1
|
Guo J, Yang L, Song H, Bai L. Prevention of bleomycin-induced pulmonary fibrosis by vaccination with the Tocilizumab mimotope. Hum Vaccin Immunother 2024; 20:2319965. [PMID: 38408907 PMCID: PMC10900270 DOI: 10.1080/21645515.2024.2319965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Mimotope, a kind of peptide vaccine, is developed to bind natural receptor and inhibit the downstream signaling. We have demonstrated that the vaccination of Tocilizumab mimotopes could alleviate the renal fibrosis by interfering with both IL-6 and ferroptosis signaling. However, the effect of the vaccination of Tocilizumab mimotopes on the fibroblast was not investigated in previous study. Thus, we sought to explore the changes in the fibroblast induced by the Tocilizumab mimotopes vaccination. Bleomycin instillation was performed to construct the pulmonary fibrosis model after the immunization of Tocilizumab mimotopes. Lung histological analysis showed that the Tocilizumab mimotopes could significantly reduce the maladaptive repairment and abnormal remodeling. Immunoblotting assay and fluorescence staining showed that Immunization with the Tocilizumab mimotopes reduces the accumulation of fibrosis-related proteins. High level of lipid peroxidation product was observed in the animal model, while the Tocilizumab mimotopes vaccination could reduce the generation of lipid peroxidation product. Mechanism analysis further showed that Nrf-2 signaling, but not GPX-4 and FSP-1 signaling, was upregulated, and reduced the lipid peroxidation. Our results revealed that in the BLM-induced pulmonary fibrosis, high level of lipid peroxidation product was significantly accumulation in the lung tissues, which might lead to the occurrence of ferroptosis. The IL-6 pathway block therapy could inhibit lipid peroxidation product generation in the lung tissues by upregulating the Nrf-2 signaling, and further alleviate the pulmonary fibrosis.
Collapse
Affiliation(s)
- Jin Guo
- Department of Cardiorespiratory Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Lin Yang
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Haoming Song
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Bai
- The Central Lab, The First Affiliated Hospital of Baotou Medical College (Inner Mongolia Autoimmune Key Laboratory), Baotou, China
| |
Collapse
|
2
|
Tzouvelekis A, Tsiri P, Sampsonas F. Challenges in the Management of Lung Cancer in ILD. Arch Bronconeumol 2024; 60 Suppl 2:S1-S3. [PMID: 38821775 DOI: 10.1016/j.arbres.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 06/02/2024]
Affiliation(s)
- Argyris Tzouvelekis
- Department of Internal and Respiratory Medicine, Medical School University of Patras, Greece.
| | - Panagiota Tsiri
- Department of Internal and Respiratory Medicine, Medical School University of Patras, Greece
| | - Fotios Sampsonas
- Department of Internal and Respiratory Medicine, Medical School University of Patras, Greece
| |
Collapse
|
3
|
Drakopanagiotakis F, Krauss E, Michailidou I, Drosos V, Anevlavis S, Günther A, Steiropoulos P. Lung Cancer and Interstitial Lung Diseases. Cancers (Basel) 2024; 16:2837. [PMID: 39199608 PMCID: PMC11352559 DOI: 10.3390/cancers16162837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 09/01/2024] Open
Abstract
Lung cancer continues to be one of the leading causes of cancer-related death worldwide. There is evidence of a complex interplay between lung cancer and interstitial lung disease (ILD), affecting disease progression, management strategies, and patient outcomes. Both conditions develop as the result of common risk factors such as smoking, environmental exposures, and genetic predispositions. The presence of ILD poses diagnostic and therapeutic challenges in lung cancer management, including difficulties in interpreting radiological findings and increased susceptibility to treatment-related toxicities, such as acute exacerbation of ILD after surgery and pneumonitis after radiation therapy and immunotherapy. Moreover, due to the lack of large, phase III randomized controlled trials, the evidence-based therapeutic options for patients with ILDs and lung cancer remain limited. Antifibrotic treatment may help prevent pulmonary toxicity due to lung cancer treatment, but its effect is still unclear. Emerging diagnostic modalities and biomarkers and optimizing personalized treatment strategies are essential to improve outcomes in this patient population.
Collapse
Affiliation(s)
- Fotios Drakopanagiotakis
- Department of Pneumonology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (F.D.); (S.A.)
| | - Ekaterina Krauss
- European IPF Registry & Biobank (eurIPFreg/Bank), 35394 Giessen, Germany; (E.K.); (A.G.)
- Center for Interstitial and Rare Lung Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35394 Giessen, Germany
| | - Ira Michailidou
- Department of Pneumonology, General Anti-Cancer Oncological Hospital, Agios Savvas, 11522 Athens, Greece;
| | - Vasileios Drosos
- Department of Thoracic and Cardiovascular Surgery, University Hospital Würzburg, 97070 Würzburg, Germany;
| | - Stavros Anevlavis
- Department of Pneumonology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (F.D.); (S.A.)
| | - Andreas Günther
- European IPF Registry & Biobank (eurIPFreg/Bank), 35394 Giessen, Germany; (E.K.); (A.G.)
- Center for Interstitial and Rare Lung Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35394 Giessen, Germany
- Agaplesion Lung Clinic, 35753 Greifenstein, Germany
- Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Justus-Liebig University Giessen, 35394 Giessen, Germany
| | - Paschalis Steiropoulos
- Department of Pneumonology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (F.D.); (S.A.)
| |
Collapse
|
4
|
Sampsonas F, Bosgana P, Bravou V, Tzouvelekis A, Dimitrakopoulos FI, Kokkotou E. Interstitial Lung Diseases and Non-Small Cell Lung Cancer: Particularities in Pathogenesis and Expression of Driver Mutations. Genes (Basel) 2024; 15:934. [PMID: 39062713 PMCID: PMC11276289 DOI: 10.3390/genes15070934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION Interstitial lung diseases are a varied group of diseases associated with chronic inflammation and fibrosis. With the emerging and current treatment options, survival rates have vastly improved. Having in mind that the most common type is idiopathic pulmonary fibrosis and that a significant proportion of these patients will develop lung cancer as the disease progresses, prompt diagnosis and personalized treatment of these patients are fundamental. SCOPE AND METHODS The scope of this review is to identify and characterize molecular and pathogenetic pathways that can interconnect Interstitial Lung Diseases and lung cancer, especially driver mutations in patients with NSCLC, and to highlight new and emerging treatment options in that view. RESULTS Common pathogenetic pathways have been identified in sites of chronic inflammation in patients with interstitial lung diseases and lung cancer. Of note, the expression of driver mutations in EGFR, BRAF, and KRAS G12C in patients with NSCLC with concurrent interstitial lung disease is vastly different compared to those patients with NSCLC without Interstitial Lung Disease. CONCLUSIONS NSCLC in patients with Interstitial Lung Disease is a challenging diagnostic and clinical entity, and a personalized medicine approach is fundamental to improving survival and quality of life. Newer anti-fibrotic medications have improved survival in IPF/ILD patients; thus, the incidence of lung cancer is going to vastly increase in the next 5-10 years.
