1
|
Morais KDS, Arcanjo DDS, Faria Lopes GP, Silva GG, Mota THA, Gabriel TR, Rabello Ramos DDA, Silva FP, Oliveira DM. Long‐term in vitro treatment with telomerase inhibitor MST‐312 induces resistance by selecting long telomeres cells. Cell Biochem Funct 2019; 37:273-280. [DOI: 10.1002/cbf.3398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Karollyne da Silva Morais
- Multidisciplinary Laboratory of Human HealthUniversity of Brasilia Brasília Brazil
- Laboratory of Molecular Pathology of CancerUniversity of Brasilia Brasília Brazil
| | | | - Giselle Pinto Faria Lopes
- Biotechnology DepartmentInstituto de Estudos do Mar Almirante Paulo Moreira (IEAPM), Arraial do Cabo, RJ, Brazil e Research coordination, Instituto Nacional de Câncer (INCA) Rio de Janeiro Brazil
| | | | - Tales Henrique Andrade Mota
- Multidisciplinary Laboratory of Human HealthUniversity of Brasilia Brasília Brazil
- Laboratory of Molecular Pathology of CancerUniversity of Brasilia Brasília Brazil
| | | | | | - Fábio Pittella Silva
- Laboratory of Molecular Pathology of CancerUniversity of Brasilia Brasília Brazil
| | - Diêgo Madureira Oliveira
- Multidisciplinary Laboratory of Human HealthUniversity of Brasilia Brasília Brazil
- Laboratory of Molecular Pathology of CancerUniversity of Brasilia Brasília Brazil
| |
Collapse
|
2
|
Abstract
INTRODUCTION Telomerase is a ribonucleoprotein that catalyses the addition of telomeric repeat sequences (having the sequence 5'-TTAGGG-3' in humans) to the ends of chromosomes. Telomerase activity is detected in most types of human tumours, but it is almost undetectable in normal somatic cells. Therefore, telomerase is a promising therapeutic target. To date, the known inhibitors of telomerase include nucleoside analogues, oligonucleotides and G-quadruplex stabilizers. This review highlights recent advances in our understanding of telomerase inhibitors, the relationships between telomerase inhibitors, cancer, and fields such as inflammation. AREAS COVERED This review summarizes new patents published on telomerase inhibitors from 2010 to 2015. EXPERT OPINION The review provides a brief account of the background, development, and on-going issues involving telomerase inhibitors. In particular, this review emphasizes imetelstat (GRN163L) and some typical G-quadruplex stabilizers that participate in telomerase inhibition. Overall, the research scope of antineoplastic is becoming broader and telomerase inhibitors have been shown to be a promising therapeutic target. Therefore, novel antineoplastic agents with greater activity and higher specificity must be developed.
Collapse
Affiliation(s)
- Ruo-Jun Man
- a State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing , People's Republic of China.,b Preparatory College Education , Guangxi University for Nationalities , Nanning , People's Republic of China
| | - Long-Wang Chen
- a State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing , People's Republic of China
| | - Hai-Liang Zhu
- a State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing , People's Republic of China
| |
Collapse
|
3
|
Goodman WA, Jain MK. Length does not matter: a new take on telomerase reverse transcriptase. Arterioscler Thromb Vasc Biol 2011; 31:235-6. [PMID: 21248278 DOI: 10.1161/atvbaha.110.220343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Down-regulation of telomerase activity and activation of caspase-3 are responsible for Tanshinone I-induced apoptosis in monocyte leukemia cells in vitro. Int J Mol Sci 2010; 11:2267-80. [PMID: 20640151 PMCID: PMC2904915 DOI: 10.3390/ijms11062267] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 05/21/2010] [Indexed: 11/17/2022] Open
