative Stress on Epithelial Cells. Biomolecules 2023; 13:1217. [PMID: 37627282 PMCID: PMC10452925 DOI: 10.3390/biom13081217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Autophagy is the key process by which the cell degrades parts of itself within the lysosomes. It maintains cell survival and homeostasis by removing molecules (particularly proteins), subcellular organelles, damaged cytoplasmic macromolecules, and by recycling the degradation products. The selective removal or degradation of mitochondria is a particular type of autophagy called mitophagy. Various forms of cellular stress (oxidative stress (OS), hypoxia, pathogen infections) affect autophagy by inducing free radicals and reactive oxygen species (ROS) formation to promote the antioxidant response. Dysfunctional mechanisms of autophagy have been found in different respiratory diseases such as chronic obstructive lung disease (COPD) and asthma, involving epithelial cells. Several existing clinically approved drugs may modulate autophagy to varying extents. However, these drugs are nonspecific and not currently utilized to manipulate autophagy in airway diseases. In this review, we provide an overview of different autophagic pathways with particular attention on the dysfunctional mechanisms of autophagy in the epithelial cells during asthma and COPD. Our aim is to further deepen and disclose the research in this direction to stimulate the develop of new and selective drugs to regulate autophagy for asthma and COPD treatment.
Collapse
Affiliation(s)
- Giusy Daniela Albano
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Section of Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy; (A.M.M.); (R.G.); (M.P.)
| | | | | | | |
Collapse
|
13
|
Tao H, Liu Q, Zeng A, Song L. Unlocking the potential of Mesenchymal stem cells in liver Fibrosis: Insights into the impact of autophagy and aging. Int Immunopharmacol 2023; 121:110497. [PMID: 37329808 DOI: 10.1016/j.intimp.2023.110497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Liver fibrosis is a chronic liver disease characterized by extracellular matrix protein accumulation, potentially leading to cirrhosis or hepatocellular carcinoma. Liver cell damage, inflammatory responses, and apoptosis due to various reasons induce liver fibrosis. Although several treatments, such as antiviral drugs and immunosuppressive therapies, are available for liver fibrosis, they only provide limited efficacy. Mesenchymal stem cells (MSCs) have become a promising therapeutic option for liver fibrosis, because they can modulate the immune response, promote liver regeneration, and inhibit the activation of hepatic stellate cells that contribute to disease development. Recent studies have suggested that the mechanisms through which MSCs gain their antifibrotic properties involve autophagy and senescence. Autophagy, a vital cellular self-degradation process, is critical for maintaining homeostasis and protecting against nutritional, metabolic, and infection-mediated stress. The therapeutic effects of MSCs depend on appropriate autophagy levels, which can improve the fibrotic process. Nonetheless, aging-related autophagic damage is associated with a decline in MSC number and function, which play a crucial role in liver fibrosis development. This review summarizes the recent advancements in the understanding of autophagy and senescence in MSC-based liver fibrosis treatment, presenting the key findings from relevant studies.
Collapse
Affiliation(s)
- Hongxia Tao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Qianglin Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan 610041, PR China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
14
|
Yuan J, Mo Y, Zhang Y, Zhang Y, Zhang Q. Nickel nanoparticles induce autophagy and apoptosis via HIF-1α/mTOR signaling in human bronchial epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121670. [PMID: 37080518 PMCID: PMC10231338 DOI: 10.1016/j.envpol.2023.121670] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
With the rapid development of nanotechnology, the potential adverse health effects of nanoparticles have been caught more attention and become global concerns. However, the underlying mechanisms in metal nanoparticle-induced toxic effects are still largely obscure. In this study, we investigated whether exposure to nickel nanoparticles (Nano-Ni) and titanium dioxide nanoparticles (Nano-TiO2) would alter autophagy and apoptosis levels in normal human bronchial epithelial BEAS-2B cells and the underlying mechanisms involved in this process. Our results showed that the expressions of autophagy- and apoptosis-associated proteins were dysregulated in cells exposed to Nano-Ni. However, exposure to the same doses of Nano-TiO2 had no significant effects on these proteins. In addition, exposure to Nano-Ni, but not Nano-TiO2, led to nuclear accumulation of HIF-1α and decreased phosphorylation of mTOR in BEAS-2B cells. Inhibition of HIF-1α by CAY10585 abolished Nano-Ni-induced decreased phosphorylation of mTOR, while activation of mTOR by MHY1485 did not affect Nano-Ni-induced nuclear accumulation of HIF-1α. Furthermore, both HIF-1α inhibition and mTOR activation abolished Nano-Ni-induced autophagy but enhanced Nano-Ni-induced apoptosis. Blockage of autophagic flux by Bafilomycin A1 exacerbated Nano-Ni-induced apoptosis, while activation of autophagy by Rapamycin effectively rescued Nano-Ni-induced apoptosis. In conclusion, our results demonstrated that Nano-Ni exposure caused increased levels of autophagy and apoptosis via the HIF-1α/mTOR signaling axis. Nano-Ni-induced autophagy has a protective role against Nano-Ni-induced apoptosis. These findings provide us with further insight into Nano-Ni-induced toxicity.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Yue Zhang
