1
|
Katayama M, Uemura Y, Katori D. Effect of Nucleic Acid Analog Administration on Fluctuations in the Albumin-to-Globulin Ratio in Cats with Feline Infectious Peritonitis. Animals (Basel) 2024; 14:1322. [PMID: 38731326 PMCID: PMC11083710 DOI: 10.3390/ani14091322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND feline infectious peritonitis (FIP) is a fatal disease in cats classified as either effusive ('wet'), non-effusive ('dry'), or a mixture of both forms ('mixed'). The anti-FIP therapeutic effects of Mutian and molnupiravir, two drugs with a nucleic acid analog as an active ingredient, have been confirmed recently. METHODS Of the cats with FIP, we observed a total of 122 and 56 cases that achieved remission after the administration of Mutian and molnupiravir as routine treatments, respectively. Changes in clinical indicators suggested to be correlated with FIP remission (weight, hematocrit, and albumin-to-globulin ratio) before and after the administration of each drug and during follow-up observation were statistically compared for each FIP type. RESULTS In all three FIP types, the administration of either Mutian or molnupiravir resulted in statistically significant increases in these indicators. Furthermore, the effect of Mutian on improving the albumin-to-globulin ratio was not observed at all in wet FIP, as compared with that of molnupiravir, but statistically significant in mixed and dry (p < 0.02 and p < 0.003, respectively). The differences in albumin-to-globulin ratio were all due to those of circulating globulin levels. CONCLUSIONS These results indicate that slight inflammatory responses might be elicited continuously by a residual virus that persisted through molnupiravir treatments.
Collapse
Affiliation(s)
- Masato Katayama
- Bloom Animal Hospital, Kajiyama 1-10-32, Tsurumi, Yokohama City 230-0072, Japan;
| | - Yukina Uemura
- Bloom Animal Hospital, Kajiyama 1-10-32, Tsurumi, Yokohama City 230-0072, Japan;
| | - Daichi Katori
- Katori Animal Hospital, Migawa-cho 2563-16, Mito City 310-0913, Japan;
| |
Collapse
|
2
|
Tasker S, Addie DD, Egberink H, Hofmann-Lehmann R, Hosie MJ, Truyen U, Belák S, Boucraut-Baralon C, Frymus T, Lloret A, Marsilio F, Pennisi MG, Thiry E, Möstl K, Hartmann K. Feline Infectious Peritonitis: European Advisory Board on Cat Diseases Guidelines. Viruses 2023; 15:1847. [PMID: 37766254 PMCID: PMC10535984 DOI: 10.3390/v15091847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Feline coronavirus (FCoV) is a ubiquitous RNA virus of cats, which is transmitted faeco-orally. In these guidelines, the European Advisory Board on Cat Diseases (ABCD) presents a comprehensive review of feline infectious peritonitis (FIP). FCoV is primarily an enteric virus and most infections do not cause clinical signs, or result in only enteritis, but a small proportion of FCoV-infected cats develop FIP. The pathology in FIP comprises a perivascular phlebitis that can affect any organ. Cats under two years old are most frequently affected by FIP. Most cats present with fever, anorexia, and weight loss; many have effusions, and some have ocular and/or neurological signs. Making a diagnosis is complex and ABCD FIP Diagnostic Approach Tools are available to aid veterinarians. Sampling an effusion, when present, for cytology, biochemistry, and FCoV RNA or FCoV antigen detection is very useful diagnostically. In the absence of an effusion, fine-needle aspirates from affected organs for cytology and FCoV RNA or FCoV antigen detection are helpful. Definitive diagnosis usually requires histopathology with FCoV antigen detection. Antiviral treatments now enable recovery in many cases from this previously fatal disease; nucleoside analogues (e.g., oral GS-441524) are very effective, although they are not available in all countries.
Collapse
Affiliation(s)
- Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK
- Linnaeus Veterinary Limited, Shirley, Solihull B90 4BN, UK
| | - Diane D. Addie
- Independent Researcher, 64000 Pyrénées Aquitaine, France;
| | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK;
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany;
| | - Sándor Belák
- Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), P.O. Box 7036, 750 07 Uppsala, Sweden;
| | | | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland;
| | - Albert Lloret
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università Degli Studi di Teramo, 64100 Teramo, Italy;
| | - Maria Grazia Pennisi
- Dipartimento di Scienze Veterinarie, Università di Messina, 98168 Messina, Italy;
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B-4000 Liège, Belgium;
| | - Karin Möstl
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| |
Collapse
|
3
|
Kaushal K, Sarma P, Rana SV, Medhi B, Naithani M. Emerging role of artificial intelligence in therapeutics for COVID-19: a systematic review. J Biomol Struct Dyn 2022; 40:4750-4765. [PMID: 33300456 PMCID: PMC7738208 DOI: 10.1080/07391102.2020.1855250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
To elucidate the role of artificial intelligence (AI) in therapeutics for coronavirus disease 2019 (COVID-19). Five databases were searched (December 2019-May 2020). We included both published and pre-print original articles in English that applied AI, machine learning or deep learning in drug repurposing, novel drug discovery, vaccine and antibody development for COVID-19. Out of 31 studies included, 16 studies applied AI for drug repurposing, whereas 10 studies utilized AI for novel drug discovery. Only four studies used AI technology for vaccine development, whereas one study generated stable antibodies against SARS-CoV-2. Approx. 50% of studies exclusively targeted 3CLpro of SARS-CoV-2, and only two studies targeted ACE/TMPSS2 for inhibiting host viral interactions. Around 16% of the identified drugs are in different phases of clinical evaluation against COVID-19. AI has emerged as a promising solution of COVID-19 therapeutics. During this current pandemic, many of the researchers have used AI-based strategies to process large databases in a more customized manner leading to the faster identification of several potential targets, novel/repurposing of drugs and vaccine candidates. A number of these drugs are either approved or are in a late-stage clinical trial and are potentially effective against SARS-CoV2 indicating validity of the methodology. However, as the use of AI-based screening program is currently in budding stage, sole reliance on such algorithms is not advisable at this current point of time and an evidence based approach is warranted to confirm their usefulness against this life-threatening disease. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Karanvir Kaushal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, India
| | - Phulan Sarma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - S. V. Rana
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manisha Naithani
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, India
| |
Collapse
|
4
|
Sweet AN, André NM, Stout AE, Licitra BN, Whittaker GR. Clinical and Molecular Relationships between COVID-19 and Feline Infectious Peritonitis (FIP). Viruses 2022; 14:481. [PMID: 35336888 PMCID: PMC8954060 DOI: 10.3390/v14030481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 01/08/2023] Open
Abstract
The emergence of severe acute respiratory syndrome 2 (SARS-CoV-2) has led the medical and scientific community to address questions surrounding the pathogenesis and clinical presentation of COVID-19; however, relevant clinical models outside of humans are still lacking. In felines, a ubiquitous coronavirus, described as feline coronavirus (FCoV), can present as feline infectious peritonitis (FIP)-a leading cause of mortality in young cats that is characterized as a severe, systemic inflammation. The diverse extrapulmonary signs of FIP and rapidly progressive disease course, coupled with a closely related etiologic agent, present a degree of overlap with COVID-19. This paper will explore the molecular and clinical relationships between FIP and COVID-19. While key differences between the two syndromes exist, these similarities support further examination of feline coronaviruses as a naturally occurring clinical model for coronavirus disease in humans.