Abstract
Tanshinone I (Tan-I) is a diterpene quinone extracted from the traditional herbal medicine Salvia miltiorrhiza Bunge. Recently, Tan-I has been reported to have anti-tumor effects. In this study, we investigated the growth inhibition and apoptosis inducing effects of Tan-I on three kinds of monocytic leukemia cells (U937, THP-1 and SHI 1). Cell viability was measured by MTT assay. Cell apoptosis was assessed by flow cytometry (FCM) and AnnexinV/PI staining. Reverse transcriptase polymerase chain reaction (RT-PCR) and PCR-enzyme-linked immunosorbent assay (ELISA) were used to detect human telomerase reverse transcriptase (hTERT) expression and telomerase activity before and after apoptosis. The activity of caspase-3 was determined by Caspase colorimetric assay kit and Western blot analysis. Expression of the anti-apoptotic gene Survivin was assayed by Western blot and Real-time RT-PCR using the ABI PRISM 7500 Sequence Detection System. The results revealed that Tan-I could inhibit the growth of these three kinds of leukemia cells and cause apoptosis in a time- and dose-dependent manner. After treatment by Tan-I for 48 h, Western blotting showed cleavage of the caspase-3 zymogen protein with the appearance of its 17-kD subunit, and a 89-kD cleavage product of poly (ADP-ribose) polymerase (PARP), a known substrate of caspase-3, was also found clearly. The expression of hTERT mRNA as well as activity of telomerase were decreased concurrently in a dose-dependent manner. Moreover, Real-time RT-PCR and Western blot revealed a significant down-regulation of Survivin. We therefore conclude that the induction of apoptosis by Tan-I in monocytic leukemia U937 THP-1 and SHI 1 cells is highly correlated with activation of caspase-3 and decreasing of hTERT mRNA expression and telomerase activity as well as down-regulation of Survivin expression. To our knowledge, this is the first report about the effects of Tan-I on monocytic leukemia cells.
Collapse
|
5
|
Liu JJ, Hu T, Wu XY, Wang CZ, Xu Y, Zhang Y, Xiao RZ, Lin DJ, Huang RW, Liu Q. Peroxisome Proliferator-Activated Receptor-γ Agonist Rosiglitazone– Induced Apoptosis in Leukemia K562 Cells and Its Mechanisms of Action. Int J Toxicol 2009; 28:123-31. [PMID: 19482836 DOI: 10.1177/1091581809335312] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigates the ability of a synthetic PPAR-γ agonist, rosiglitazone (RGZ), to induce apoptosis in leukemia K562 cells. The results revealed that RGZ (>40 mmol/L) inhibits the growth of K562 cells and causes apoptosis in a time and dose-dependent manner. Apoptosis is observed clearly by Hoechst 33258 staining. Western blotting analysis demonstrates the cleavage of caspase-3 zymogen protein with the appearance of its 17-kD subunit and a dose-dependent cleavage of poly (ADP-ribose) polymerase. Furthermore, RGZ treatment down-regulates anti-apoptotic protein Bcl-2 and up-regulates pro-apoptotic protein Bax in a dosedependent manner after the cells are treated for 48 hours. Telomerase activity is decreased concurrently in a dosedependent manner. We therefore conclude that RGZ induces apoptosis in K562 cells in vitro, and that RGZ-induced apoptosis in K562 cells is highly correlated with activation of caspase-3, decreasing telomerase activity, down-regulation of the anti-apoptotic protein Bcl-2, and up-regulation of the pro-apoptotic protein Bax.