Collapse
Affiliation(s)
- Fotios Sampsonas
- Department of Respiratory Medicine, Medical School, University of Patras, 26504 Patras, Greece;
| | - Pinelopi Bosgana
- Department of Pathology, Medical School, University of Patras, 26504 Patras, Greece;
| | - Vasiliki Bravou
- Department of Anatomy, Embryology and Histology, Medical School, University of Patras, 26504 Patras, Greece;
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, Medical School, University of Patras, 26504 Patras, Greece;
| | | | - Eleni Kokkotou
- Oncology Unit, The Third Department of Medicine, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| |
Collapse
|
5
|
Yao F, Xu M, Dong L, Shen X, Shen Y, Jiang Y, Zhu T, Zhang C, Yu G. Sinomenine attenuates pulmonary fibrosis by downregulating TGF-β1/Smad3, PI3K/Akt and NF-κB signaling pathways. BMC Pulm Med 2024; 24:229. [PMID: 38730387 PMCID: PMC11088103 DOI: 10.1186/s12890-024-03050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/07/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Since COVID-19 became a global epidemic disease in 2019, pulmonary fibrosis (PF) has become more prevalent among persons with severe infections, with IPF being the most prevalent form. In traditional Chinese medicine, various disorders are treated using Sinomenine (SIN). The SIN's strategy for PF defense is unclear. METHODS Bleomycin (BLM) was used to induce PF, after which inflammatory factors, lung histological alterations, and the TGF-/Smad signaling pathway were assessed. By administering various dosages of SIN and the TGF- receptor inhibitor SB-431,542 to human embryonic lung fibroblasts (HFL-1) and A549 cells, we were able to examine proliferation and migration as well as the signaling molecules implicated in Epithelial-Mesenchymal Transition (EMT) and Extra-Cellular Matrix (ECM). RESULTS In vivo, SIN reduced the pathological changes in the lung tissue induced by BLM, reduced the abnormal expression of inflammatory cytokines, and improved the weight and survival rate of mice. In vitro, SIN inhibited the migration and proliferation by inhibiting TGF-β1/Smad3, PI3K/Akt, and NF-κB pathways, prevented the myofibroblasts (FMT) of HFL-1, reversed the EMT of A549 cells, restored the balance of matrix metalloenzymes, and reduced the expression of ECM proteins. CONCLUSION SIN attenuated PF by down-regulating TGF-β/Smad3, PI3K/Akt, and NF-κB signaling pathways, being a potential effective drug in the treatment of PF.
Collapse
Affiliation(s)
- Fuqiang Yao
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Minghao Xu
- School of Medicine, ShaoXing University, Shaoxing, Zhejiang, China
| | - Lingjun Dong
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Xiao Shen
- School of Medicine, ShaoXing University, Shaoxing, Zhejiang, China
| | - Yujie Shen
- School of Medicine, ShaoXing University, Shaoxing, Zhejiang, China
| | - Yisheng Jiang
- School of Medicine, ShaoXing University, Shaoxing, Zhejiang, China
| | - Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Chu Zhang
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.
| |
Collapse
|
6
|
Yoon HY, Kim H, Bae Y, Song JW. Smoking status and clinical outcome in idiopathic pulmonary fibrosis: a nationwide study. Respir Res 2024; 25:191. [PMID: 38685071 PMCID: PMC11059669 DOI: 10.1186/s12931-024-02819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Smoking status has been linked to the development of idiopathic pulmonary fibrosis (IPF). However, the effect of smoking on the prognosis of patients with IPF is unclear. We aimed to investigate the association between smoking status and all-cause mortality or hospitalisation by using national health claims data. METHODS IPF cases were defined as people who visited medical institutions between January 2002 and December 2018 with IPF and rare incurable disease exempted calculation codes from the National Health Insurance Database. Total 10,182 patients with available data on smoking status were included in this study. Ever-smoking status was assigned to individuals with a history of smoking ≥ 6 pack-years. The multivariable Cox proportional hazard model was used to evaluate the association between smoking status and prognosis. RESULTS In the entire cohort, the mean age was 69.4 years, 73.9% were males, and 45.2% were ever smokers (current smokers: 14.2%; former smokers: 31.0%). Current smokers (hazard ratio [HR]: 0.709; 95% confidence interval [CI]: 0.643-0.782) and former smokers (HR: 0.926; 95% CI: 0.862-0.996) were independently associated with all-cause mortality compared with non-smokers. Current smokers (HR: 0.884; 95% CI: 0.827-0.945) and former smokers (HR: 0.909; 95% CI: 0.862-0.959) were also associated with a reduced risk of all-cause hospitalisation compared with non-smokers. A non-linear association between smoking amount and prognosis was found in a spline HR curve and showed increasing risk below 6 pack-years. CONCLUSION Ever-smoking status may be associated with favourable clinical outcomes in patients with IPF.
Collapse
Affiliation(s)
- Hee-Young Yoon
- Division of Allergy and Respiratory Diseases, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Hoseob Kim
- Department of Data Science, Hanmi Pharm. Co., Ltd, Seoul, Republic of Korea
| | - Yoonjong Bae
- Department of Data Science, Hanmi Pharm. Co., Ltd, Seoul, Republic of Korea
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
7
|
Sun W, Cheng Y, Ma X, Jin Z, Zhang Q, Wang G. Photodynamic therapy upregulates expression of HIF-1α and PD-L1 in related pathways and its clinical relevance in non-small-cell lung cancer. Eur J Med Res 2024; 29:230. [PMID: 38609977 PMCID: PMC11015541 DOI: 10.1186/s40001-024-01780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/10/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a promising interventional treatment approach that contributes to antitumor immunity. It has been reported that PDT can enhance the effectiveness of immune checkpoint inhibitors (ICIs), but its mechanism is yet unclear. Herein, we implemented bioinformatics analysis to detect common pathways and potential biomarkers in non-small cell lung cancer (NSCLC), PDT, and NSCLC immunotherapy to investigate potential links between PDT, immunotherapy and NSCLC, and their clinical impact. METHODS Differentially expressed genes in NSCLC- and NSCLC immunotherapy-related data in the GEO database were intersected with PDT-related genes in the GeneCards database to obtain candidate genes and shared pathways. Enrichment analysis and protein-protein interaction were established to identify key genes in functionally enriched pathways. The expression profiles and the prognostic significance of key genes were depicted. RESULTS Bioinformatics analysis showed that HIF-1α was screened as a prognostic gene in hypoxia, HIF-1, and PD-L1-related signaling pathways, which was associated with clinical response in NSCLC patients after PDT and immunotherapy. In vivo experiments showed that PDT could inhibit tumor growth and upregulate HIF-1α and PD-L1 expressions in NSCLC tissues with a positive correlation, which might influence the blocking activity of ICIs on the HIF-1, and PD-L1-related signaling pathways. CONCLUSIONS PDT might improve the clinical response of ICIs by upregulating tumor HIF-1α and PD-L1 expressions in NSCLC.
Collapse
Affiliation(s)
- Wen Sun
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Yuan Cheng
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Xiaoyu Ma
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Zhou Jin
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Qi Zhang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China.
- Department of Pulmonary and Critical Care Medicine, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
8
|
Shi X, Chen Y, Shi M, Gao F, Huang L, Wang W, Wei D, Shi C, Yu Y, Xia X, Song N, Chen X, Distler JHW, Lu C, Chen J, Wang J. The novel molecular mechanism of pulmonary fibrosis: insight into lipid metabolism from reanalysis of single-cell RNA-seq databases. Lipids Health Dis 2024; 23:98. [PMID: 38570797 PMCID: PMC10988923 DOI: 10.1186/s12944-024-02062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Pulmonary fibrosis (PF) is a severe pulmonary disease with limited available therapeutic choices. Recent evidence increasingly points to abnormal lipid metabolism as a critical factor in PF pathogenesis. Our latest research identifies the dysregulation of low-density lipoprotein (LDL) is a new risk factor for PF, contributing to alveolar epithelial and endothelial cell damage, and fibroblast activation. In this study, we first integrative summarize the published literature about lipid metabolite changes found in PF, including phospholipids, glycolipids, steroids, fatty acids, triglycerides, and lipoproteins. We then reanalyze two single-cell RNA-sequencing (scRNA-seq) datasets of PF, and the corresponding lipid metabolomic genes responsible for these lipids' biosynthesis, catabolism, transport, and modification processes are uncovered. Intriguingly, we found that macrophage is the most active cell type in lipid metabolism, with almost all lipid metabolic genes being altered in macrophages of PF. In type 2 alveolar epithelial cells, lipid metabolic differentially expressed genes (DEGs) are primarily associated with the cytidine diphosphate diacylglycerol pathway, cholesterol metabolism, and triglyceride synthesis. Endothelial cells are partly responsible for sphingomyelin, phosphatidylcholine, and phosphatidylethanolamines reprogramming as their metabolic genes are dysregulated in PF. Fibroblasts may contribute to abnormal cholesterol, phosphatidylcholine, and phosphatidylethanolamine metabolism in PF. Therefore, the reprogrammed lipid profiles in PF may be attributed to the aberrant expression of lipid metabolic genes in different cell types. Taken together, these insights underscore the potential of targeting lipid metabolism in developing innovative therapeutic strategies, potentially leading to extended overall survival in individuals affected by PF.
