1
|
Lydon E, Osborne CM, Wagner BD, Ambroggio L, Kirk Harris J, Reeder R, Carpenter TC, Maddux AB, Leroue MK, Yehya N, DeRisi JL, Hall MW, Zuppa AF, Carcillo J, Meert K, Sapru A, Pollack MM, McQuillen P, Notterman DA, Langelier CR, Mourani PM. Proteomic profiling of the local and systemic immune response to pediatric respiratory viral infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617294. [PMID: 39416167 PMCID: PMC11482837 DOI: 10.1101/2024.10.08.617294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Viral lower respiratory tract infection (vLRTI) is a leading cause of hospitalization and death in children worldwide. Despite this, no studies have employed proteomics to characterize host immune responses to severe pediatric vLRTI in both the lower airway and systemic circulation. To address this gap, gain insights into vLRTI pathophysiology, and test a novel diagnostic approach, we assayed 1,305 proteins in tracheal aspirate (TA) and plasma from 62 critically ill children using SomaScan. We performed differential expression (DE) and pathway analyses comparing vLRTI (n=40) to controls with non-infectious acute respiratory failure (n=22), developed a diagnostic classifier using LASSO regression, and analyzed matched TA and plasma samples. We further investigated the impact of viral load and bacterial coinfection on the proteome. The TA signature of vLRTI was characterized by 200 DE proteins (Padj<0.05) with upregulation of interferons and T cell responses and downregulation of inflammation-modulating proteins including FABP and MIP-5. A nine-protein TA classifier achieved an AUC of 0.96 (95% CI 0.90-1.00) for identifying vLRTI. In plasma, the host response to vLRTI was more muted with 56 DE proteins. Correlation between TA and plasma was limited, although ISG15 was elevated in both compartments. In bacterial coinfection, we observed increases in the TNF-stimulated protein TSG-6, as well as CRP, and interferon-related proteins. Viral load correlated positively with interferon signaling and negatively with neutrophil-activation pathways. Taken together, our study provides fresh insight into the lower airway and systemic proteome of severe pediatric vLRTI, and identifies novel protein biomarkers with diagnostic potential.
Collapse
Affiliation(s)
- Emily Lydon
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Christina M Osborne
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Brandie D Wagner
- Department of Biostatistics and Informatics, University of Colorado, Colorado School of Public Health, Aurora, CO
| | - Lilliam Ambroggio
- Sections of Emergency Medicine and Hospital Medicine, Children's Hospital Colorado, Aurora, CO
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - J Kirk Harris
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Ron Reeder
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Todd C Carpenter
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Aline B Maddux
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Matthew K Leroue
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Nadir Yehya
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Joseph L DeRisi
- Chan Zuckerberg Biohub, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Mark W Hall
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
| | - Athena F Zuppa
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Joseph Carcillo
- Departments of Pediatrics and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Kathleen Meert
- Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, MI
| | - Anil Sapru
- Department of Pediatrics, University of California Los Angeles, Los Angeles, CA
| | - Murray M Pollack
- Department of Pediatrics, Children's National Medical Center and George Washington School of Medicine and Health Sciences, Washington, DC
| | - Patrick McQuillen
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | | | - Charles R Langelier
- Department of Medicine, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| | - Peter M Mourani
- Department of Pediatrics, Critical Care, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR
| |
Collapse
|
2
|
Jannati S, Patnaik R, Banerjee Y. Beyond Anticoagulation: A Comprehensive Review of Non-Vitamin K Oral Anticoagulants (NOACs) in Inflammation and Protease-Activated Receptor Signaling. Int J Mol Sci 2024; 25:8727. [PMID: 39201414 PMCID: PMC11355043 DOI: 10.3390/ijms25168727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/02/2024] Open
Abstract
Non-vitamin K oral anticoagulants (NOACs) have revolutionized anticoagulant therapy, offering improved safety and efficacy over traditional agents like warfarin. This review comprehensively examines the dual roles of NOACs-apixaban, rivaroxaban, edoxaban, and dabigatran-not only as anticoagulants, but also as modulators of inflammation via protease-activated receptor (PAR) signaling. We highlight the unique pharmacotherapeutic properties of each NOAC, supported by key clinical trials demonstrating their effectiveness in preventing thromboembolic events. Beyond their established anticoagulant roles, emerging research suggests that NOACs influence inflammation through PAR signaling pathways, implicating factors such as factor Xa (FXa) and thrombin in the modulation of inflammatory responses. This review synthesizes current evidence on the anti-inflammatory potential of NOACs, exploring their impact on inflammatory markers and conditions like atherosclerosis and diabetes. By delineating the mechanisms by which NOACs mediate anti-inflammatory effects, this work aims to expand their therapeutic utility, offering new perspectives for managing inflammatory diseases. Our findings underscore the broader clinical implications of NOACs, advocating for their consideration in therapeutic strategies aimed at addressing inflammation-related pathologies. This comprehensive synthesis not only enhances understanding of NOACs' multifaceted roles, but also paves the way for future research and clinical applications in inflammation and cardiovascular health.