Collapse
Affiliation(s)
- Arjun N. Sweet
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Nicole M. André
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| | - Alison E. Stout
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| | - Beth N. Licitra
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| | - Gary R. Whittaker
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| |
Collapse
|
5
|
Ullah MF, Ali Y, Khan MR, Khan IU, Yan B, Ijaz Khan M, Malik M. A review of COVID-19: Treatment strategies and CRISPR/Cas9 gene editing technology approaches to the coronavirus disease. Saudi J Biol Sci 2022; 29:860-871. [PMID: 34658640 PMCID: PMC8511869 DOI: 10.1016/j.sjbs.2021.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/12/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The new coronavirus SARS-CoV-2 pandemic has put the world on lockdown for the first time in decades. This has wreaked havoc on the global economy, put additional burden on local and global public health resources, and, most importantly, jeopardised human health. CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats, and the CRISPR associated (Cas) protein (CRISPR/Cas) was identified to have structures in E. coli. The most modern of these systems is CRISPR/Cas. Editing the genomes of plants and animals took several years and cost hundreds of thousands of dollars until the CRISPR approach was discovered in 2012. As a result, CRISPR/Cas has piqued the scientific community's attention, particularly for disease diagnosis and treatment, because it is faster, less expensive, and more precise than previous genome editing technologies. Data from gene mutations in specific patients gathered using CRISPR/Cas can aid in the identification of the best treatment strategy for each patient, as well as other research domains such as coronavirus replication in cell culture, such as SARS-CoV2. The implications of the most prevalent driver mutations, on the other hand, are often unknown, making treatment interpretation difficult. For detecting a wide range of target genes, the CRISPR/Cas categories provide highly sensitive and selective tools. Genome-wide association studies are a relatively new strategy to discovering genes involved in human disease when it comes to the next steps in genomic research. Furthermore, CRISPR/Cas provides a method for modifying non-coding portions of the genome, which will help advance whole genome libraries by speeding up the analysis of these poorly defined parts of the genome.
Collapse
Affiliation(s)
- Muhammad Farhat Ullah
- Genome Editing & Sequencing Lab, National Centre for Bioinformatics, Quaid-i-Azam University Islamabad, Pakistan
| | - Yasir Ali
- Genome Editing & Sequencing Lab, National Centre for Bioinformatics, Quaid-i-Azam University Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- Genome Editing & Sequencing Lab, National Centre for Bioinformatics, Quaid-i-Azam University Islamabad, Pakistan
| | - Inam Ullah Khan
- University of Sheffield, Department of Chemical and Biological Engineering, Arts Tower Western Bank, Sheffield, S102TN, The University of Sheffield, Manchester, UK
| | - Bing Yan
- Department of Pharmacy, The First Affiliated Hospital of Huzhou University, Huzhou 313000, PR China
| | - M. Ijaz Khan
- Department of Mathematics and Statistics, Riphah International University, I-14, Islamabad 44000, Pakistan
| | - M.Y. Malik
- Department of Mathematics, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia
| |
Collapse
|
6
|
Delaplace M, Huet H, Gambino A, Le Poder S. Feline Coronavirus Antivirals: A Review. Pathogens 2021; 10:1150. [PMID: 34578182 PMCID: PMC8469112 DOI: 10.3390/pathogens10091150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Feline coronaviruses (FCoV) are common viral pathogens of cats. They usually induce asymptomatic infections but some FCoV strains, named Feline Infectious Peritonitis Viruses (FIPV) lead to a systematic fatal disease, the feline infectious peritonitis (FIP). While no treatments are approved as of yet, numerous studies have been explored with the hope to develop therapeutic compounds. In recent years, two novel molecules (GS-441524 and GC376) have raised hopes given the encouraging results, but some concerns about the use of these molecules persist, such as the fear of the emergence of viral escape mutants or the difficult tissue distribution of these antivirals in certain affected organs. This review will summarize current findings and leads in the development of antiviral therapy against FCoV both in vitro and in vivo, with the description of their mechanisms of action when known. It highlights the molecules, which could have a broader effect on different coronaviruses. In the context of the SARS-CoV-2 pandemic, the development of antivirals is an urgent need and FIP could be a valuable model to help this research area.
Collapse
Affiliation(s)
| | | | | | - Sophie Le Poder
- 1UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d’Alfort, Maisons-Alfort, 94704 Paris, France; (M.D.); (H.H.); (A.G.)
| |
Collapse
|
7
|
Lin CN, Chan KR, Ooi EE, Chiou MT, Hoang M, Hsueh PR, Ooi PT. Animal Coronavirus Diseases: Parallels with COVID-19 in Humans. Viruses 2021; 13:1507. [PMID: 34452372 PMCID: PMC8402828 DOI: 10.3390/v13081507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus in humans, has expanded globally over the past year. COVID-19 remains an important subject of intensive research owing to its huge impact on economic and public health globally. Based on historical archives, the first coronavirus-related disease recorded was possibly animal-related, a case of feline infectious peritonitis described as early as 1912. Despite over a century of documented coronaviruses in animals, the global animal industry still suffers from outbreaks. Knowledge and experience handling animal coronaviruses provide a valuable tool to complement our understanding of the ongoing COVID-19 pandemic. In this review, we present an overview of coronaviruses, clinical signs, COVID-19 in animals, genome organization and recombination, immunopathogenesis, transmission, viral shedding, diagnosis, treatment, and prevention. By drawing parallels between COVID-19 in animals and humans, we provide perspectives on the pathophysiological mechanisms by which coronaviruses cause diseases in both animals and humans, providing a critical basis for the development of effective vaccines and therapeutics against these deadly viruses.
Collapse
Affiliation(s)
- Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Kuan Rong Chan
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore; (K.R.C.); (E.E.O.)
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore; (K.R.C.); (E.E.O.)
- Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Minh Hoang
- Department of Anatomy and Histology, College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam;
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung 404332, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Peck Toung Ooi
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
8
|
Pawlotsky JM. COVID-19 Pandemic: Time to Revive the Cyclophilin Inhibitor Alisporivir. Clin Infect Dis 2020; 71:2191-2194. [PMID: 32409832 PMCID: PMC7239253 DOI: 10.1093/cid/ciaa587] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
December 2019 saw the emergence of a new epidemic of pneumonia of varying severity, called COVID-19, caused by a newly identified coronavirus, SARS-CoV-2. No therapeutic option is available to treat this infection that has already killed more than 235,000 people worldwide. This Viewpoint summarizes the strong scientific arguments supporting the use of alisporivir, a non-immunosuppressive analogue of cyclosporine A with potent cyclophilin inhibition properties that has reached Phase 3 clinical development, for the treatment of COVID-19. They include the strong cyclophilin dependency of the lifecycle of many coronaviruses, including SARS-CoV and MERS-CoV, and preclinical data showing strong antiviral and cytoprotective properties of alisporivir in various models of coronavirus infection, including SARS-CoV-2. Alisporivir should be tested without delay on both virological and clinical endpoints in patients with or at-risk of severe forms of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jean-Michel Pawlotsky
- Department of Virology, Hôpital Henri Mondor, AP-HP, Université Paris-Est, Créteil, France.,Inserm U955, Créteil, France
| |
Collapse
|
9
|
Izes AM, Yu J, Norris JM, Govendir M. Current status on treatment options for feline infectious peritonitis and SARS-CoV-2 positive cats. Vet Q 2020; 40:322-330. [PMID: 33138721 PMCID: PMC7671703 DOI: 10.1080/01652176.2020.1845917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a viral-induced, immune-mediated disease of cats caused by virulent biotypes of feline coronaviruses (FCoV), known as the feline infectious peritonitis virus (FIPV). Historically, three major pharmacological approaches have been employed to treat FIP: (1) immunomodulators to stimulate the patient’s immune system non-specifically to reduce the clinical effects of the virus through a robust immune response, (2) immunosuppressive agents to dampen clinical signs temporarily, and (3) re-purposed human antiviral drugs, all of which have been unsuccessful to date in providing reliable efficacious treatment options for FIPV. Recently, antiviral studies investigating the broad-spectrum coronavirus protease inhibitor, GC376, and the adenosine nucleoside analogue GS-441524, have resulted in increased survival rates and clinical cure in many patients. However, prescriber access to these antiviral therapies is currently problematic as they have not yet obtained registration for veterinary use. Consequently, FIP remains challenging to treat. The purpose of this review is to provide an update on the current status of therapeutics for FIP. Additionally, due to interest in coronaviruses resulting from the current human pandemic, this review provides information on domesticated cats identified as SARS-CoV-2 positive.
Collapse
Affiliation(s)
- Aaron M Izes
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Jane Yu
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Jacqueline M Norris
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Merran Govendir
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
10
|
Liu C, von Brunn A, Zhu D. Cyclophilin A and CD147: novel therapeutic targets for the treatment of COVID-19. MEDICINE IN DRUG DISCOVERY 2020; 7:100056. [PMID: 32835213 PMCID: PMC7364167 DOI: 10.1016/j.medidd.2020.100056] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/05/2020] [Accepted: 07/05/2020] [Indexed: 02/07/2023] Open
Abstract
The outbreak of pneumonia caused by a new coronavirus (SARS-CoV-2) occurred in December 2019, and spread rapidly throughout the world. There have been other severe coronavirus outbreaks worldwide, namely, severe acute respiratory syndrome (SARS-CoV) and Middle East respiratory syndrome (MERS-CoV). Because the genetic diversity of coronaviruses renders the design of vaccines complicated, broad spectrum-anti-coronavirus drugs have become a critical approach to control the coronavirus epidemic. Cyclophilin A is an important protein needed for coronavirus replication, and its inhibitor cyclosporine A has the ability to suppress coronavirus on a broad spectrum. CD147-S protein was found to be one route by which SARS-CoV-2 invades host cells, while CD147 was found to play a functional role in facilitating the infection of host cells by SARS-CoV. The CyPA/CD147 interaction may play a critical role in the ability of the SARS-CoV-2 virus to enter the host cells. However, cyclosporine A has immunosuppressive effects, so the conditions for its use as an antiviral drug are limited. As a result, cyclosporine A analogues without immunosuppressive side effects have attracted lots of interest. This review primarily discusses the drug development prospects of cyclophilin A as a therapeutic target for the treatment of coronavirus infection, especially coronavirus disease 2019 (COVID-19), and non-immunosuppressive cyclosporine analogues.
Collapse
Affiliation(s)
- Chenglong Liu
- School of Pharmacy, Fudan University, Shanghai, China, 201203
| | - Albrecht von Brunn
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-University Munich and German Center for Infection Research, (DZIF), partner site Munich, 80336 Munich, Germany
| | - Di Zhu
- School of Pharmacy, Fudan University, Shanghai, China, 201203,Fudan affiliated Pudong Hospital, Fudan University, Shanghai, China 201100,Corresponding author at: School of Pharmacy, Fudan University, Shanghai, China 201203.
| |
Collapse
|
11
|
Inhibition of SARS-CoV-2 Infection by the Cyclophilin Inhibitor Alisporivir (Debio 025). Antimicrob Agents Chemother 2020; 64:AAC.00876-20. [PMID: 32376613 PMCID: PMC7318051 DOI: 10.1128/aac.00876-20] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclophilins play a key role in the life cycle of coronaviruses. Alisporivir (Debio 025) is a nonimmunosuppressive analogue of cyclosporine with potent cyclophilin inhibition properties. Alisporivir reduced SARS-CoV-2 RNA production in a dose-dependent manner in Vero E6 cells, with a 50% effective concentration (EC50) of 0.46 ± 0.04 μM. Alisporivir inhibited a postentry step of the SARS-CoV-2 life cycle. These results justify rapidly conducting a proof-of-concept phase 2 trial with alisporivir in patients with SARS-CoV-2 infection. Cyclophilins play a key role in the life cycle of coronaviruses. Alisporivir (Debio 025) is a nonimmunosuppressive analogue of cyclosporine with potent cyclophilin inhibition properties. Alisporivir reduced SARS-CoV-2 RNA production in a dose-dependent manner in Vero E6 cells, with a 50% effective concentration (EC50) of 0.46 ± 0.04 μM. Alisporivir inhibited a postentry step of the SARS-CoV-2 life cycle. These results justify rapidly conducting a proof-of-concept phase 2 trial with alisporivir in patients with SARS-CoV-2 infection.
Collapse
|
12
|
Vistoli F, Furian L, Maggiore U, Caldara R, Cantaluppi V, Ferraresso M, Zaza G, Cardillo M, Biancofiore G, Menichetti F, Russo A, Turillazzi E, Di Paolo M, Grandaliano G, Boggi U. COVID-19 and kidney transplantation: an Italian Survey and Consensus. J Nephrol 2020; 33:667-680. [PMID: 32495231 PMCID: PMC7268183 DOI: 10.1007/s40620-020-00755-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022]
Abstract
Italy was the first Western country to face the COVID-19 pandemic. Here we report the results of a national survey on kidney transplantation activity in February and March 2020, and the results of a three-round Delphi consensus promoted by four scientific societies: the Italian Society of Organ Transplantation, the Italian Society of Nephrology, the Italian Society of Anesthesia and Intensive Care, and the Italian Group on Antimicrobial Stewardship. All 41 Italian transplant centers were invited to express their opinion in the Delphi rounds along with a group of seven experts. The survey revealed that, starting from March 2020, there was a decline in kidney transplantation activity in Italy, especially for living-related transplants. Overall, 60 recipients tested positive for SARS-CoV2 infection, 57 required hospitalization, 17 were admitted to the ICU, and 11 died. The online consensus had high response rates at each round (95.8%, 95.8%, and 89.5%, respectively). Eventually, 27 of 31 proposed statements were approved (87.1%), 12 at the first or second round (38.7%), and 3 at the third (9.7%). Based on the Italian experience, we discuss the reasons for the changes in kidney transplantation activity during the COVID-19 pandemic in Western countries. We also provide working recommendations for the organization and management of kidney transplantation under these conditions.