Collapse
Affiliation(s)
- Jia-Jun Liu
- From the Third Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Ting Hu
- From the Third Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xiang-Yuan Wu
- From the Third Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Chun-Zhi Wang
- From the Third Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yan Xu
- From the Third Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yong Zhang
- From the Third Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Ruo-Zhi Xiao
- From the Third Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Dong-Jun Lin
- From the Third Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Ren-Wei Huang
- From the Third Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Qiang Liu
- From the Third Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| |
Collapse
|
6
|
Ma DL, Che CM, Yan SC. Platinum(II) complexes with dipyridophenazine ligands as human telomerase inhibitors and luminescent probes for G-quadruplex DNA. J Am Chem Soc 2009; 131:1835-46. [PMID: 18998644 DOI: 10.1021/ja806045x] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of platinum(II) complexes containing dipyridophenazine (dppz) and C-deprotonated 2-phenylpyridine (N-CH) ligands were prepared and assayed for G-quadruplex DNA binding activities. [PtII(dppz-COOH)(N-C)]CF3SO3 (1; dppz-COOH = 11-carboxydipyrido[3,2-a:2',3'-c]phenazine) binds G-quadruplex DNA through an external end-stacking mode with a binding affinity of approximately 10(7) dm3 mol-1. G-quadruplex DNA binding is accompanied by up to a 293-fold increase in the intensity of photoluminescence at lambdamax = 512 nm. Using a biotinylated-primer extension telomerase assay, 1 was shown to be an effective inhibitor of human telomerase in vitro, with a telIC50 value of 760 nM.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong
| | | | | |
Collapse
|
7
|
Fan Q, Zhang F, Barrett B, Ren K, Andreassen PR. A role for monoubiquitinated FANCD2 at telomeres in ALT cells. Nucleic Acids Res 2009; 37:1740-54. [PMID: 19129235 PMCID: PMC2665210 DOI: 10.1093/nar/gkn995] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Both Fanconi anemia (FA) and telomere dysfunction are associated with chromosome instability and an increased risk of cancer. Because of these similarities, we have investigated whether there is a relationship between the FA protein, FANCD2 and telomeres. We find that FANCD2 nuclear foci colocalize with telomeres and PML bodies in immortalized telomerase-negative cells. These cells maintain telomeres by alternative lengthening of telomeres (ALT). In contrast, FANCD2 does not colocalize with telomeres or PML bodies in cells which express telomerase. Using a siRNA approach we find that FANCA and FANCL, which are components of the FA nuclear core complex, regulate FANCD2 monoubiquitination and the telomeric localization of FANCD2 in ALT cells. Transient depletion of FANCD2, or FANCA, results in a dramatic loss of detectable telomeres in ALT cells but not in telomerase-expressing cells. Furthermore, telomere loss following depletion of these proteins in ALT cells is associated with decreased homologous recombination between telomeres (T-SCE). Thus, the FA pathway has a novel function in ALT telomere maintenance related to DNA repair. ALT telomere maintenance is therefore one mechanism by which monoubiquitinated FANCD2 may promote genetic stability.
Collapse
Affiliation(s)
- Qiang Fan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
8
|
Ma DL, Lai TS, Chan FY, Chung WH, Abagyan R, Leung YC, Wong KY. Discovery of a Drug-Like G-Quadruplex Binding Ligand by High-Throughput Docking. ChemMedChem 2008; 3:881-4. [DOI: 10.1002/cmdc.200700342] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Tang J, Kan ZY, Yao Y, Wang Q, Hao YH, Tan Z. G-quadruplex preferentially forms at the very 3' end of vertebrate telomeric DNA. Nucleic Acids Res 2007; 36:1200-8. [PMID: 18158301 PMCID: PMC2275102 DOI: 10.1093/nar/gkm1137] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human chromosome ends are protected with kilobases repeats of TTAGGG. Telomere DNA shortens at replication. This shortening in most tumor cells is compensated by telomerase that adds telomere repeats to the 3' end of the G-rich telomere strand. Four TTAGGG repeats can fold into G-quadruplex that is a poor substrate for telomerase. This property has been suggested to regulate telomerase activity in vivo and telomerase inhibition via G-quadruplex stabilization is considered a therapeutic strategy against cancer. Theoretically G-quadruplex can form anywhere along the long G-rich strand. Where G-quadruplex forms determines whether the 3' telomere end is accessible to telomerase and may have implications in other functions telomere plays. We investigated G-quadruplex formation at different positions by DMS footprinting and exonuclease hydrolysis. We show that G-quadruplex preferentially forms at the very 3' end than at internal positions. This property provides a molecular basis for telomerase inhibition by G-quadruplex formation. Moreover, it may also regulate those processes that depend on the structure of the very 3' telomere end, for instance, the alternative lengthening of telomere mechanism, telomere T-loop formation, telomere end protection and the replication of bulky telomere DNA. Therefore, targeting telomere G-quadruplex may influence more telomere functions than simply inhibiting telomerase.