Collapse
Affiliation(s)
- Shirin Jannati
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Rajashree Patnaik
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Yajnavalka Banerjee
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
- Centre for Medical Education, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
3
|
Wang JC, Nikpoor AR, Crosson T, Kaufmann E, Rafei M, Talbot S. BASOPHILS ACTIVATE PRURICEPTOR-LIKE VAGAL SENSORY NEURONS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598517. [PMID: 38915548 PMCID: PMC11195257 DOI: 10.1101/2024.06.11.598517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Vagal sensory neurons convey sensations from internal organs along the vagus nerve to the brainstem. Pruriceptors are a subtype of neurons that transmit itch and induce pruritus. Despite extensive research on the molecular mechanisms of itch, studies focusing on pruriceptors in the vagal ganglia still need to be explored. In this study, we characterized vagal pruriceptor neurons by their responsiveness to pruritogens such as lysophosphatidic acid, β-alanine, chloroquine, and the cytokine oncostatin M. We discovered that lung-resident basophils produce oncostatin M and that its release can be induced by engagement of FcεRIα. Oncostatin M then sensitizes multiple populations of vagal sensory neurons, including Tac1+ and MrgprA3+ neurons in the jugular ganglia. Finally, we observed an increase in oncostatin M release in mice sensitized to the house dust mite Dermatophagoides pteronyssinus or to the fungal allergen Alternaria alternata, highlighting a novel mechanism through which basophils and vagal sensory neurons may communicate during type I hypersensitivity diseases such as allergic asthma.
Collapse
Affiliation(s)
- Jo-Chiao Wang
- Department of Pharmacology and Physiology, Université de Montréal, Canada
| | - Amin Reza Nikpoor
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
- Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
| | - Théo Crosson
- Department of Pharmacology and Physiology, Université de Montréal, Canada
| | - Eva Kaufmann
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Canada
| | - Sébastien Talbot
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
- Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
| |
Collapse
|
4
|
Nimer RM, Abdel Rahman AM. Recent advances in proteomic-based diagnostics of cystic fibrosis. Expert Rev Proteomics 2023; 20:151-169. [PMID: 37766616 DOI: 10.1080/14789450.2023.2258282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/06/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetic disease characterized by thick and sticky mucus accumulation, which may harm numerous internal organs. Various variables such as gene modifiers, environmental factors, age of diagnosis, and CF transmembrane conductance regulator (CFTR) gene mutations influence phenotypic disease diversity. Biomarkers that are based on genomic information may not accurately represent the underlying mechanism of the disease as well as its lethal complications. Therefore, recent advancements in mass spectrometry (MS)-based proteomics may provide deep insights into CF mechanisms and cellular functions by examining alterations in the protein expression patterns from various samples of individuals with CF. AREAS COVERED We present current developments in MS-based proteomics, its application, and findings in CF. In addition, the future roles of proteomics in finding diagnostic and prognostic novel biomarkers. EXPERT OPINION Despite significant advances in MS-based proteomics, extensive research in a large cohort for identifying and validating diagnostic, prognostic, predictive, and therapeutic biomarkers for CF disease is highly needed.