Collapse
Affiliation(s)
- Xiangguang Shi
- Department of Dermatology, Huashan Hospital, and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yahui Chen
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China
| | - Mengkun Shi
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Fei Gao
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Lihao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Wei Wang
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Dong Wei
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Chenyi Shi
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuexin Yu
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China
| | - Xueyi Xia
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Fudan Zhangjiang Institute, Shanghai, People's Republic of China
| | - Xiaofeng Chen
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jörg H W Distler
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen, Nuremberg, Germany
| | - Chenqi Lu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Jingyu Chen
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China.
- Center for Lung Transplantation, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jiucun Wang
- Department of Dermatology, Huashan Hospital, and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China.
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China.
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Xu F, Tong Y, Yang W, Cai Y, Yu M, Liu L, Meng Q. Identifying a survival-associated cell type based on multi-level transcriptome analysis in idiopathic pulmonary fibrosis. Respir Res 2024; 25:126. [PMID: 38491375 PMCID: PMC10941445 DOI: 10.1186/s12931-024-02738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive disease with a five-year survival rate of less than 40%. There is significant variability in survival time among IPF patients, but the underlying mechanisms for this are not clear yet. METHODS AND RESULTS We collected single-cell RNA sequence data of 13,223 epithelial cells taken from 32 IPF patients and bulk RNA sequence data from 456 IPF patients in GEO. Based on unsupervised clustering analysis at the single-cell level and deconvolution algorithm at bulk RNA sequence data, we discovered a special alveolar type 2 cell subtype characterized by high expression of CCL20 (referred to as ATII-CCL20), and found that IPF patients with a higher proportion of ATII-CCL20 had worse prognoses. Furthermore, we uncovered the upregulation of immune cell infiltration and metabolic functions in IPF patients with a higher proportion of ATII-CCL20. Finally, the comprehensive decision tree and nomogram were constructed to optimize the risk stratification of IPF patients and provide a reference for accurate prognosis evaluation. CONCLUSIONS Our study by integrating single-cell and bulk RNA sequence data from IPF patients identified a special subtype of ATII cells, ATII-CCL20, which was found to be a risk cell subtype associated with poor prognosis in IPF patients. More importantly, the ATII-CCL20 cell subtype was linked with metabolic functions and immune infiltration.
Collapse
Affiliation(s)
- Fei Xu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yun Tong
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Wenjun Yang
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yiyang Cai
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Meini Yu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Lei Liu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Qingkang Meng
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
10
|
Han SJ, Kim HH, Hyun DG, Ji W, Choi CM, Lee JC, Kim HC. Clinical characteristics and outcome of lung cancer in patients with fibrosing interstitial lung disease. BMC Pulm Med 2024; 24:136. [PMID: 38491506 PMCID: PMC10943814 DOI: 10.1186/s12890-024-02946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Lung cancer (LC) is an important comorbidity of interstitial lung disease (ILD) and has a poor prognosis. The clinical characteristics and outcome of each ILD subtype in LC patients have not been sufficiently investigated. Therefore, this study aimed to evaluate the difference between idiopathic pulmonary fibrosis (IPF) and non-IPF ILD as well as prognostic factors in patients with ILD-LC. METHODS The medical records of 163 patients diagnosed with ILD-LC at Asan Medical Center from January 2018 to May 2023 were retrospectively reviewed. Baseline characteristics and clinical outcomes were compared between the IPF-LC and non-IPF ILD-LC groups, and prognostic factors were analyzed using the Cox proportional-hazard model. RESULTS The median follow-up period was 11 months after the cancer diagnosis. No statistically significant differences were observed in clinical characteristics and mortality rates (median survival: 26 vs. 20 months, p = 0.530) between the groups. The independent prognostic factors in patients with ILD-LC were higher level of Krebs von den Lungen-6 (≥ 1000 U/mL, hazard ratio [HR] 1.970, 95% confidence interval [CI] 1.026-3.783, p = 0.025) and advanced clinical stage of LC (compared with stage I, HR 3.876 for stage II, p = 0.025, HR 5.092 for stage III, p = 0.002, and HR 5.626 for stage IV, p = 0.002). In terms of treatment, surgery was the significant factor for survival (HR 0.235; 95% CI 0.106-0.520; p < 0.001). CONCLUSIONS No survival difference was observed between IPF-LC and non-IPF ILD-LC patients. A higher level of Krebs von den Lungen-6 may act as a prognostic marker in ILD-LC patients.
Collapse
Affiliation(s)
- Soo Jin Han
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hyeon Hwa Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Dong-Gon Hyun
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Wonjun Ji
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Chang-Min Choi
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ho Cheol Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
11
|
Huang X, Si W, Ye X, Zhao Y, Gu H, Zhang M, Wu S, Shi Y, Gui X, Xiao Y, Cao M. Novel 3D-based deep learning for classification of acute exacerbation of idiopathic pulmonary fibrosis using high-resolution CT. BMJ Open Respir Res 2024; 11:e002226. [PMID: 38460976 DOI: 10.1136/bmjresp-2023-002226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
PURPOSE Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is the primary cause of death in patients with IPF, characterised by diffuse, bilateral ground-glass opacification on high-resolution CT (HRCT). This study proposes a three-dimensional (3D)-based deep learning algorithm for classifying AE-IPF using HRCT images. MATERIALS AND METHODS A novel 3D-based deep learning algorithm, SlowFast, was developed by applying a database of 306 HRCT scans obtained from two centres. The scans were divided into four separate subsets (training set, n=105; internal validation set, n=26; temporal test set 1, n=79; and geographical test set 2, n=96). The final training data set consisted of 1050 samples with 33 600 images for algorithm training. Algorithm performance was evaluated using accuracy, sensitivity, specificity, positive predictive value, negative predictive value, receiver operating characteristic (ROC) curve and weighted κ coefficient. RESULTS The accuracy of the algorithm in classifying AE-IPF on the test sets 1 and 2 was 93.9% and 86.5%, respectively. Interobserver agreements between the algorithm and the majority opinion of the radiologists were good (κw=0.90 for test set 1 and κw=0.73 for test set 2, respectively). The ROC accuracy of the algorithm for classifying AE-IPF on the test sets 1 and 2 was 0.96 and 0.92, respectively. The algorithm performance was superior to visual analysis in accurately diagnosing radiological findings. Furthermore, the algorithm's categorisation was a significant predictor of IPF progression. CONCLUSIONS The deep learning algorithm provides high auxiliary diagnostic efficiency in patients with AE-IPF and may serve as a useful clinical aid for diagnosis.
Collapse
Affiliation(s)
- Xinmei Huang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Nanjing Institute of Respiratory Diseases, Nanjing, Jiangsu, China
| | - Wufei Si
- Purple Mountain Laboratories, Nanjing, Jiangsu, China
| | - Xu Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yichao Zhao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Huimin Gu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingrui Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shufei Wu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yanchen Shi
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xianhua Gui
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Nanjing Institute of Respiratory Diseases, Nanjing, Jiangsu, China
| | - Yonglong Xiao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Nanjing Institute of Respiratory Diseases, Nanjing, Jiangsu, China
| | - Mengshu Cao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Nanjing Institute of Respiratory Diseases, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Perrot CY, Karampitsakos T, Unterman A, Adams T, Marlin K, Arsenault A, Zhao A, Kaminski N, Katlaps G, Patel K, Bandyopadhyay D, Herazo-Maya JD. Mast-cell expressed membrane protein-1 is expressed in classical monocytes and alveolar macrophages in idiopathic pulmonary fibrosis and regulates cell chemotaxis, adhesion, and migration in a TGFβ-dependent manner. Am J Physiol Cell Physiol 2024; 326:C964-C977. [PMID: 38189137 PMCID: PMC11193480 DOI: 10.1152/ajpcell.00563.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Mast-cell expressed membrane protein-1 (MCEMP1) is higher in patients with idiopathic pulmonary fibrosis (IPF) with an increased risk of death. Here we aimed to establish the mechanistic role of MCEMP1 in pulmonary fibrosis. We identified increased MCEMP1 expression in classical monocytes and alveolar macrophages in IPF compared with controls. MCEMP1 is upregulated by transforming growth factor beta (TGFβ) at the mRNA and protein levels in monocytic leukemia THP-1 cells. TGFβ-mediated MCEMP1 upregulation results from the cooperation of SMAD3 and SP1 via concomitant binding to SMAD3/SP1 cis-regulatory elements within the MCEMP1 promoter. We also found that MCEMP1 regulates TGFβ-mediated monocyte chemotaxis, adhesion, and migration. Our results suggest that MCEMP1 may regulate the migration and transition of monocytes to monocyte-derived alveolar macrophages during pulmonary fibrosis development and progression.NEW & NOTEWORTHY MCEMP1 is highly expressed in circulating classical monocytes and alveolar macrophages in IPF, is regulated by TGFβ, and participates in the chemotaxis, adhesion, and migration of circulating monocytes by modulating the effect of TGFβ in RHO activity.