Collapse
Affiliation(s)
- Jun Tang
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
The application of high throughput expression profiling and other advanced molecular biology laboratory techniques has revolutionised the management of cancers and is gaining attention in the field of gynaecological cancers. Such new approaches may help to improve our understanding of carcinogenesis and facilitate screening and early detection of gynaecological cancers and their precursors. Individualised prediction of patients' responses to therapy and design of personalised molecular targeted therapy is also possible. The studies of various molecular targets involved in the various signal pathways related to carcinogenesis are particularly relevant to such applications. At the moment, the application of detection and genotyping of human papillomavirus in management of cervical cancer is one of the most well established appliances of molecular targets in gynaecological cancers. Methylation, telomerase and clonality studies are also potentially useful, especially in assisting diagnosis of difficult clinical scenarios. This post-genomic era of clinical medicine will continue to make a significant impact in routine pathology practice. The contribution of pathologists is indispensable in analysis involving tissue microarray. On the other hand, both pathologists and bedside clinicians should be aware of the limitation of these molecular targets. Interpretation must be integrated with clinical and histopathological context to avoid misleading judgement. The importance of quality assurance of all such molecular techniques and their ethical implications cannot be over-emphasised.
Collapse
Affiliation(s)
- Annie N Y Cheung
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
| |
Collapse
|
11
|
Dikmen ZG, Gellert GC, Jackson S, Gryaznov S, Tressler R, Dogan P, Wright WE, Shay JW. In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res 2005; 65:7866-73. [PMID: 16140956 DOI: 10.1158/0008-5472.can-05-1215] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Differential regulation of telomerase activity in normal and tumor cells provides a rationale for the design of new classes of telomerase inhibitors. The telomerase enzyme complex presents multiple potential sites for the development of inhibitors. GRN163L, a telomerase enzyme antagonist, is a lipid-modified 13-mer oligonucleotide N3' --> P5'-thio-phosphoramidate, complementary to the template region of telomerase RNA (hTR). We evaluated both the in vitro and in vivo effects of GRN163L using A549-luciferase (A549-Luc) human lung cancer cells expressing a luciferase reporter. GRN163L (1 micromol/L) effectively inhibits telomerase activity of A549-Luc cells, resulting in progressive telomere shortening. GRN163L treatment also reduces colony formation in soft agar assays. Surprisingly, after only 1 week of treatment with GRN163L, A549-Luc cells were unable to form robust colonies in the clonal efficiency assay, whereas the mismatch control compound had no effect. Finally, we show that in vivo treatment with GRN163L is effective in preventing lung metastases in xenograft animal models. These in vitro and in vivo data support the development of GRN163L as a therapeutic for the treatment of cancer.