Collapse
Affiliation(s)
- Fabio Vistoli
- Division of General and Transplant Surgery, University of Pisa, Pisa, Italy
| | - Lucrezia Furian
- Kidney and Pancreas Transplantation Unit, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padua, Italy
| | - Umberto Maggiore
- Kidney and Kidney-Pancreas Transplant Unit, Department of Nephrology, Parma University Hospital, Parma, Italy
| | - Rossana Caldara
- Department of Internal Medicine, Transplant Medicine Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, University of Piemonte Orientale (UPO), Novara, Italy
| | - Mariano Ferraresso
- Renal Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy.
| | - Massimo Cardillo
- Italian National Transplant Center, Italian National Institute of Health, Rome, Italy
| | | | | | - Alessandro Russo
- Division of Infectious Disease Control, University of Pisa, Pisa, Italy
| | - Emanuela Turillazzi
- Section of Legal Medicine, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Marco Di Paolo
- Section of Legal Medicine, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | | | - Ugo Boggi
- Division of General and Transplant Surgery, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
13
|
Abstract
Coronaviruses are pathogens with a serious impact on human and animal health. They mostly cause enteric or respiratory disease, which can be severe and life threatening, e.g., in the case of the zoonotic coronaviruses causing severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS) in humans. Despite the economic and societal impact of such coronavirus infections, and the likelihood of future outbreaks of additional pathogenic coronaviruses, our options to prevent or treat coronavirus infections remain very limited. This highlights the importance of advancing our knowledge on the replication of these viruses and their interactions with the host. Compared to other +RNA viruses, coronaviruses have an exceptionally large genome and employ a complex genome expression strategy. Next to a role in basic virus replication or virus assembly, many of the coronavirus proteins expressed in the infected cell contribute to the coronavirus-host interplay. For example, by interacting with the host cell to create an optimal environment for coronavirus replication, by altering host gene expression or by counteracting the host’s antiviral defenses. These coronavirus–host interactions are key to viral pathogenesis and will ultimately determine the outcome of infection. Due to the complexity of the coronavirus proteome and replication cycle, our knowledge of host factors involved in coronavirus replication is still in an early stage compared to what is known for some other +RNA viruses. This review summarizes our current understanding of coronavirus–host interactions at the level of the infected cell, with special attention for the assembly and function of the viral RNA-synthesising machinery and the evasion of cellular innate immune responses.
Collapse
|
14
|
de Wilde AH, Pham U, Posthuma CC, Snijder EJ. Cyclophilins and cyclophilin inhibitors in nidovirus replication. Virology 2018; 522:46-55. [PMID: 30014857 PMCID: PMC7112023 DOI: 10.1016/j.virol.2018.06.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022]
Abstract
Cyclophilins (Cyps) belong to the family of peptidyl-prolyl isomerases (PPIases). The PPIase activity of most Cyps is inhibited by the immunosuppressive drug cyclosporin A and several of its non-immunosuppressive analogs, which can also block the replication of nidoviruses (arteriviruses and coronaviruses). Cyclophilins have been reported to play an essential role in the replication of several other RNA viruses, including human immunodeficiency virus-1, hepatitis C virus, and influenza A virus. Likewise, the replication of various nidoviruses was reported to depend on Cyps or other PPIases. This review summarizes our current understanding of this class of nidovirus-host interactions, including the potential function of in particular CypA and the inhibitory effect of Cyp inhibitors. Also the involvement of the FK-506-binding proteins and parvulins is discussed. The nidovirus data are placed in a broader perspective by summarizing the most relevant data on Cyp interactions and Cyp inhibitors for other RNA viruses. Nidovirus replication is inhibited by cyclophilin inhibitors. Arterivirus replication depends on cyclophilin A. Cyclosporin A blocks arterivirus RNA synthesis. Using cyclophilin inhibitors against nidoviruses in vivo needs more investigation.
Collapse
Affiliation(s)
- Adriaan H de Wilde
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Uyen Pham
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clara C Posthuma
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
15
|
Colombo S, Sartori R. Ciclosporin and the cat: Current understanding and review of clinical use. J Feline Med Surg 2018; 20:244-255. [PMID: 29478396 PMCID: PMC10816290 DOI: 10.1177/1098612x17748718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Practical relevance: Ciclosporin (CsA) is a systemic immuno-modulatory drug widely used to treat immune-mediated diseases in humans and veterinary species. CsA was registered for use in cats in the USA and Europe in 2011, and is indicated for the treatment of chronic allergic dermatitis at a recommended daily dose of 7 mg/kg PO. AUDIENCE This review will be of interest to all veterinarians working with cats, given the wide range of potential applications of CsA and its safety profile. Although the drug is currently only licensed to treat chronic allergic dermatitis in cats, a small number of reports describe its use in non-dermatological conditions. Evidence base: This article reviews the mechanism of action, pharmacokinetics, drug interactions, adverse effects and clinical use of CsA, both for the licensed indication and for off-label use in the feline patient. Information presented has been summarised from the existing literature on CsA, with specific interest in studies carried out in cats. For its licensed indication, chronic allergic dermatitis, evidence provided includes randomised, placebo or prednisolone-controlled studies (EBM grade I) and prospective or retrospective open trials.
Collapse
Affiliation(s)
- Silvia Colombo
- Servizi Dermatologici Veterinari, via Felice Musazzi 24, Legnano (MI), 1–20025, Italy
| | - Roberta Sartori
- Servizi Dermatologici Veterinari, via Felice Musazzi 24, Legnano (MI), 1–20025, Italy
| |
Collapse
|
16
|
Rappe JCF, de Wilde A, Di H, Müller C, Stalder H, V'kovski P, Snijder E, Brinton MA, Ziebuhr J, Ruggli N, Thiel V. Antiviral activity of K22 against members of the order Nidovirales. Virus Res 2018; 246:28-34. [PMID: 29337162 PMCID: PMC7114538 DOI: 10.1016/j.virusres.2018.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 01/31/2023]
Abstract
Recently, a novel antiviral compound (K22) that inhibits replication of a broad range of animal and human coronaviruses was reported to interfere with viral RNA synthesis by impairing double-membrane vesicle (DMV) formation (Lundin et al., 2014). Here we assessed potential antiviral activities of K22 against a range of viruses representing two (sub)families of the order Nidovirales, the Arteriviridae (porcine reproductive and respiratory syndrome virus [PRRSV], equine arteritis virus [EAV] and simian hemorrhagic fever virus [SHFV]), and the Torovirinae (equine torovirus [EToV] and White Bream virus [WBV]). Possible effects of K22 on nidovirus replication were studied in suitable cell lines. K22 concentrations significantly decreasing infectious titres of the viruses included in this study ranged from 25 to 50 μM. Reduction of double-stranded RNA intermediates of viral replication in nidovirus-infected cells treated with K22 confirmed the anti-viral potential of K22. Collectively, the data show that K22 has antiviral activity against diverse lineages of nidoviruses, suggesting that the inhibitor targets a critical and conserved step during nidovirus replication.