Collapse
Affiliation(s)
- Refat M Nimer
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Zetlen HL, Cao KT, Schichlein KD, Knight N, Maecker HT, Nadeau KC, Rebuli ME, Rice MB. Comparison of multiplexed protein analysis platforms for the detection of biomarkers in the nasal epithelial lining fluid of healthy subjects. J Immunol Methods 2023; 517:113473. [PMID: 37059295 PMCID: PMC10715563 DOI: 10.1016/j.jim.2023.113473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Multiplexed protein analysis platforms are a novel and efficient way to characterize biomarkers in a variety of biological samples. Few studies have compared protein quantitation and reproducibility of results across platforms. We utilize a novel nasosorption technique to collect nasal epithelial lining fluid (NELF) from healthy subjects, and compare the detection of proteins in NELF across three commonly used platforms. METHODS NELF was collected from both nares of twenty healthy subjects using an absorbent fibrous matrix and analyzed using three different protein analysis platforms: Luminex, Meso Scale Discovery (MSD), and Olink. Twenty-three protein analytes were shared across two or more platforms, and correlations across platforms were assessed using Spearman correlations. RESULTS Among the twelve proteins represented on all three platforms, IL1⍺ and IL6 were very highly correlated (Spearman correlation coefficient [r] ≥ 0.9); CCL3, CCL4, and MCP1 were highly correlated (r ≥ 0.7); and IFNɣ, IL8, and TNF⍺ were moderately correlated (r ≥ 0.5). Four proteins (IL2, IL4, IL10, IL13) were poorly correlated across at least two platform comparisons (r < 0.5); for two of these proteins (IL10 and IL13), the majority of observations were below the limits of detection for Olink and Luminex. DISCUSSION Multiplexed protein analysis platforms are a promising method for analyzing nasal samples for biomarkers of interest in respiratory health research. For most proteins evaluated, there was good correlation across platforms, although results were less consistent for low abundance proteins. Of the three platforms tested, MSD had the highest sensitivity for analyte detection.
Collapse
Affiliation(s)
- Hilary L Zetlen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America.
| | - Kevin T Cao
- Center for Environmental Medicine, Asthma, and Lung Biology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Kevin D Schichlein
- Center for Environmental Medicine, Asthma, and Lung Biology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Noelle Knight
- Center for Environmental Medicine, Asthma, and Lung Biology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Holden T Maecker
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Meghan E Rebuli
- Center for Environmental Medicine, Asthma, and Lung Biology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Mary B Rice
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| |
Collapse
|
6
|
The role of osteoprotegerin (OPG) in fibrosis: its potential as a biomarker and/or biological target for the treatment of fibrotic diseases. Pharmacol Ther 2021; 228:107941. [PMID: 34171336 DOI: 10.1016/j.pharmthera.2021.107941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is defined by excessive formation and accumulation of extracellular matrix proteins, produced by myofibroblasts, that supersedes normal wound healing responses to injury and results in progressive architectural remodelling. Fibrosis is often detected in advanced disease stages when an organ is already severely damaged and can no longer function properly. Therefore, there is an urgent need for reliable and easily detectable markers to identify and monitor fibrosis onset and progression as early as possible; this will greatly facilitate the development of novel therapeutic strategies. Osteoprotegerin (OPG), a well-known regulator of bone extracellular matrix and most studied for its role in regulating bone mass, is expressed in various organs and functions as a decoy for receptor activator of nuclear factor kappa-B ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Recently, OPG has been linked to fibrosis and fibrogenesis, and has been included in a panel of markers to diagnose liver fibrosis. Multiple studies now suggest that OPG may be a general biomarker suitable for detection of fibrosis and/or monitoring the impact of fibrosis treatment. This review summarizes our current understanding of the role of OPG in fibrosis and will discuss its potential as a biomarker and/or novel therapeutic target for fibrosis.
Collapse
|