Collapse
Affiliation(s)
- Carole Y Perrot
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Ubben Center for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Theodoros Karampitsakos
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Ubben Center for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Avraham Unterman
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, United States
- Pulmonary Fibrosis Center of Excellence, Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Institute of Pulmonary Medicine, Tel Aviv University, Tel Aviv, Israel
- Genomic Research Laboratory for Lung Fibrosis, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Taylor Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Krystin Marlin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Ubben Center for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Alyssa Arsenault
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Ubben Center for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Amy Zhao
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Gundars Katlaps
- Division of Cardiothoracic Surgery, Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Center for Advanced Lung Disease and Lung Transplant Program, Tampa General Hospital, Tampa, Florida, United States
| | - Kapilkumar Patel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Ubben Center for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Center for Advanced Lung Disease and Lung Transplant Program, Tampa General Hospital, Tampa, Florida, United States
| | - Debabrata Bandyopadhyay
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Ubben Center for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Center for Advanced Lung Disease and Lung Transplant Program, Tampa General Hospital, Tampa, Florida, United States
| | - Jose D Herazo-Maya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Ubben Center for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Center for Advanced Lung Disease and Lung Transplant Program, Tampa General Hospital, Tampa, Florida, United States
| |
Collapse
|
13
|
Mackintosh JA, Keir G, Troy LK, Holland AE, Grainge C, Chambers DC, Sandford D, Jo HE, Glaspole I, Wilsher M, Goh NSL, Reynolds PN, Chapman S, Mutsaers SE, de Boer S, Webster S, Moodley Y, Corte TJ. Treatment of idiopathic pulmonary fibrosis and progressive pulmonary fibrosis: A position statement from the Thoracic Society of Australia and New Zealand 2023 revision. Respirology 2024; 29:105-135. [PMID: 38211978 PMCID: PMC10952210 DOI: 10.1111/resp.14656] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease leading to significant morbidity and mortality. In 2017 the Thoracic Society of Australia and New Zealand (TSANZ) and Lung Foundation Australia (LFA) published a position statement on the treatment of IPF. Since that time, subsidized anti-fibrotic therapy in the form of pirfenidone and nintedanib is now available in both Australia and New Zealand. More recently, evidence has been published in support of nintedanib for non-IPF progressive pulmonary fibrosis (PPF). Additionally, there have been numerous publications relating to the non-pharmacologic management of IPF and PPF. This 2023 update to the position statement for treatment of IPF summarizes developments since 2017 and reaffirms the importance of a multi-faceted approach to the management of IPF and progressive pulmonary fibrosis.
Collapse
Affiliation(s)
- John A. Mackintosh
- Department of Respiratory MedicineThe Prince Charles HospitalBrisbaneQueenslandAustralia
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
| | - Gregory Keir
- Department of Respiratory MedicinePrincess Alexandra HospitalBrisbaneQueenslandAustralia
| | - Lauren K. Troy
- Department of Respiratory and Sleep MedicineRoyal Prince Alfred HospitalCamperdownNew South WalesAustralia
- University of SydneySydneyNew South WalesAustralia
| | - Anne E. Holland
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
- Department of PhysiotherapyThe Alfred HospitalMelbourneVictoriaAustralia
- Department of Respiratory Research@AlfredCentral Clinical School, Monash UniversityMelbourneVictoriaAustralia
| | - Christopher Grainge
- Department of Respiratory MedicineJohn Hunter HospitalNewcastleNew South WalesAustralia
| | - Daniel C. Chambers
- Department of Respiratory MedicineThe Prince Charles HospitalBrisbaneQueenslandAustralia
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
| | - Debra Sandford
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
- Department of Thoracic MedicineCentral Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
- University of AdelaideAdelaideSouth AustraliaAustralia
| | - Helen E. Jo
- Department of Respiratory and Sleep MedicineRoyal Prince Alfred HospitalCamperdownNew South WalesAustralia
- University of SydneySydneyNew South WalesAustralia
| | - Ian Glaspole
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
- Department of Respiratory MedicineThe Alfred HospitalMelbourneVictoriaAustralia
| | - Margaret Wilsher
- Department of Respiratory MedicineTe Toka Tumai AucklandAucklandNew Zealand
| | - Nicole S. L. Goh
- Department of Respiratory MedicineAustin HospitalMelbourneVictoriaAustralia
- Institute for Breathing and SleepMelbourneVictoriaAustralia
- University of MelbourneMelbourneVictoriaAustralia
| | - Paul N. Reynolds
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
- Department of Thoracic MedicineCentral Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
- University of AdelaideAdelaideSouth AustraliaAustralia
| | - Sally Chapman
- Institute for Respiratory Health, University of Western AustraliaNedlandsWestern AustraliaAustralia
| | - Steven E. Mutsaers
- Department of Respiratory MedicineFiona Stanley HospitalMurdochWestern AustraliaAustralia
| | - Sally de Boer
- Department of Respiratory MedicineTe Toka Tumai AucklandAucklandNew Zealand
| | - Susanne Webster
- Department of Respiratory and Sleep MedicineRoyal Prince Alfred HospitalCamperdownNew South WalesAustralia
| | - Yuben Moodley
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
- Institute for Respiratory Health, University of Western AustraliaNedlandsWestern AustraliaAustralia
- Department of Respiratory MedicineFiona Stanley HospitalMurdochWestern AustraliaAustralia
| | - Tamera J. Corte
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
- Department of Respiratory and Sleep MedicineRoyal Prince Alfred HospitalCamperdownNew South WalesAustralia
- University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
14
|
Liao YW, Liu MC, Wu YC, Hsu CY, Huang WN, Chen YH, Fu PK. Factors influencing long-term outcomes in fibrotic interstitial lung disease (F-ILD) diagnosed through multidisciplinary discussion (MDD): a prospective cohort study. Eur J Med Res 2024; 29:91. [PMID: 38291459 PMCID: PMC10826228 DOI: 10.1186/s40001-024-01673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/14/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The diagnostic process for fibrotic interstitial lung disease (F-ILD) is notably intricate, necessitating a multidisciplinary discussion to achieve consensus based on both clinical and radiological features. This study investigated the shared and distinctive long-term mortality predictors among the two primary phenotypes of F-ILD, namely idiopathic pulmonary fibrosis (IPF) and connective tissue disease-associated interstitial lung disease (CTD-ILD). METHODS We included patients with F-ILD diagnosed from December 2018 to December 2019 and conducted follow-up assessments until February 2023. Age, gender, usual interstitial pneumonia (UIP) pattern, gender-age-physiology (GAP) score, modified Medical Research Council (mMRC) dyspnea score, antifibrotic agent use, pulmonary function test parameters, and six-minute walking test (6MWT) parameters were recorded at baseline and used as mortality predictors in a multivariate Cox regression model. RESULTS We enrolled 104 ILD patients. The survival rate of non-IPF patients was more than twice that of IPF patients (78.9% vs. 34%, p < 0.001), and the survival rate of patients with a GAP score of 0-2 was more than twice that of patients with a score of > 2 (93.2% vs. 36.6%, p < 0.001). Older age, male gender, definite UIP pattern, higher GAP score, higher mMRC dyspnea score, lower forced expiratory volume in one second/forced vital capacity (FEV1/FVC), shorter 6MWT distance, and lower initial and final SpO2 were also associated with higher long-term mortality (p < 0.05). In multivariable analysis, only a GAP score of > 2 (hazard ratio [HR]:16.7; 95% confidence interval [CI] 3.28-85.14; p = 0.001) and definite UIP pattern (HR: 4.08; 95% CI 1.07-15.5; p = 0.039) were significantly associated with overall mortality. CONCLUSION The long-term mortality rate of IPF patients was higher than that of CTD-ILD patients. The GAP score and UIP patterns were significant mortality predictors for both IPF and CTD-ILD patients.