Collapse
Affiliation(s)
- Julie Christiane Françoise Rappe
- Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland.
| | - Adriaan de Wilde
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Han Di
- Department of Biology, 623 Petit Science Center, Georgia State University, 161 Jesse Hill Jr Drive, Atlanta, GA 30303, United States.
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany.
| | - Hanspeter Stalder
- Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland.
| | - Philip V'kovski
- Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland.
| | - Eric Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Margo A Brinton
- Department of Biology, 623 Petit Science Center, Georgia State University, 161 Jesse Hill Jr Drive, Atlanta, GA 30303, United States.
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany.
| | - Nicolas Ruggli
- Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland.
| | - Volker Thiel
- Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland.
| |
Collapse
|
17
|
Coronaviruses and arteriviruses display striking differences in their cyclophilin A-dependence during replication in cell culture. Virology 2017; 517:148-156. [PMID: 29249267 PMCID: PMC7112125 DOI: 10.1016/j.virol.2017.11.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
Cyclophilin A (CypA) is an important host factor in the replication of a variety of RNA viruses. Also the replication of several nidoviruses was reported to depend on CypA, although possibly not to the same extent. These prior studies are difficult to compare, since different nidoviruses, cell lines and experimental set-ups were used. Here, we investigated the CypA dependence of three distantly related nidoviruses that can all replicate in Huh7 cells: the arterivirus equine arteritis virus (EAV), the alphacoronavirus human coronavirus 229E (HCoV-229E), and the betacoronavirus Middle East respiratory syndrome coronavirus (MERS-CoV). The replication of these viruses was compared in the same parental Huh7 cells and in CypA-knockout Huh7 cells generated using CRISPR/Cas9-technology. CypA depletion reduced EAV yields by ~ 3-log, whereas MERS-CoV progeny titers were modestly reduced (3-fold) and HCoV-229E replication was unchanged. This study reveals that the replication of nidoviruses can differ strikingly in its dependence on cellular CypA. Nidoviruses display differences in sensitivity towards cyclophilin A depletion. Replication of MERS-coronavirus is reduced modestly in cyclophilin A-knockout cells. Equine arteritis virus replication is strongly inhibited by cyclophilin A depletion. Chromosomal anomalies complicate CRISPR/Cas9-mediated gene editing in Huh7 cells.
Collapse
|
18
|
Hu CMJ, Chang WS, Fang ZS, Chen YT, Wang WL, Tsai HH, Chueh LL, Takano T, Hohdatsu T, Chen HW. Nanoparticulate vacuolar ATPase blocker exhibits potent host-targeted antiviral activity against feline coronavirus. Sci Rep 2017; 7:13043. [PMID: 29026122 PMCID: PMC5638965 DOI: 10.1038/s41598-017-13316-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/20/2017] [Indexed: 01/09/2023] Open
Abstract
Feline infectious peritonitis (FIP), caused by a mutated feline coronavirus, is one of the most serious and fatal viral diseases in cats. The disease remains incurable, and there is no effective vaccine available. In light of the pathogenic mechanism of feline coronavirus that relies on endosomal acidification for cytoplasmic entry, a novel vacuolar ATPase blocker, diphyllin, and its nanoformulation are herein investigated for their antiviral activity against the type II feline infectious peritonitis virus (FIPV). Experimental results show that diphyllin dose-dependently inhibits endosomal acidification in fcwf-4 cells, alters the cellular susceptibility to FIPV, and inhibits the downstream virus replication. In addition, diphyllin delivered by polymeric nanoparticles consisting of poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PEG-PLGA) further demonstrates an improved safety profile and enhanced inhibitory activity against FIPV. In an in vitro model of antibody-dependent enhancement of FIPV infection, diphyllin nanoparticles showed a prominent antiviral effect against the feline coronavirus. In addition, the diphyllin nanoparticles were well tolerated in mice following high-dose intravenous administration. This study highlights the therapeutic potential of diphyllin and its nanoformulation for the treatment of FIP.
Collapse
Affiliation(s)
- Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Research Center for Nanotechnology and Infectious Diseases, Taipei, Taiwan
| | - Wei-Shan Chang
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Zih-Syun Fang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - You-Ting Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Lin Wang
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Han Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Ling-Ling Chueh
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Tomomi Takano
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Tsutomu Hohdatsu
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Hui-Wen Chen
- Research Center for Nanotechnology and Infectious Diseases, Taipei, Taiwan. .,Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
19
|
Tanaka Y, Sato Y, Sasaki T. Feline coronavirus replication is affected by both cyclophilin A and cyclophilin B. J Gen Virol 2017; 98:190-200. [PMID: 27902373 PMCID: PMC7079567 DOI: 10.1099/jgv.0.000663] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Feline coronavirus (FCoV) causes the fatal disease feline infectious peritonitis, which is currently incurable by drug treatment, and no effective vaccines are available. Cyclosporin A (CsA), a cyclophilin (Cyp) inhibitor, inhibits the replication of FCoV in vitro and in vivo as well as the replication of human and animal coronaviruses. However, the mechanism underlying the regulation of coronavirus replication by CsA is unknown. In this study, we analysed the role of Cyps in FCoV replication using knockdown and knockout cells specific to Cyps. Inhibition of CypA and CypB reduced FCoV replication, with replication in knockout cells being much less than that in knockdown cells. Furthermore, the proteins expressed by CypA and CypB harbouring mutations in their respective predicted peptidyl-prolyl cis–transisomerase active sites, which also alter the affinities between Cyps and CsA, inhibited FCoV replication. These findings indicate that the peptidyl-prolyl cis–transisomerase active sites of Cyps might be required for FCoV replication.
Collapse
Affiliation(s)
- Yoshikazu Tanaka
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary and Life Science University, 1-7-1 Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Yuka Sato
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Takashi Sasaki
- Department of Microbiology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
20
|
de Wilde AH, Falzarano D, Zevenhoven-Dobbe JC, Beugeling C, Fett C, Martellaro C, Posthuma CC, Feldmann H, Perlman S, Snijder EJ. Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model. Virus Res 2016; 228:7-13. [PMID: 27840112 PMCID: PMC7114565 DOI: 10.1016/j.virusres.2016.11.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 01/20/2023]
Abstract
In cell culture models, low-micromolar doses of alisporivir block SARS-CoV and MERS-CoV replication. Combination treatment with alisporivir and ribavirin increases the anti-MERS-CoV activity in cell culture. Combination treatment with alisporivir and ribavirin does not protect against SARS-CoV infection in a mouse model. Cyclophilin-binding drugs should be explored further in the context of host-directed anti-coronaviral strategies.
