1
|
Odendaal ML, de Steenhuijsen Piters WAA, Franz E, Chu MLJN, Groot JA, van Logchem EM, Hasrat R, Kuiling S, Pijnacker R, Mariman R, Trzciński K, van der Klis FRM, Sanders EAM, Smit LAM, Bogaert D, Bosch T. Host and environmental factors shape upper airway microbiota and respiratory health across the human lifespan. Cell 2024; 187:4571-4585.e15. [PMID: 39094567 DOI: 10.1016/j.cell.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/22/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
Our understanding of the normal variation in the upper respiratory tract (URT) microbiota across the human lifespan and how these relate to host, environment, and health is limited. We studied the microbiota of 3,104 saliva (<10 year-olds)/oropharynx (≥10 year-olds) and 2,485 nasopharynx samples of 3,160 Dutch individuals 0-87 years of age, participating in a cross-sectional population-wide study (PIENTER-3) using 16S-rRNA sequencing. The microbiota composition was strongly related to age, especially in the nasopharynx, with maturation occurring throughout childhood and adolescence. Clear niche- and age-specific associations were found between the microbiota composition and host/environmental factors and health outcomes. Among others, social interaction, sex, and season were associated with the nasopharyngeal microbial community. By contrast, the oral microbiota was more related to antibiotics, tobacco, and alcohol use. We present an atlas of the URT microbiota across the lifespan in association with environment and health, establishing a baseline for future research.
Collapse
Affiliation(s)
- Mari-Lee Odendaal
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Wouter A A de Steenhuijsen Piters
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Mei Ling J N Chu
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - James A Groot
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Elske M van Logchem
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Raiza Hasrat
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sjoerd Kuiling
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Roan Pijnacker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Rob Mariman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Krzysztof Trzciński
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Fiona R M van der Klis
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Elisabeth A M Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Debby Bogaert
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | - Thijs Bosch
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| |
Collapse
|
2
|
Lin GL, Drysdale SB, Snape MD, O'Connor D, Brown A, MacIntyre-Cockett G, Mellado-Gomez E, de Cesare M, Ansari MA, Bonsall D, Bray JE, Jolley KA, Bowden R, Aerssens J, Bont L, Openshaw PJM, Martinon-Torres F, Nair H, Golubchik T, Pollard AJ. Targeted metagenomics reveals association between severity and pathogen co-detection in infants with respiratory syncytial virus. Nat Commun 2024; 15:2379. [PMID: 38493135 PMCID: PMC10944482 DOI: 10.1038/s41467-024-46648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/23/2024] [Indexed: 03/18/2024] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of hospitalisation for respiratory infection in young children. RSV disease severity is known to be age-dependent and highest in young infants, but other correlates of severity, particularly the presence of additional respiratory pathogens, are less well understood. In this study, nasopharyngeal swabs were collected from two cohorts of RSV-positive infants <12 months in Spain, the UK, and the Netherlands during 2017-20. We show, using targeted metagenomic sequencing of >100 pathogens, including all common respiratory viruses and bacteria, from samples collected from 433 infants, that burden of additional viruses is common (111/433, 26%) but only modestly correlates with RSV disease severity. In contrast, there is strong evidence in both cohorts and across age groups that presence of Haemophilus bacteria (194/433, 45%) is associated with higher severity, including much higher rates of hospitalisation (odds ratio 4.25, 95% CI 2.03-9.31). There is no evidence for association between higher severity and other detected bacteria, and no difference in severity between RSV genotypes. Our findings reveal the genomic diversity of additional pathogens during RSV infection in infants, and provide an evidence base for future causal investigations of the impact of co-infection on RSV disease severity.