Collapse
Affiliation(s)
- Yu-Wan Liao
- Integrated Care Center of Interstitial Lung Disease, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Division of Allergy, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Ming-Cheng Liu
- Integrated Care Center of Interstitial Lung Disease, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Department of Radiology, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Yu-Cheng Wu
- Integrated Care Center of Interstitial Lung Disease, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Chiann-Yi Hsu
- Biostatistics Task Force, Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Wen-Nan Huang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Division of Allergy, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Yi-Hsing Chen
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Division of Allergy, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40200, Taiwan
| | - Pin-Kuei Fu
- Integrated Care Center of Interstitial Lung Disease, Taichung Veterans General Hospital, Taichung, 40705, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40200, Taiwan.
- Division of Clinical Research, Department of Medical Research, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung, 407219, Taiwan.
| |
Collapse
|
15
|
Karampitsakos T, Galaris A, Chrysikos S, Papaioannou O, Vamvakaris I, Barbayianni I, Kanellopoulou P, Grammenoudi S, Anagnostopoulos N, Stratakos G, Katsaras M, Sampsonas F, Dimakou K, Manali ED, Papiris S, Tourki B, Juan-Guardela BM, Bakakos P, Bouros D, Herazo-Maya JD, Aidinis V, Tzouvelekis A. Expression of PD-1/PD-L1 axis in mediastinal lymph nodes and lung tissue of human and experimental lung fibrosis indicates a potential therapeutic target for idiopathic pulmonary fibrosis. Respir Res 2023; 24:279. [PMID: 37964265 PMCID: PMC10648728 DOI: 10.1186/s12931-023-02551-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Mediastinal lymph node enlargement is prevalent in patients with idiopathic pulmonary fibrosis (IPF). Studies investigating whether this phenomenon reflects specific immunologic activation are lacking. METHODS Programmed cell death-1 (PD-1)/ programmed cell death ligand-1 (PD-L1) expression in mediastinal lymph nodes and lung tissues was analyzed. PD-1, PD-L1 mRNA expression was measured in tracheobronchial lymph nodes of mice following bleomycin-induced injury on day 14. Finally, the effect of the PD-1 inhibitor, pembrolizumab, in bleomycin-induced pulmonary fibrosis was investigated. RESULTS We analyzed mediastinal lymph nodes of thirty-three patients (n = 33, IPF: n = 14, lung cancer: n = 10, concomitant IPF and lung cancer: n = 9) and lung tissues of two hundred nineteen patients (n = 219, IPF: 123, controls: 96). PD-1 expression was increased, while PD-L1 expression was decreased, in mediastinal lymph nodes of patients with IPF compared to lung cancer and in IPF lungs compared to control lungs. Tracheobronchial lymph nodes isolated on day 14 from bleomycin-treated mice exhibited increased size and higher PD-1, PD-L1 mRNA levels compared to saline-treated animals. Pembrolizumab blunted bleomycin-induced lung fibrosis, as indicated by reduction in Ashcroft score and improvement in respiratory mechanics. CONCLUSIONS Mediastinal lymph nodes of patients with IPF exhibit differential expression profiles than those of patients with lung cancer indicating distinct immune-mediated pathways regulating fibrogenesis and carcinogenesis. PD-1 expression in mediastinal lymph nodes is in line with lung tissue expression. Lower doses of pembrolizumab might exert antifibrotic effects. Clinical trials aiming to endotype patients based on mediastinal lymph node profiling and accordingly implement targeted therapies such as PD-1 inhibitors are greatly anticipated.
Collapse
Affiliation(s)
- Theodoros Karampitsakos
- Department of Respiratory Medicine, University Hospital of Patras, Rio, Greece
- Ubben Center and Laboratory for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, 33620, Tampa, FL, USA
| | - Apostolos Galaris
- Institute of Bio- Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Serafeim Chrysikos
- 5th Department of Pneumonology, Hospital for Thoracic Diseases, "SOTIRIA", Athens, Greece
| | - Ourania Papaioannou
- Department of Respiratory Medicine, University Hospital of Patras, Rio, Greece
| | - Ioannis Vamvakaris
- Department of Pathology, Hospital for Thoracic Diseases, "SOTIRIA", Athens, Greece
| | - Ilianna Barbayianni
- Institute of Bio- Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Paraskevi Kanellopoulou
- Institute of Bio- Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Sofia Grammenoudi
- Institute of Bio- Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Nektarios Anagnostopoulos
- First Academic Department of Pneumonology, "SOTIRIA", Medical School, Hospital for Thoracic Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Grigoris Stratakos
- First Academic Department of Pneumonology, "SOTIRIA", Medical School, Hospital for Thoracic Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Matthaios Katsaras
- Department of Respiratory Medicine, University Hospital of Patras, Rio, Greece
| | - Fotios Sampsonas
- Department of Respiratory Medicine, University Hospital of Patras, Rio, Greece
| | - Katerina Dimakou
- 5th Department of Pneumonology, Hospital for Thoracic Diseases, "SOTIRIA", Athens, Greece
| | - Effrosyni D Manali
- 2nd Pulmonary Medicine Department, Athens Medical School, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyridon Papiris
- 2nd Pulmonary Medicine Department, Athens Medical School, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Bochra Tourki
- Ubben Center and Laboratory for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, 33620, Tampa, FL, USA
| | - Brenda M Juan-Guardela
- Ubben Center and Laboratory for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, 33620, Tampa, FL, USA
| | - Petros Bakakos
- First Academic Department of Pneumonology, "SOTIRIA", Medical School, Hospital for Thoracic Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Demosthenes Bouros
- First Academic Department of Pneumonology, "SOTIRIA", Medical School, Hospital for Thoracic Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Jose D Herazo-Maya
- Ubben Center and Laboratory for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, 33620, Tampa, FL, USA
| | - Vassilis Aidinis
- Institute of Bio- Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Argyris Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Rio, Greece.
| |
Collapse
|
16
|
Fujita Y, Fujimoto S, Miyamoto A, Kaneko R, Kadota T, Watanabe N, Kizawa R, Kawamoto H, Watanabe J, Utsumi H, Wakui H, Minagawa S, Araya J, Ohtsuka T, Ochiya T, Kuwano K. Fibroblast-derived Extracellular Vesicles Induce Lung Cancer Progression in the Idiopathic Pulmonary Fibrosis Microenvironment. Am J Respir Cell Mol Biol 2023; 69:34-44. [PMID: 36848313 DOI: 10.1165/rcmb.2022-0253oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive aging-related lung disease associated with increased lung cancer risk. Although previous studies have shown that IPF worsens the survival of patients with lung cancer, whether IPF independently affects cancer malignancy and prognosis remains inconclusive. Extracellular vesicles (EVs) have recently emerged as active carriers of molecular biomarkers and mediators of intercellular communication in lung homeostasis and pathogenesis. EV cargo-mediated fibroblast-tumor cell communication might participate in the development and progression of lung cancer by modulating various signaling pathways. In this study, we examined the impact of lung fibroblast (LF)-derived EVs on non-small cell lung cancer (NSCLC) malignancy in the IPF microenvironment. Here, we showed that LFs derived from patients with IPF have phenotypes of myofibroblast differentiation and cellular senescence. Furthermore, we found that IPF LF-derived EVs have markedly altered microRNA compositions and exert proproliferative functions on NSCLC cells. Mechanistically, the phenotype was attributed mainly to the enrichment of miR-19a in IPF LF-derived EVs. As a downstream signaling pathway, mir-19a in IPF LF-derived EVs regulates ZMYND11-mediated c-Myc activation in NSCLC, potentially contributing to the poor prognosis of patients with NSCLC with IPF. Our discoveries provide novel mechanistic insights for understanding lung cancer progression in the IPF microenvironment. Accordingly, blocking the secretion of IPF LF-derived EV miR-19a and their signaling pathways is a potential therapeutic strategy for managing IPF and lung cancer progression.