Currently, there is no registered treatment for infections with emerging zoonotic coronaviruses like SARS- and MERS-coronavirus. We here report that in cultured cells low-micromolar concentrations of alisporivir, a non-immunosuppressive cyclosporin A-analog, inhibit the replication of four different coronaviruses, including MERS- and SARS-coronavirus. Ribavirin was found to further potentiate the antiviral effect of alisporivir in these cell culture-based infection models, but this combination treatment was unable to improve the outcome of SARS-CoV infection in a mouse model. Nevertheless, our data provide a basis to further explore the potential of Cyp inhibitors as host-directed, broad-spectrum inhibitors of coronavirus replication.
Collapse
Affiliation(s)
- Adriaan H de Wilde
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Darryl Falzarano
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, USA
| | - Jessika C Zevenhoven-Dobbe
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Corrine Beugeling
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Craig Fett
- Department of Microbiology, University of Iowa, Iowa City, USA
| | - Cynthia Martellaro
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, USA
| | - Clara C Posthuma
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Heinz Feldmann
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, USA
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, USA
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
21
|
Roberts ES, Tapp T, Trimmer A, Roycroft L, King S. Clinical efficacy and safety following dose tapering of ciclosporin in cats with hypersensitivity dermatitis. J Feline Med Surg 2016; 18:898-905. [PMID: 26316515 PMCID: PMC11132228 DOI: 10.1177/1098612x15602523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Objectives This study was designed to evaluate the efficacy and safety of reducing ciclosporin (CsA) dosing frequency from daily to every other day (EOD) or twice a week (TW) according to clinical response in cats with hypersensitivity dermatitis (HD) and treated with CsA. Methods One hundred and ninety-one cats with HD were given 7 mg/kg CsA daily for at least 4 weeks. Depending on clinical response, the dosing frequency was tapered from daily to EOD over the next 4 weeks and further to TW for an additional 4 weeks. Safety was evaluated through physical examinations, clinical pathology and the monitoring of adverse events (AEs). Results The majority of cats were able to have their dose of CsA tapered to either EOD (15.5%) or TW (62.9%) according to the clinical response. Observed AEs were most frequently mild and self-limiting vomiting and diarrhea. A higher percentage of AEs occurred with daily administration (73%) compared with other dosing regimens (27%). Conclusions and relevance Following 4 weeks of daily dosing at 7 mg/kg, CsA may be tapered to EOD or TW while maintaining the desired therapeutic response in cats with HD. Additionally, CsA appears to be well tolerated with fewer AEs at EOD or TW dosing. Establishing the lowest effective dosing frequency of CsA improves the drug's safety profile.
Collapse
Affiliation(s)
| | - Tiffany Tapp
- Veterinary Healing Arts, East Greenwich, RI, USA
| | - Ann Trimmer
- Animal Allergy and Dermatology Specialists, Las Vegas, NV, USA
| | | | | |
Collapse
|
22
|
Tanaka Y, Amano A, Morisaki M, Sato Y, Sasaki T. Cellular peptidyl-prolyl cis/trans isomerase Pin1 facilitates replication of feline coronavirus. Antiviral Res 2015; 126:1-7. [PMID: 26675666 PMCID: PMC7113879 DOI: 10.1016/j.antiviral.2015.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/18/2015] [Accepted: 11/29/2015] [Indexed: 01/23/2023]
Abstract
Although feline coronavirus (FCoV) causes feline infectious peritonitis (FIP), which is a fatal infectious disease, there are no effective therapeutic medicines or vaccines. Previously, in vitro studies have shown that cyclosporin (CsA) and FK506 inhibit virus replication in diverse coronaviruses. CsA and FK506 are targets of clinically relevant immunosuppressive drugs and bind to cellular cyclophilins (Cyps) or FK506 binding proteins (FKBPs), respectively. Both Cyp and FKBP have peptidyl-prolyl cis-trans isomerase (PPIase) activity. However, protein interacting with NIMA (Pin1), a member of the parvulin subfamily of PPIases that differs from Cyps and FKBPs, is essential for various signaling pathways. Here we demonstrated that genetic silencing or knockout of Pin1 resulted in decreased FCoV replication in vitro. Dipentamethylene thiuram monosulfide, a specific inhibitor of Pin1, inhibited FCoV replication. These data indicate that Pin1 modulates FCoV propagation. Pin1 facilitates FCoV replication in vitro. RNA interference experiments for Pin1 reduced FCoV replication and viral protein expression. The Pin1 inhibitor DTM results in the reduction of FCoV replication and protein expression. Knockout of the Pin1 gene inhibits FCoV replication and protein expression.
Collapse
Affiliation(s)
- Yoshikazu Tanaka
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary and Life Science University, 1-7-1 Kyounan, Musashino, Tokyo 180-8602, Japan.
| | - Arisa Amano
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary and Life Science University, 1-7-1 Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Masateru Morisaki
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary and Life Science University, 1-7-1 Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Yuka Sato
- Department of Microbiology and Immunology, Division of Molecular Virology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takashi Sasaki
- Department of Bacteriology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
23
|
von Brunn A, Ciesek S, von Brunn B, Carbajo-Lozoya J. Genetic deficiency and polymorphisms of cyclophilin A reveal its essential role for Human Coronavirus 229E replication. Curr Opin Virol 2015; 14:56-61. [PMID: 26318518 PMCID: PMC7102849 DOI: 10.1016/j.coviro.2015.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 12/15/2022]
Abstract
Replication of coronaviruses is inhibited in vitro by cyclosporin A, a well-known immunosuppressive drug which binds to cellular cyclophilins thus inactivating their enzymatic cis-trans peptidyl-prolyl isomerase function. Latter is required for proper folding of cellular proteins and of proteins of several viruses. Here, we summarize present knowledge on the role of cyclophilin A during coronavirus replication. We present data on the effect of cyclophilin A single nucleotide polymorphism mutants on the replication of human CoV-229E demonstrating the requirement of proper cyclophilin A function for virus propagation. Results define cellular cyclophilin A as a host target for inhibition of coronaviruses ranging from relatively mild common cold to highly pathogenic SARS-CoV and MERS-CoV viruses with the perspective of disclosing non-immunosuppressive cyclosporin A analogs to broadly inactivate the coronavirus family.
Collapse
Affiliation(s)
- Albrecht von Brunn
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-Universität, München, Germany; German Center for Infection Research (DZIF), Germany.
| | - Sandra Ciesek
- German Center for Infection Research (DZIF), Germany; Department of Gastroenterology, Hepatology und Endocrinology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Brigitte von Brunn
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-Universität, München, Germany; German Center for Infection Research (DZIF), Germany
| | - Javier Carbajo-Lozoya
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-Universität, München, Germany; German Center for Infection Research (DZIF), Germany
| |
Collapse
|
24
|
Abstract
A novel human coronavirus was identified in Saudi Arabia and Qatar as the causative agent of severe acute respiratory diseases in 2012. The virus was termed Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and is taken notice of important coronavirus caused severe diseases to human after the outbreak of severe acute respiratory syndrome (SARS) coronavirus. There is a lot of unknown characterization regarding MERS-CoV because of less than one year after finding the first case. MERS-CoV was related to the 2C betacoronavirus clade and is closely related to Tylonycteris bat coronavirus HKU4 and Pipistrellus bat coronavirus HKU5. Thus, bats are thought to be natural hosts of this virus. Recently, there were reports supposed to be cases of human to human infection. There are growing concerns about spread of infection.