Collapse
Affiliation(s)
- Z Gunnur Dikmen
- University of Hacettepe, Faculty of Medicine, Department of Biochemistry, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hines WC, Fajardo AM, Joste NE, Bisoffi M, Griffith JK. Quantitative and spatial measurements of telomerase reverse transcriptase expression within normal and malignant human breast tissues. Mol Cancer Res 2005; 3:503-9. [PMID: 16179497 DOI: 10.1158/1541-7786.mcr-05-0031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The enzyme telomerase catalyzes the de novo synthesis of telomere repeats, thereby maintaining telomere length, which is necessary for unlimited cellular proliferation. Telomerase reverse transcriptase (TERT), the catalytic domain of telomerase, is the rate-limiting factor for telomerase activity and is expressed in virtually all tumors. Thus, TERT has been proposed as a marker with diagnostic and prognostic potential in breast cancer as well as a basis for breast cancer therapeutics. In these contexts, it is important to define the sites and extent of TERT expression in normal and cancerous human breast tissues. In this study, levels of TERT mRNA were measured within a set of 36 breast carcinomas and 5 normal breast samples by quantitative real-time reverse transcription-PCR, and we subsequently identified and characterized the cells expressing TERT mRNA within these tissues using in situ hybridization. The results show that (a) detectable TERT mRNA expression is specific to the epithelial cells; (b) TERT is expressed in both normal and malignant breast tissues; (c) the pattern and level of TERT expression are heterogeneous, with approximately 75% of tumors expressing bulk TERT mRNA levels equal to or less than those within normal breast tissue; and (d) tumors expressing above-normal levels of TERT mRNA are more likely to be histopathologic grade 3 (P = 0.002), contain high fraction of cells in S phase (P = 0.004), and have increased levels of MYC mRNA (P = 0.034).
Collapse
Affiliation(s)
- William C Hines
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, BMSB 249, Albuquerque, NM 87131-5221, USA
| | | | | | | | | |
Collapse
|
13
|
Ghosh U, Bhattacharyya NP. Benzamide and 4-amino 1,8 naphthalimide treatment inhibit telomerase activity by down-regulating the expression of telomerase associated protein and inhibiting the poly(ADP-ribosyl)ation of telomerase reverse transcriptase in cultured cells. FEBS J 2005; 272:4237-48. [PMID: 16098204 DOI: 10.1111/j.1742-4658.2005.04837.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To test the role of poly(ADP-ribose) polymerase on the telomerase activity, we determined the telomerase activity in leukemic cells K562 treated with benzamide and 4-amino 1,8 naphthalimide (NAP), the inhibitors of PARP. We observed that both the agents inhibited telomerase activity in a dose-dependent manner. The doses of benzamide and NAP that inhibited telomerase activity to 50% of untreated control cells were 10.7 +/- 0.6 mm and 200 +/- 7 microm, respectively. Benzamide treatment (10 mm) inhibited telomerase activity in a time-dependent manner. We also tested the ability of benzamide to inhibit the telomerase activity in Chinese hamster V79 cells and observed similar inhibition of the telomerase activity. Expression of telomerase reverse transcriptase (TERT) and telomerase RNA component, detected by RT-PCR, remained unaltered by treatment with benzamide or NAP. On the contrary, the expression of telomerase associated protein (TEP1/TP1), as detected by RT-PCR and western blot analysis, was reduced by both the agents. Further, in K562 cells, immunoprecipitation with the anti-TERT IgG and probed anti-poly (ADP-ribose) IgG revealed that TERT was poly(ADP-ribosyl)ated in the physiological condition of cell growth and such poly(ADP-ribosyl)ation was inhibited by benzamide treatment. Decrease in TEP1/TP1 expression and poly(ADP-ribosyl)ation of TERT were correlated with the inhibition of PARP activity by benzamide, indicating that PARP had a role in telomerase activity through poly(ADP-ribosyl)ation of TERT and down-regulation of TEP1/TP1.