Collapse
Affiliation(s)
- Yu Fujita
- Division of Respiratory Diseases, Department of Internal Medicine
- Department of Translational Research for Exosomes, and
| | - Shota Fujimoto
- Division of Respiratory Diseases, Department of Internal Medicine
| | - Atsushi Miyamoto
- Department of Respiratory Medicine, Respiratory Center, Toranomon Hospital, Tokyo, Japan; and
| | - Reika Kaneko
- Department of Translational Research for Exosomes, and
| | - Tsukasa Kadota
- Division of Respiratory Diseases, Department of Internal Medicine
| | - Naoaki Watanabe
- Division of Respiratory Diseases, Department of Internal Medicine
| | - Ryusuke Kizawa
- Division of Respiratory Diseases, Department of Internal Medicine
- Department of Translational Research for Exosomes, and
| | | | - Junko Watanabe
- Division of Respiratory Diseases, Department of Internal Medicine
| | - Hirofumi Utsumi
- Division of Respiratory Diseases, Department of Internal Medicine
| | - Hiroshi Wakui
- Division of Respiratory Diseases, Department of Internal Medicine
| | | | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine
| | - Takashi Ohtsuka
- Division of Thoracic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine
| |
Collapse
|
17
|
Assié JB, Chouaïd C, Nunes H, Reynaud D, Gaudin AF, Grumberg V, Jolivel R, Jouaneton B, Cotté FE, Duchemann B. Outcome following nivolumab treatment in patients with advanced non-small cell lung cancer and comorbid interstitial lung disease in a real-world setting. Ther Adv Med Oncol 2023; 15:17588359231152847. [PMID: 36743523 PMCID: PMC9893351 DOI: 10.1177/17588359231152847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/05/2023] [Indexed: 02/01/2023] Open
Abstract
Background Up to 10% of patients with advanced non-small cell lung cancer (aNSCLC) have pre-existing interstitial lung disease (ILD). These patients are usually excluded from immunotherapy clinical trials. Consequently, knowledge on outcomes following nivolumab treatment in these patients remains limited. The primary objective of this study was to evaluate survival outcome following nivolumab treatment in ILD patients with pre-treated aNSCLC in the real-world setting. Patients and methods The study included all patients with aNSCLC recorded in the French hospital database, starting nivolumab in 2015-2016. Patients were stratified by pre-existing ILD and three subgroups were studied [auto-immune or granulomatous (AI/G) ILD, other known causes ILD and idiopathic ILD]. Time to discontinuation of nivolumab treatment [time to treatment duration (TTD)] and overall survival (OS) were estimated using Kaplan-Meier survival analysis. Results Of 10,452 aNSCLC patients initiating nivolumab, 148 (1.4%) had pre-existing ILD. Mean age at nivolumab initiation was 64.6 ± 9.4 years in ILD and 63.8 ± 9.6 years in non-ILD. Compared to non-ILD, patients in the ILD group were more frequently men (p < 0.05) and had more comorbidities (p < 0.001). There was no significant difference between ILD and non-ILD groups for median TTD (2.5 versus 2.8 months; p = 0.6) or median OS (9.6 versus 11.9 months; p = 0.1). Median OS in AI/G ILD (n = 14), other known causes ILD (n = 75), and idiopathic ILD (n = 59) were 8.6, 10.7, and 9.6 months, respectively. Conclusion In this large cohort of aNSCLC patients with ILD, outcomes are similar to those obtained in the non-ILD population. Immunotherapy could be beneficial for these patients.
Collapse
Affiliation(s)
- Jean-Baptiste Assié
- Functional Genomics of Solid Tumors Laboratory, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Centre Hospitalier Intercommunal Créteil, Créteil, France
| | | | - Hilario Nunes
- Department of Respiratory Medicine, Centre de Référence des Maladies Pulmonaires Rares, Avicenne Hospital, Université Sorbonne Paris Nord, Paris, France
| | | | | | - Valentine Grumberg
- Bristol Myers Squibb France, 3 rue Joseph Monier, Rueil-Malmaison 92500, France. Oncostat – U1018, INSERM, Paris-Saclay University, “Ligue Contre le Cancer” Labeled Team, Villejuif, France
| | | | | | | | - Boris Duchemann
- Department of Thoracic and Medical Oncology, Avicenne Hospital, Université Sorbonne Paris Nord, Paris, France
- Laboratoire d’Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
18
|
Karampitsakos T, Spagnolo P, Mogulkoc N, Wuyts WA, Tomassetti S, Bendstrup E, Molina-Molina M, Manali ED, Unat ÖS, Bonella F, Kahn N, Kolilekas L, Rosi E, Gori L, Ravaglia C, Poletti V, Daniil Z, Prior TS, Papanikolaou IC, Aso S, Tryfon S, Papakosta D, Tzilas V, Balestro E, Papiris S, Antoniou K, Bouros D, Wells A, Kreuter M, Tzouvelekis A. Lung cancer in patients with idiopathic pulmonary fibrosis: A retrospective multicentre study in Europe. Respirology 2023; 28:56-65. [PMID: 36117239 DOI: 10.1111/resp.14363] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/18/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE There remains a paucity of large databases for patients with idiopathic pulmonary fibrosis (IPF) and lung cancer. We aimed to create a European registry. METHODS This was a multicentre, retrospective study across seven European countries between 1 January 2010 and 18 May 2021. RESULTS We identified 324 patients with lung cancer among 3178 patients with IPF (prevalence = 10.2%). By the end of the 10 year-period following IPF diagnosis, 26.6% of alive patients with IPF had been diagnosed with lung cancer. Patients with IPF and lung cancer experienced increased risk of all-cause mortality than IPF patients without lung cancer (HR: 1.51, [95% CI: 1.22-1.86], p < 0.0001). All-cause mortality was significantly lower for patients with IPF and lung cancer with a monocyte count of either <0.60 or 0.60-<0.95 K/μl than patients with monocyte count ≥0.95 K/μl (HR [<0.60 vs. ≥0.95 K/μl]: 0.35, [95% CI: 0.17-0.72], HR [0.60-<0.95 vs. ≥0.95 K/μl]: 0.42, [95% CI: 0.21-0.82], p = 0.003). Patients with IPF and lung cancer that received antifibrotics presented with decreased all cause-mortality compared to those who did not receive antifibrotics (HR: 0.61, [95% CI: 0.42-0.87], p = 0.006). In the adjusted model, a significantly lower proportion of surgically treated patients with IPF and otherwise technically operable lung cancer experienced all-cause mortality compared to non-surgically treated patients (HR: 0.30 [95% CI: 0.11-0.86], p = 0.02). CONCLUSION Lung cancer exerts a dramatic impact on patients with IPF. A consensus statement for the management of patients with IPF and lung cancer is sorely needed.