Collapse
Affiliation(s)
- Gu-Lung Lin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Centre for Neonatal and Paediatric Infection, Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | | | - Esther Mellado-Gomez
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Mariateresa de Cesare
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Human Technopole, Milan, Italy
| | - M Azim Ansari
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - David Bonsall
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James E Bray
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Jeroen Aerssens
- Translational Biomarkers, Infectious Diseases Therapeutic Area, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Louis Bont
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
- ReSViNET Foundation, Zeist, Netherlands
| | | | - Federico Martinon-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, University of Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Harish Nair
- Centre for Global Health, Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tanya Golubchik
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Sydney Infectious Diseases Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
3
|
Stubbendieck RM, Hurst JH, Kelly MS. Dolosigranulum pigrum: A promising nasal probiotic candidate. PLoS Pathog 2024; 20:e1011955. [PMID: 38300905 PMCID: PMC10833571 DOI: 10.1371/journal.ppat.1011955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Affiliation(s)
- Reed M. Stubbendieck
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Jillian H. Hurst
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, United States of America
- Children’s Health and Discovery Institute, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Matthew S. Kelly
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
4
|
Koenen MH, de Groot RCA, de Steenhuijsen Piters WAA, Chu MLJN, Arp K, Hasrat R, de Bruijn ACJM, Estevão SC, van der Vries E, Langereis JD, Boes M, Bogaert D, van Rossum AMC, Unger WWJ, Verhagen LM. Mycoplasma pneumoniae carriage in children with recurrent respiratory tract infections is associated with a less diverse and altered microbiota. EBioMedicine 2023; 98:104868. [PMID: 37950996 PMCID: PMC10679896 DOI: 10.1016/j.ebiom.2023.104868] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023] Open
Abstract
BACKGROUND Mycoplasma pneumoniae is a common cause of community-acquired pneumonia in school-aged children and can be preceded by asymptomatic carriage. However, its role in recurrent respiratory tract infections is unclear. We studied the prevalence of M.pneumoniae carriage in children with recurrent respiratory infections and identified associated factors. METHODS We tested M.pneumoniae carriage by qPCR in children with recurrent infections and their healthy family members in a cross-sectional study. Serum and mucosal total and M.pneumoniae-specific antibody levels were measured by ELISA and nasopharyngeal microbiota composition was characterized by 16S-rRNA sequencing. FINDINGS Prevalence of M.pneumoniae carriage was higher in children with recurrent infections (68%) than their family members without infections (47% in siblings and 27% in parents). M.pneumoniae carriage among family members appeared to be associated with transmission within the household, likely originating from the affected child. In logistic regression corrected for age and multiple comparisons, IgA (OR 0.16 [0.06-0.37]) and total IgG deficiency (OR 0.15 [0.02-0.74]) were less prevalent in M.pneumoniae carriers (n = 78) compared to non-carriers (n = 36). In multivariable analysis, the nasopharyngeal microbiota of M.pneumoniae carriers had lower alpha diversity (OR 0.27 [0.09-0.67]) and a higher abundance of Haemophilus influenzae (OR 45.01 [2.74-1608.11]) compared to non-carriers. INTERPRETATION M.pneumoniae carriage is highly prevalent in children with recurrent infections and carriers have a less diverse microbiota with an overrepresentation of disease-associated microbiota members compared to non-carriers. Given the high prevalence of M.pneumoniae carriage and the strong association with H. influenzae, we recommend appropriate antibiotic coverage of M.pneumoniae and H. influenzae in case of suspected pneumonia in children with recurrent respiratory tract infections or their family members. FUNDING Wilhelmina Children's Hospital Research Fund, 'Christine Bader Stichting Irene KinderZiekenhuis', Sophia Scientific Research Foundation, ESPID Fellowship funded by Seqirus, Hypatia Fellowship funded by Radboudumc and The Netherlands Organisation for Health Research and Development (ZonMW VENI grant to LM Verhagen).