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yuanbao Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
15
|
Kirat D, Alahwany AM, Arisha AH, Abdelkhalek A, Miyasho T. Role of Macroautophagy in Mammalian Male Reproductive Physiology. Cells 2023; 12:cells12091322. [PMID: 37174722 PMCID: PMC10177121 DOI: 10.3390/cells12091322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Physiologically, autophagy is an evolutionarily conserved and self-degradative process in cells. Autophagy carries out normal physiological roles throughout mammalian life. Accumulating evidence shows autophagy as a mechanism for cellular growth, development, differentiation, survival, and homeostasis. In male reproductive systems, normal spermatogenesis and steroidogenesis need a balance between degradation and energy supply to preserve cellular metabolic homeostasis. The main process of autophagy includes the formation and maturation of the phagophore, autophagosome, and autolysosome. Autophagy is controlled by a group of autophagy-related genes that form the core machinery of autophagy. Three types of autophagy mechanisms have been discovered in mammalian cells: macroautophagy, microautophagy, and chaperone-mediated autophagy. Autophagy is classified as non-selective or selective. Non-selective macroautophagy randomly engulfs the cytoplasmic components in autophagosomes that are degraded by lysosomal enzymes. While selective macroautophagy precisely identifies and degrades a specific element, current findings have shown the novel functional roles of autophagy in male reproduction. It has been recognized that dysfunction in the autophagy process can be associated with male infertility. Overall, this review provides an overview of the cellular and molecular basics of autophagy and summarizes the latest findings on the key role of autophagy in mammalian male reproductive physiology.
Collapse
Affiliation(s)
- Doaa Kirat
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Mohamed Alahwany
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Badr City 11829, Egypt
| | - Ahmed Hamed Arisha
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Badr City 11829, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Badr City 11829, Egypt
| | - Taku Miyasho
- Laboratory of Animal Biological Responses, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
16
|
Therapeutic Effects of Cornuside on Particulate Matter-Induced Lung Injury. Int J Mol Sci 2023; 24:ijms24054979. [PMID: 36902409 PMCID: PMC10002561 DOI: 10.3390/ijms24054979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Particulate matter (PM) is a mixture comprising both organic and inorganic particles, both of which are hazardous to health. The inhalation of airborne PM with a diameter of ≤2.5 μm (PM2.5) can cause considerable lung damage. Cornuside (CN), a natural bisiridoid glucoside derived from the fruit of Cornus officinalis Sieb, exerts protective properties against tissue damage via controlling the immunological response and reducing inflammation. However, information regarding the therapeutic potential of CN in patients with PM2.5-induced lung injury is limited. Thus, herein, we examined the protective properties of CN against PM2.5-induced lung damage. Mice were categorized into eight groups (n = 10): a mock control group, a CN control group (0.8 mg/kg mouse body weight), four PM2.5+CN groups (0.2, 0.4, 0.6, and 0.8 mg/kg mouse body weight), and a PM2.5+CN group (0.2, 0.4, 0.6, and 0.8 mg/kg mouse body weight). The mice were administered with CN 30 min following intratracheal tail vein injection of PM2.5. In mice exposed to PM2.5, different parameters including changes in lung tissue wet/dry (W/D) lung weight ratio, total protein/total cell ratio, lymphocyte counts, inflammatory cytokine levels in the bronchoalveolar lavage fluid (BALF), vascular permeability, and histology were examined. Our findings revealed that CN reduced lung damage, the W/D weight ratio, and hyperpermeability caused by PM2.5. Moreover, CN reduced the plasma levels of inflammatory cytokines produced because of PM2.5 exposure, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and nitric oxide, as well as the total protein concentration in the BALF, and successfully attenuated PM2.5-associated lymphocytosis. In addition, CN substantially reduced the expression levels of Toll-like receptors 4 (TLR4), MyD88, and autophagy-related proteins LC3 II and Beclin 1, and increased protein phosphorylation of the mammalian target of rapamycin (mTOR). Thus, the anti-inflammatory property of CN renders it a potential therapeutic agent for treating PM2.5-induced lung injury by controlling the TLR4-MyD88 and mTOR-autophagy pathways.
Collapse
|