Collapse
Affiliation(s)
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Nesrin Mogulkoc
- Department of Pulmonology, Ege University Hospital, Izmir, Turkey
| | - Wim A Wuyts
- Unit of Interstitial Lung Diseases, Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Sara Tomassetti
- Department of Clinical and Experimental Medicine, Interventional Pulmonology Unit, Careggi University Hospital Florence, Florence, Italy
| | - Elisabeth Bendstrup
- Center for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Maria Molina-Molina
- Respiratory Department, Unit of Interstitial Lung Diseases, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Effrosyni D Manali
- 2nd Pulmonary Medicine Department, 'ATTIKON' University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ömer Selim Unat
- Department of Pulmonology, Ege University Hospital, Izmir, Turkey
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Pneumonology Department, Ruhrlandklinik University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Nicolas Kahn
- Center for Interstitial and Rare Lung Diseases, Department of Pneumology, Thoraxklinik-University Clinic Heidelberg and German Center for Lung Research, Heidelberg, Germany
| | - Lykourgos Kolilekas
- 7th Department of Respiratory Medicine, Hospital for Thoracic Diseases, 'SOTIRIA', Athens, Greece
| | - Elisabetta Rosi
- Department of Clinical and Experimental Medicine, Interventional Pulmonology Unit, Careggi University Hospital Florence, Florence, Italy
| | - Leonardo Gori
- Department of Clinical and Experimental Medicine, Interventional Pulmonology Unit, Careggi University Hospital Florence, Florence, Italy
| | - Claudia Ravaglia
- Thoracic Diseases Department, Morgagni Pierantoni Hospital, Forlì, Italy
| | - Venerino Poletti
- Thoracic Diseases Department, Morgagni Pierantoni Hospital, Forlì, Italy
| | - Zoe Daniil
- Department of Respiratory Medicine, Medical School, University of Thessaly, Larissa, Greece
| | - Thomas Skovhus Prior
- Center for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Samantha Aso
- Respiratory Department, Unit of Interstitial Lung Diseases, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Stavros Tryfon
- Pulmonary Clinic, NHS General Hospital 'G. Papanikolaou', Thessaloniki, Greece
| | - Despoina Papakosta
- Pulmonary Department, 'G Papanikolaou' General Hospital, Thessaloniki, Greece.,Aristotle University of Thessaloniki Medical School, Thessaloniki, Greece
| | - Vasillios Tzilas
- First Academic Department of Pneumonology, Hospital for Thoracic Diseases, 'SOTIRIA', Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabetta Balestro
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Spyridon Papiris
- 2nd Pulmonary Medicine Department, 'ATTIKON' University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Antoniou
- Department of Thoracic Medicine, Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Crete, Greece
| | - Demosthenes Bouros
- First Academic Department of Pneumonology, Hospital for Thoracic Diseases, 'SOTIRIA', Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athol Wells
- Interstitial Lung Disease Unit, Ιmperial College London, Royal Brompton and Harefield, London, UK
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Department of Pneumology, Thoraxklinik-University Clinic Heidelberg and German Center for Lung Research, Heidelberg, Germany
| | - Argyris Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
19
|
Pluvy J, Zaccariotto A, Habert P, Bermudez J, Mogenet A, Gaubert JY, Tomasini P, Padovani L, Greillier L. Stereotactic body radiation therapy (SBRT) as salvage treatment for early stage lung cancer with interstitial lung disease (ILD): An observational and exploratory case series of non-asian patients. Respir Med Res 2022; 83:100984. [PMID: 36634555 DOI: 10.1016/j.resmer.2022.100984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/26/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
Interstitial lung disease (ILD) can coexist with early-stage lung cancer (LC) and may compromise surgery and worsen patients' outcomes. Stereotactic body radiation therapy (SBRT) is the gold standard treatment for medically inoperable early-stage lung cancer, but radiation therapy is contra-indicated for patients with ILD because of the higher risk of severe radiation-induced pneumonitis. SBRT may spare healthy lung tissue, but data are scarce in this rare population. Our exploratory case series aimed to retrospectively identify patients treated with SBRT in this setting: 19 patients were diagnosed with early-stage LC-ILD over the past 6 years and 9 received SBRT. Most of them were smokers with a median age of 71, 4 had no pathological documentation. After SBRT, 5 patients had grade I-II respiratory adverse events (AEs), but none had treatment-related grade III-IV respiratory AEs. Two patients died within 6 months of SBRT, and for both, death was related to metastatic relapse. In this case series, the radiological evolution of ILD before radiotherapy and the evolution of the radiotherapy scar on CT-Scan were also explored with different evolutionary models. This exploratory study shows available data that could be studied in a larger retrospective cohort to identify risk factors for SBRT in the LC-ILD population. The use of dosimetric data as a risk factor for SBRT should be done with cautiousness due to heterogeneous and complex dose delivery and different fractionation schedule.
Collapse
Affiliation(s)
- J Pluvy
- Department of Multidisciplinary Oncology and Therapeutic Innovations Assistance Publique Hôpitaux de Marseille AP-HM, Hôpital Nord, Marseille, France.
| | - A Zaccariotto
- Department of Radiation Oncology, Assistance Publique Hôpitaux de Marseille AP-HM, Marseille, France
| | - P Habert
- Radiology Department, Hôpital Nord, AP-HM, Aix Marseille Univ, LIIE, CERIMED, Marseille, France
| | - J Bermudez
- Department of Respiratory Medicine and Lung Transplantation, Assistance Publique - Hôpitaux de Marseille APHM, Hôpital Nord, Marseille, Aix -Marseille University, France
| | - A Mogenet
- Department of Multidisciplinary Oncology and Therapeutic Innovations Assistance Publique Hôpitaux de Marseille AP-HM, Hôpital Nord, Aix Marseille University, Marseille, France
| | - J Y Gaubert
- Radiology Department, Hôpital Nord, Assistance Publique Hôpitaux de Marseille AP-HM, Marseille, France
| | - P Tomasini
- Department of Multidisciplinary Oncology and Therapeutic Innovations, Assistance Publique Hôpitaux de Marseille AP-HM, Aix Marseille University, Marseille, France; Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Marseille, France
| | - L Padovani
- Department of Radiation Oncology, Assistance Publique Hôpitaux de Marseille AP-HM, Marseille, France
| | - L Greillier
- Multidisciplinary Oncology and Therapeutic Innovations Department, Aix Marseille University, APHM, INSERM, CNRS, CRCM, Hôpital Nord, Marseille, France
| |
Collapse
|
20
|
Is Thoracic Radiotherapy an Absolute Contraindication for Treatment of Lung Cancer Patients With Interstitial Lung Disease? A Systematic Review. Clin Oncol (R Coll Radiol) 2022; 34:e493-e504. [PMID: 35168842 DOI: 10.1016/j.clon.2022.01.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 01/31/2023]
Abstract
Thoracic radiotherapy decisions in patients with interstitial lung disease (ILD) are complex due to concerns about severe or even fatal radiation pneumonitis. This systematic review analysed the published evidence regarding the incidence of radiation pneumonitis and mortality after thoracic radiotherapy and investigated clinical and dosimetric predictors of radiation pneumonitis in lung cancer patients with ILD. A systematic search was carried out in PubMed, Medline, Embase and the Cochrane database for articles published between January 2000 and April 2021. Two authors independently screened eligible studies that met our predefined criteria. Studies were assessed for design and quality and a qualitative data synthesis was carried out. The search strategy resulted in 1750 articles. After two rounds of screening, 24 publications were included. The median overall incidence of grade ≥3 radiation pneumonitis was 19.7% (range 8-46%). The incidence was greater in conventional radical radiotherapy-treated patients (median 31.8%) compared with particle beam therapy- or stereotactic ablative radiotherapy-treated patients (median 12.5%). The median rate of grade 5 radiation pneumonitis was 11.9% (range 0-60%). The presence of ILD was an independent predictor of severe radiation pneumonitis. Severe radiation pneumonitis was more common in the presence of usual interstitial pneumonia (UIP) pattern or idiopathic pulmonary fibrosis (IPF) than non-UIP or non-IPF subtype. Several other clinical predictors were reported in the literature. V5, V10, V20 and mean lung dose were the most common dosimetric predictors for severe radiation pneumonitis, often with stricter dose constraints than conventionally used. Patients with lung cancer associated with ILD had a poorer overall survival compared with patients without ILD. In conclusion, patients with lung cancer associated with ILD have a poor prognosis. They are at high risk of severe and even fatal radiation pneumonitis. Careful patient selection is necessary, appropriate high-risk consenting and strict lung dose-volume constraints should be used, if these patients are to be treated with thoracic radiotherapy.
Collapse
|
21
|
Andreikos D, Karampitsakos T, Tzouvelekis A, Stratakos G. Statins’ still controversial role in pulmonary fibrosis: What does the evidence show? Pulm Pharmacol Ther 2022; 77:102168. [DOI: 10.1016/j.pupt.2022.102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
|
22
|
Bendstrup E, Kronborg-White S, Møller J, Prior TS. Current best clinical practices for monitoring of interstitial lung disease. Expert Rev Respir Med 2022; 16:1153-1166. [PMID: 36572644 DOI: 10.1080/17476348.2022.2162504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Interstitial lung diseases (ILDs) are a heterogeneous group of inflammatory and/or fibrotic conditions with variable outcome and often a dismal prognosis. Since many ILDs are progressive in nature, monitoring of signs and symptoms of progression is essential to inform treatment decisions and patient counseling. Monitoring of ILDs is a multimodality process and includes all aspects of the disease, e.g. measurement of pulmonary function and exercise capacity, symptom registration and quality of life (QoL), imaging, comorbidities and/or involvement of other organs to assess disease activity, symptom burden, treatment effects, adverse events, the need for supportive and palliative care, and lung transplantation. AREAS COVERED For this narrative review, we searched the PUBMED database to identify articles relevant for monitoring ILDs, including pulmonary function tests, exercise capacity, imaging, telemedicine, symptoms, and QoL. EXPERT OPINION Due to the high heterogeneity of the ILDs and their disease course, an individualized multimodality approach must be applied. Future strategies include use of telemedicine for home monitoring of lung function and symptoms, use of artificial intelligence to support automatized guidance of patients, computerized evaluation of ILD changes on imaging, and new imaging tools with less radiation dosage.