Collapse
Affiliation(s)
- Utpal Ghosh
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Calcutta, India
| | | |
Collapse
|
14
|
Ohyashiki JH, Hisatomi H, Nagao K, Honda S, Takaku T, Zhang Y, Sashida G, Ohyashiki K. Quantitative relationship between functionally active telomerase and major telomerase components (hTERT and hTR) in acute leukaemia cells. Br J Cancer 2005; 92:1942-7. [PMID: 15827550 PMCID: PMC2361762 DOI: 10.1038/sj.bjc.6602546] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Functionally active telomerase is affected at various steps including transcriptional and post-transcriptional levels of major telomerase components (hTR and human telomerase reverse transcriptase (hTERT)). We therefore developed a rapid and sensitive method to quantify hTERT and its splicing variants as well as the hTR by a Taqman real-time reverse transcriptase-polymerase chain reaction to determine whether their altered expression may contribute to telomere attrition in vivo or not. Fresh leukaemia cells obtained from 38 consecutive patients were used in this study. The enzymatic level of telomerase activity measured by TRAP assay was generally associated with the copy numbers of full-length hTERT+alpha+beta mRNA (P=0.0024), but did not correlate with hTR expression (P=0.6753). In spite of high copy numbers of full-length hTERT mRNA, telomerase activity was low in some cases correlating with low copy numbers of hTR, raising the possibility that alteration of the hTR : hTERT ratio may affect functionally active telomerase activity in vivo. The spliced nonactive hTERT mRNA tends to be lower in patients with high telomerase activity, suggesting that this epiphenomenon may play some role in telomerase regulation. An understanding of the complexities of telomerase gene regulation in biologically heterogeneous leukaemia cells may offer new therapeutic approaches to the treatment of acute leukaemia.
Collapse
Affiliation(s)
- J H Ohyashiki
- Intractable Immune System Diseases Research Center, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku, Tokyo 160-0023, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Novotny L, Szekeres T. Recent developments in cancer chemotherapy oriented towards new targets. Expert Opin Ther Targets 2005; 9:343-57. [PMID: 15934920 DOI: 10.1517/14728222.9.2.343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Malignant diseases are one of the major causes of death in the western world. Patients are treated by surgery, radiation and chemotherapy. Chemotherapeutic treatment is used to decrease the tumour burden and to eliminate malignant cells. However, in most cases, resistance against chemotherapy develops. Therefore, there is a permanent need for new additional treatment strategies and chemotherapeutic combination regimens. In the present review article, the authors try to highlight the most promising approaches and summarise a selection of potential targets and compounds which might become alternative treatment options against malignant diseases. Due to the high number of scientific articles and the rapid developments in the area of cancer research, the authors can only mention a few selected targets and treatment options; however, the review focuses on new and notably important targets and compounds.
Collapse
Affiliation(s)
- Ladislav Novotny
- Kuwait University, Faculty of Pharmacy, PO Box 24923, Safat 1311, Kuwait.
| | | |
Collapse
|
16
|
Liu JJ, Wu XY, Peng J, Pan XL, Lu HL. Antiproliferation effects of oridonin on HL-60 cells. Ann Hematol 2004; 83:691-5. [PMID: 15322762 DOI: 10.1007/s00277-004-0919-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Accepted: 06/16/2004] [Indexed: 11/30/2022]
Abstract
The antiproliferation effects and inhibition of telomerase activity of oridonin on leukemic HL-60 cells were studied. HL-60 cells in culture medium were treated with different concentrations of oridonin. The inhibitory rate of the cells was measured by MTT assay. Cell apoptotic rate was detected by flow cytometry (FCM). Morphology of cell apoptosis was observed by Wright's stain. Reverse transcriptase polymerase chain reaction (RT-PCR) and PCR-enzyme-linked immunosorbent assay (ELISA) were used to detect hTERT mRNA expression and telomerase activity before and after apoptosis. Oridonin (over 8 micromol/l) could inhibit the growth of HL-60 cells and cause apoptosis significantly. The suppression was in both time-dependent and dose-dependent manner. Marked morphological changes of cell apoptosis including condensation of chromatin and nuclear fragmentation were observed clearly by Wright's stain especially after the cells were treated 48-60 h by oridonin. The expression of hTERT mRNA as well as activity of telomerase were decreased concurrently by treatment with oridonin in HL-60 cells. Oridonin can downregulate the hTERT mRNA expression and decrease the telomerase activity of HL-60 cells; it has apparent antiproliferation and apoptosis-inducing effects on HL-60 cells in vitro.
Collapse
Affiliation(s)
- Jia-Jun Liu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, 510630, Guangzhou, Guangdong, People's Republic of China.
| | | | | | | | | |
Collapse
|