Collapse
Affiliation(s)
- Mischa H Koenen
- Center of Translational Immunology, UMC Utrecht, Utrecht, the Netherlands; Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Ruben C A de Groot
- Laboratory of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Erasmus MC University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Wouter A A de Steenhuijsen Piters
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Center for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Mei Ling J N Chu
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Kayleigh Arp
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Raïza Hasrat
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Ad C J M de Bruijn
- Laboratory of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Erasmus MC University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Silvia C Estevão
- Laboratory of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Erasmus MC University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Erhard van der Vries
- Department of Research & Development, GD Animal Health, Deventer, the Netherlands
| | - Jeroen D Langereis
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marianne Boes
- Center of Translational Immunology, UMC Utrecht, Utrecht, the Netherlands; Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Debby Bogaert
- Center for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Annemarie M C van Rossum
- Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, Erasmus MC University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Wendy W J Unger
- Laboratory of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Erasmus MC University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Lilly M Verhagen
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, the Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Infectious Diseases and Immunology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Hasrat R, Kool J, de Steenhuijsen Piters WAA, Chu MLJN, Kuiling S, Groot JA, van Logchem EM, Fuentes S, Franz E, Bogaert D, Bosch T. Benchmarking laboratory processes to characterise low-biomass respiratory microbiota. Sci Rep 2021; 11:17148. [PMID: 34433845 PMCID: PMC8387476 DOI: 10.1038/s41598-021-96556-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
The low biomass of respiratory samples makes it difficult to accurately characterise the microbial community composition. PCR conditions and contaminating microbial DNA can alter the biological profile. The objective of this study was to benchmark the currently available laboratory protocols to accurately analyse the microbial community of low biomass samples. To study the effect of PCR conditions on the microbial community profile, we amplified the 16S rRNA gene of respiratory samples using various bacterial loads and different number of PCR cycles. Libraries were purified by gel electrophoresis or AMPure XP and sequenced by V2 or V3 MiSeq reagent kits by Illumina sequencing. The positive control was diluted in different solvents. PCR conditions had no significant influence on the microbial community profile of low biomass samples. Purification methods and MiSeq reagent kits provided nearly similar microbiota profiles (paired Bray–Curtis dissimilarity median: 0.03 and 0.05, respectively). While profiles of positive controls were significantly influenced by the type of dilution solvent, the theoretical profile of the Zymo mock was most accurately analysed when the Zymo mock was diluted in elution buffer (difference compared to the theoretical Zymo mock: 21.6% for elution buffer, 29.2% for Milli-Q, and 79.6% for DNA/RNA shield). Microbiota profiles of DNA blanks formed a distinct cluster compared to low biomass samples, demonstrating that low biomass samples can accurately be distinguished from DNA blanks. In summary, to accurately characterise the microbial community composition we recommend 1. amplification of the obtained microbial DNA with 30 PCR cycles, 2. purifying amplicon pools by two consecutive AMPure XP steps and 3. sequence the pooled amplicons by V3 MiSeq reagent kit. The benchmarked standardized laboratory workflow presented here ensures comparability of results within and between low biomass microbiome studies.
Collapse
Affiliation(s)
- Raiza Hasrat
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, 3508 AB, Utrecht, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA, Bilthoven, The Netherlands
| | - Jolanda Kool
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA, Bilthoven, The Netherlands
| | - Wouter A A de Steenhuijsen Piters
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, 3508 AB, Utrecht, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA, Bilthoven, The Netherlands
| | - Mei Ling J N Chu
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, 3508 AB, Utrecht, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA, Bilthoven, The Netherlands
| | - Sjoerd Kuiling
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA, Bilthoven, The Netherlands
| | - James A Groot
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA, Bilthoven, The Netherlands
| | - Elske M van Logchem
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA, Bilthoven, The Netherlands
| | - Susana Fuentes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA, Bilthoven, The Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA, Bilthoven, The Netherlands
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, 3508 AB, Utrecht, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA, Bilthoven, The Netherlands.,University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Thijs Bosch
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA, Bilthoven, The Netherlands.
| |
Collapse
|