Collapse
|
25
|
Tanaka Y, Sasaki T, Matsuda R, Uematsu Y, Yamaguchi T. Molecular epidemiological study of feline coronavirus strains in Japan using RT-PCR targeting nsp14 gene. BMC Vet Res 2015; 11:57. [PMID: 25889235 PMCID: PMC4359392 DOI: 10.1186/s12917-015-0372-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 02/24/2015] [Indexed: 12/05/2022] Open
Abstract
Background Feline infectious peritonitis is a fatal disease of cats caused by infection with feline coronavirus (FCoV). For detecting or genotyping of FCoV, some RT-PCR plus nested PCR techniques have been reported previously. However, referring to the whole genome sequences (WGSs) registered at NCBI, there are no detection methods that can tolerate the genetic diversity among FCoV population. In addition, the quasispecies nature of FCoV, which consists of heterogeneous variants, has been also demonstrated; thus, a universal method for heteropopulations of FCoV variants in clinical specimens is desirable. Results To develop an RT-PCR method for detection and genotyping of FCoV, we performed comparative genome analysis using WGSs of 32 FCoV, 7 CCoV and 5 TGEV strains obtained from NCBI. As the PCR target, we focused on the nsp14 coding region, which is highly conserved and phylogenetically informative, and developed a PCR method targeting nsp14 partial sequences. Among 103 ascites, 45 pleural effusion and 214 blood specimens from clinically ill cats, we could detect FCoV in 55 (53.4%), 14 (31.1%) and 19 (8.9%) specimens using the present method. Direct sequencing of PCR products and phylogenetic analysis allowed discrimination between type I- and II-FCoV serotypes. Our nsp14 amino acid sequence typing (nsp14 aa ST) showed that the FCoV clone with sequence type (ST) 42, which was the most predominant genotype of WGS strains, was prevalent in domestic cats in Japan. Conclusions Our nsp14 PCR scheme will contribute to virus detection, epidemiology and ecology of FCoV strains. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0372-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoshikazu Tanaka
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino, Tokyo, 180-8602, Japan.
| | - Takashi Sasaki
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino, Tokyo, 180-8602, Japan.
| | - Ryo Matsuda
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino, Tokyo, 180-8602, Japan.
| | - Yosuke Uematsu
- Canine Lab., Inc., Nokodai-Tamakoganei Venture Port 302, 2-24-16, Koganei, Tokyo, 184-0012, Japan.
| | - Tomohiro Yamaguchi
- Canine Lab., Inc., Nokodai-Tamakoganei Venture Port 302, 2-24-16, Koganei, Tokyo, 184-0012, Japan.
| |
Collapse
|
26
|
Harak C, Lohmann V. Ultrastructure of the replication sites of positive-strand RNA viruses. Virology 2015; 479-480:418-33. [PMID: 25746936 PMCID: PMC7111692 DOI: 10.1016/j.virol.2015.02.029] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/06/2015] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
Abstract
Positive strand RNA viruses replicate in the cytoplasm of infected cells and induce intracellular membranous compartments harboring the sites of viral RNA synthesis. These replication factories are supposed to concentrate the components of the replicase and to shield replication intermediates from the host cell innate immune defense. Virus induced membrane alterations are often generated in coordination with host factors and can be grouped into different morphotypes. Recent advances in conventional and electron microscopy have contributed greatly to our understanding of their biogenesis, but still many questions remain how viral proteins capture membranes and subvert host factors for their need. In this review, we will discuss different representatives of positive strand RNA viruses and their ways of hijacking cellular membranes to establish replication complexes. We will further focus on host cell factors that are critically involved in formation of these membranes and how they contribute to viral replication.
Collapse
Affiliation(s)
- Christian Harak
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany.
| |
Collapse
|
27
|
Tanaka Y, Sato Y, Takahashi D, Matsumoto H, Sasaki T. Treatment of a case of feline infectious peritonitis with cyclosporin A. VETERINARY RECORD CASE REPORTS 2015. [DOI: 10.1136/vetreccr-2014-000134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yoshikazu Tanaka
- Department of Veterinary HygieneVeterinary SchoolNippon Veterinary & Life Science UniversityMusashinoTokyoJapan
| | - Yuka Sato
- Division of Molecular VirologyDepartment of Microbiology and ImmunologyThe University of TokyoThe Institute of Medical ScienceMinato‐kuTokyoJapan
| | - Daiki Takahashi
- Division of Molecular VirologyDepartment of Microbiology and ImmunologyDaiki Animal HospitalKatsushika‐kuTokyoJapan
| | - Hirotaka Matsumoto
- Department of Veterinary Internal MedicineVeterinary SchoolNippon Veterinary & Life Science UniversityMusashinoTokyoJapan
| | - Takashi Sasaki
- Faculty of MedicineDepartment of BacteriologyJuntendo UniversityBunkyoTokyoJapan
| |
Collapse
|
28
|
Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother 2014; 58:4875-84. [PMID: 24841269 DOI: 10.1128/aac.03011-14] [Citation(s) in RCA: 527] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses can cause respiratory and enteric disease in a wide variety of human and animal hosts. The 2003 outbreak of severe acute respiratory syndrome (SARS) first demonstrated the potentially lethal consequences of zoonotic coronavirus infections in humans. In 2012, a similar previously unknown coronavirus emerged, Middle East respiratory syndrome coronavirus (MERS-CoV), thus far causing over 650 laboratory-confirmed infections, with an unexplained steep rise in the number of cases being recorded over recent months. The human MERS fatality rate of ∼ 30% is alarmingly high, even though many deaths were associated with underlying medical conditions. Registered therapeutics for the treatment of coronavirus infections are not available. Moreover, the pace of drug development and registration for human use is generally incompatible with strategies to combat emerging infectious diseases. Therefore, we have screened a library of 348 FDA-approved drugs for anti-MERS-CoV activity in cell culture. If such compounds proved sufficiently potent, their efficacy might be directly assessed in MERS patients. We identified four compounds (chloroquine, chlorpromazine, loperamide, and lopinavir) inhibiting MERS-CoV replication in the low-micromolar range (50% effective concentrations [EC(50)s], 3 to 8 μM). Moreover, these compounds also inhibit the replication of SARS coronavirus and human coronavirus 229E. Although their protective activity (alone or in combination) remains to be assessed in animal models, our findings may offer a starting point for treatment of patients infected with zoonotic coronaviruses like MERS-CoV. Although they may not necessarily reduce viral replication to very low levels, a moderate viral load reduction may create a window during which to mount a protective immune response.