Collapse
Affiliation(s)
- Elisabeth Bendstrup
- Centre for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Sissel Kronborg-White
- Centre for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Janne Møller
- Centre for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Skovhus Prior
- Centre for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
23
|
Zlatanova T, Arabadjiev J, Kirova-Nedyalkova G, Nikova D. Successful treatment with docetaxel plus nintedanib in a patient with lung adenocarcinoma and pulmonary fibrosis: A case report and literature review. Front Oncol 2022; 12:907321. [PMID: 36016602 PMCID: PMC9396293 DOI: 10.3389/fonc.2022.907321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
Despite the rare incidence of idiopathic pulmonary fibrosis (IPF), coexisting IPF and lung cancer is common. Both diseases have unfavorable outcomes and are often associated with impaired quality of life. In this study, we present a clinical case of a patient with coexisting IPF and lung adenocarcinoma who was successfully treated with nintedanib plus docetaxel as a second-line treatment, and achieved a substantial improvement in the quality of life. To our knowledge, very few cases in the literature address the concurrent treatment of both diseases, which makes this case a valuable illustration of a successful treatment strategy and a basis for future investigations.
Collapse
Affiliation(s)
- Tanya Zlatanova
- Department of Medical Oncology, Acibadem City Clinic Tokuda Hospital, Sofia, Bulgaria
- *Correspondence: Tanya Zlatanova,
| | - Jeliazko Arabadjiev
- Department of Medical Oncology, Acibadem City Clinic Tokuda Hospital, Sofia, Bulgaria
| | | | - Diana Nikova
- Clinic of Pneumology, Acibadem City Clinic Tokuda Hospital, Sofia, Bulgaria
| |
Collapse
|
24
|
Samarelli AV, Masciale V, Aramini B, Coló GP, Tonelli R, Marchioni A, Bruzzi G, Gozzi F, Andrisani D, Castaniere I, Manicardi L, Moretti A, Tabbì L, Guaitoli G, Cerri S, Dominici M, Clini E. Molecular Mechanisms and Cellular Contribution from Lung Fibrosis to Lung Cancer Development. Int J Mol Sci 2021; 22:12179. [PMID: 34830058 PMCID: PMC8624248 DOI: 10.3390/ijms222212179] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrosing interstitial lung disease (ILD) of unknown aetiology, with a median survival of 2-4 years from the time of diagnosis. Although IPF has unknown aetiology by definition, there have been identified several risks factors increasing the probability of the onset and progression of the disease in IPF patients such as cigarette smoking and environmental risk factors associated with domestic and occupational exposure. Among them, cigarette smoking together with concomitant emphysema might predispose IPF patients to lung cancer (LC), mostly to non-small cell lung cancer (NSCLC), increasing the risk of lung cancer development. To this purpose, IPF and LC share several cellular and molecular processes driving the progression of both pathologies such as fibroblast transition proliferation and activation, endoplasmic reticulum stress, oxidative stress, and many genetic and epigenetic markers that predispose IPF patients to LC development. Nintedanib, a tyrosine-kinase inhibitor, was firstly developed as an anticancer drug and then recognized as an anti-fibrotic agent based on the common target molecular pathway. In this review our aim is to describe the updated studies on common cellular and molecular mechanisms between IPF and lung cancer, knowledge of which might help to find novel therapeutic targets for this disease combination.
Collapse
Affiliation(s)
- Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Valentina Masciale
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, 41100 Modena, Italy;
| | - Beatrice Aramini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Thoracic Surgery Unit, Department of Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, 34 Carlo Forlanini Street, 47121 Forlì, Italy
| | - Georgina Pamela Coló
- Laboratorio de Biología del Cáncer INIBIBB-UNS-CONICET-CCT, Bahía Blanca 8000, Argentina;
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Alessandro Marchioni
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Giulia Bruzzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Filippo Gozzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Dario Andrisani
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Ivana Castaniere
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Linda Manicardi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Antonio Moretti
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Luca Tabbì
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Giorgia Guaitoli
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Massimo Dominici
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, 41100 Modena, Italy;
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| |
Collapse
|
25
|
Luppi F, Kalluri M, Faverio P, Kreuter M, Ferrara G. Idiopathic pulmonary fibrosis beyond the lung: understanding disease mechanisms to improve diagnosis and management. Respir Res 2021; 22:109. [PMID: 33865386 PMCID: PMC8052779 DOI: 10.1186/s12931-021-01711-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disorder with an estimated median survival time of 3–5 years after diagnosis. This condition occurs primarily in elderly subjects, and epidemiological studies suggest that the main risk factors, ageing and exposure to cigarette smoke, are associated with both pulmonary and extrapulmonary comorbidities (defined as the occurrence of two or more disorders in a single individual). Ageing and senescence, through interactions with environmental factors, may contribute to the pathogenesis of IPF by various mechanisms, causing lung epithelium damage and increasing the resistance of myofibroblasts to apoptosis, eventually resulting in extracellular matrix accumulation and pulmonary fibrosis. As a paradigm, syndromes featuring short telomeres represent archetypal premature ageing syndromes and are often associated with pulmonary fibrosis. The pathophysiological features induced by ageing and senescence in patients with IPF may translate to pulmonary and extrapulmonary features, including emphysema, pulmonary hypertension, lung cancer, coronary artery disease, gastro-oesophageal reflux, diabetes mellitus and many other chronic diseases, which may lead to substantial negative consequences in terms of various outcome parameters in IPF. Therefore, the careful diagnosis and treatment of comorbidities may represent an outstanding chance to improve quality of life and survival, and it is necessary to contemplate all possible management options for IPF, including early identification and treatment of comorbidities.
Collapse
Affiliation(s)
- Fabrizio Luppi
- Respiratory Unit, University of Milano Bicocca, S. Gerardo Hospital, ASST Monza, Monza, Italy
| | - Meena Kalluri
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, 3-134 Clinical Sciences Building, 11304 83 Ave., Edmonton, AB, T6G 2G3, Canada
| | - Paola Faverio
- Respiratory Unit, University of Milano Bicocca, S. Gerardo Hospital, ASST Monza, Monza, Italy
| | - Michael Kreuter
- Centre for Interstitial and Rare Lung Diseases, Pneumology and Respiratory Critical Care Medicine, University of Heidelberg, German Center for Lung Research, ThoraxklinikHeidelberg, Germany
| | - Giovanni Ferrara
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada. .,Division of Pulmonary Medicine, Department of Medicine, University of Alberta, 3-134 Clinical Sciences Building, 11304 83 Ave., Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
26
|
Impact of idiopathic pulmonary fibrosis on clinical outcomes of lung cancer patients. Sci Rep 2021; 11:8312. [PMID: 33859288 PMCID: PMC8050293 DOI: 10.1038/s41598-021-87747-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/01/2021] [Indexed: 12/25/2022] Open
Abstract
The clinical characteristics of lung cancer in patients with idiopathic pulmonary fibrosis (IPF) differ from those of lung cancer in patients without IPF. Thus, we aimed to evaluate the impact of IPF on the clinical course of patients with lung cancer. Clinical data of IPF patients with lung cancer (n = 122) were compared with those of patients with lung cancer without IPF (n = 488) matched by age, sex, histopathology, stage, and date of diagnosis of lung cancer. The median follow-up period after diagnosis of lung cancer was 16 months. Among patients with IPF, the mean age was 68 years, 95.9% were male, 93.2% were ever-smokers, and squamous cell carcinoma was the most common cancer type (48.4%). The IPF group had poorer lung function and lower lobe predominance of lung cancer than the no-IPF group. The IPF group showed a poorer prognosis than the no-IPF group (5-year survival rate: 14.5% vs. 30.1%, respectively; P < 0.001), even after adjusting for lung function and regardless of the treatment method. Among patients with IPF, 16.8% experienced acute exacerbation within 1 month after treatment of lung cancer. The treatment outcome of patients with lung cancer and IPF was generally unfavorable, and acute exacerbation triggered by treatment frequently occurred.
Collapse
|