Collapse
|
29
|
Carbajo-Lozoya J, Ma-Lauer Y, Malešević M, Theuerkorn M, Kahlert V, Prell E, von Brunn B, Muth D, Baumert TF, Drosten C, Fischer G, von Brunn A. Human coronavirus NL63 replication is cyclophilin A-dependent and inhibited by non-immunosuppressive cyclosporine A-derivatives including Alisporivir. Virus Res 2014; 184:44-53. [PMID: 24566223 PMCID: PMC7114444 DOI: 10.1016/j.virusres.2014.02.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 12/12/2022]
Abstract
Cyclophilin A (CypA) is a host factor for human coronavirus NL63 replication. CypA is a target for anti-coronaviral therapy. Non-immunosuppressive CsA derivatives (Alisporivir, NIM811) inhibit CoV replication. New classes of non-immunosuppressive CsA/FK506 derivatives inhibit CoV replication.
Until recently, there were no effective drugs available blocking coronavirus (CoV) infection in humans and animals. We have shown before that CsA and FK506 inhibit coronavirus replication (Carbajo-Lozoya, J., Müller, M.A., Kallies, S., Thiel, V., Drosten, C., von Brunn, A. Replication of human coronaviruses SARS-CoV, HCoV-NL63 and HCoV-229E is inhibited by the drug FK506. Virus Res. 2012; Pfefferle, S., Schöpf, J., Kögl, M., Friedel, C., Müller, M.A., Stellberger, T., von Dall’Armi, E., Herzog, P., Kallies, S., Niemeyer, D., Ditt, V., Kuri, T., Züst, R., Schwarz, F., Zimmer, R., Steffen, I., Weber, F., Thiel, V., Herrler, G., Thiel, H.-J., Schwegmann-Weßels, C., Pöhlmann, S., Haas, J., Drosten, C. and von Brunn, A. The SARS-Coronavirus-host interactome: identification of cyclophilins as target for pan-Coronavirus inhibitors. PLoS Pathog., 2011). Here we demonstrate that CsD Alisporivir, NIM811 as well as novel non-immunosuppressive derivatives of CsA and FK506 strongly inhibit the growth of human coronavirus HCoV-NL63 at low micromolar, non-cytotoxic concentrations in cell culture. We show by qPCR analysis that virus replication is diminished up to four orders of magnitude to background levels. Knockdown of the cellular Cyclophilin A (CypA/PPIA) gene in Caco-2 cells prevents replication of HCoV-NL63, suggesting that CypA is required for virus replication. Collectively, our results uncover Cyclophilin A as a host target for CoV infection and provide new strategies for urgently needed therapeutic approaches.
Collapse
Affiliation(s)
| | - Yue Ma-Lauer
- Max-von-Pettenkofer Institut, Ludwig-Maximilians-Universität, München, Germany
| | - Miroslav Malešević
- Martin-Luther-Universität Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Division of Enzymology, Halle, Germany
| | - Martin Theuerkorn
- Max-Planck-Institute of Biophysical Chemistry Göttingen, BO Halle (Saale), Germany
| | - Viktoria Kahlert
- Max-Planck-Institute of Biophysical Chemistry Göttingen, BO Halle (Saale), Germany
| | - Erik Prell
- Max-Planck-Institute of Biophysical Chemistry Göttingen, BO Halle (Saale), Germany
| | - Brigitte von Brunn
- Max-von-Pettenkofer Institut, Ludwig-Maximilians-Universität, München, Germany
| | - Doreen Muth
- Institut für Virologie, Universität Bonn, Bonn, Germany
| | - Thomas F Baumert
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, Strasbourg, France
| | | | - Gunter Fischer
- Max-Planck-Institute of Biophysical Chemistry Göttingen, BO Halle (Saale), Germany
| | - Albrecht von Brunn
- Max-von-Pettenkofer Institut, Ludwig-Maximilians-Universität, München, Germany.
| |
Collapse
|
30
|
Feline Coronavirus Infection. CANINE AND FELINE INFECTIOUS DISEASES 2014. [PMCID: PMC7152019 DOI: 10.1016/b978-1-4377-0795-3.00020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
|
31
|
Suppression of coronavirus replication by cyclophilin inhibitors. Viruses 2013; 5:1250-60. [PMID: 23698397 PMCID: PMC3712306 DOI: 10.3390/v5051250] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/02/2013] [Accepted: 05/08/2013] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS), feline infectious peritonitis (FIP), mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA), could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication.
Collapse
|
32
|
Milewska A, Ciejka J, Kaminski K, Karewicz A, Bielska D, Zeglen S, Karolak W, Nowakowska M, Potempa J, Bosch BJ, Pyrc K, Szczubialka K. Novel polymeric inhibitors of HCoV-NL63. Antiviral Res 2012. [PMID: 23201315 PMCID: PMC7114096 DOI: 10.1016/j.antiviral.2012.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human coronavirus NL63 is generally classified as a common cold pathogen, though the infection may also result in severe lower respiratory tract diseases, especially in children, patients with underlying disease, and elderly. It has been previously shown that HCoV-NL63 is also one of the most important causes of croup in children. In the current manuscript we developed a set of polymer-based compounds showing prominent anticoronaviral activity. Polymers have been recently considered as promising alternatives to small molecule inhibitors, due to their intrinsic antimicrobial properties and ability to serve as matrices for antimicrobial compounds. Most of the antimicrobial polymers show antibacterial properties, while those with antiviral activity are much less frequent. A cationically modified chitosan derivative, N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC), and hydrophobically-modified HTCC were shown to be potent inhibitors of HCoV-NL63 replication. Furthermore, both compounds showed prominent activity against murine hepatitis virus, suggesting broader anticoronaviral activity.
Collapse
Affiliation(s)
- Aleksandra Milewska
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cyclophilin inhibitors block arterivirus replication by interfering with viral RNA synthesis. J Virol 2012; 87:1454-64. [PMID: 23152531 DOI: 10.1128/jvi.02078-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Virus replication strongly depends on cellular factors, in particular, on host proteins. Here we report that the replication of the arteriviruses equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) is strongly affected by low-micromolar concentrations of cyclosporine A (CsA), an inhibitor of members of the cyclophilin (Cyp) family. In infected cells, the expression of a green fluorescent protein (GFP) reporter gene inserted into the PRRSV genome was inhibited with a half-maximal inhibitory concentration (IC(50)) of 5.2 μM, whereas the GFP expression of an EAV-GFP reporter virus was inhibited with an IC(50) of 0.95 μM. Debio-064, a CsA analog that lacks its undesirable immunosuppressive properties, inhibited EAV replication with an IC(50) that was 3-fold lower than that of CsA, whereas PRRSV-GFP replication was inhibited with an IC(50) similar to that of CsA. The addition of 4 μM CsA after infection prevented viral RNA and protein synthesis in EAV-infected cells, and CsA treatment resulted in a 2.5- to 4-log-unit reduction of PRRSV or EAV infectious progeny. A complete block of EAV RNA synthesis was also observed in an in vitro assay using isolated viral replication structures. The small interfering RNA-mediated knockdown of Cyp family members revealed that EAV replication strongly depends on the expression of CypA but not CypB. Furthermore, upon fractionation of intracellular membranes in density gradients, CypA was found to cosediment with membranous EAV replication structures, which could be prevented by CsA treatment. This suggests that CypA is an essential component of the viral RNA-synthesizing machinery.
Collapse
|