1
|
Mu J, Lei L, Zheng Y, Li D, Li J, Fu Y, Wang G, Liu Y. Comparative study of subcutaneous, intramuscular, and oral administration of bovine pathogenic Escherichia coli bacterial ghost vaccine in mice. Front Immunol 2022; 13:1008131. [DOI: 10.3389/fimmu.2022.1008131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
Escherichia coli is one of the most common bacterial pathogens in cattle. Prophylactic vaccines are considered promising strategies with the potential to reduce the incidence of colibacillosis. Some studies suggested that bacterial ghosts may serve as a novel approach for preventing bacterial infections. However, the roles of administration route on vaccine immunogenicity and efficacy have not been investigated. In this study, the efficacy of vaccination via different immune routes in generating humoral and cellular immune response was compared through subcutaneous (SC), intramuscular (IM), and oral (O) administration in female BALB/c mice with bacterial ghosts prepared using wild type Escherichia coli isolates CE9, while phosphate buffer saline (PBS) and inactivated vaccines containing aluminum adjuvants (Killed) were used as control. Our results showed that the plasmid pBV220-E-aa-SNA containing E. coli was efficiently cleaved at 42°C with 94.8% positive ratio as assessed by colony counts. Transmission electron microscopy (TEM) confirmed bacteria retained intact surface structure while devoid of cytoplasmic component. We found that total IgG titers in killed, IM and SC groups showed significant increase on 7, 14, 21 and 28 days post-immunization. The IgA level of the IM group was higher than that of all other groups on the 28th day. Meanwhile, four experimental groups showed a significant difference in IgA levels compared with PBS control. In the IM group, an increase in the relative percentages of CD3+CD4+ T cells was accompanied by an increase in the relative percentages of splenic CD3+CD8+ T cells. In comparison with the inactivated vaccine, intramuscular CE9 ghosts immunization elicited higher levels of IL-1β, IL-2, IL-6 and IL-12. Subcutaneous and intramuscular immunizations were significantly associated with improved survival in comparison with oral route, traditional vaccine and the control. Pathologic assessment revealed that less severe tissue damage and inflammation were found in lung, kidney, and intestine of IM group compared with other groups. The results above demonstrate that immunization of Escherichia coli CE9 ghosts via intramuscular injection elicits a more robust antigen-specific immune response in mice to prevent the Escherichia coli infection.
Collapse
|
2
|
Sen ОМ, Saliy ОО, Mazurkevych VI, Sobko YA. Immunogenicity and duration of immunity of the polyvalent vaccine against chicken salmonellosis. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Poultry salmonellosis causes serious economic damage and must be prevented by disinfection, zoohygienic measures or by vaccination. To develop a new polyvalent vaccine against poultry salmonellosis, we used bacterial strains of Salmonella enteritidis, S. typhimurium and S. gallinarum. Antigenic and immunogenic efficacy of the vaccine was tested on specific-pathogen free chickens, which were divided into five groups of 10 birds in each group and were vaccinated intramuscularly at 8 and 12 weeks: group A (non-immunized control), group B (S. enteritidis mono-vaccine), group C (S. typhimurium mono-vaccine), group D (S. gallinarum mono-vaccine) and group E (trivalent vaccine Polimun Salmo). None of the immunized birds showed such adverse reactions as abnormal behaviour, mortality or signs of anorexia, depression or diarrhea. Two weeks after the revaccination, 5 birds in each group were challenged by watering 3 cm3 of working suspensions of S. gallinarum, S. typhimurium and S. enteritidis control strains at a concentration of 1 × 109 CFU. 72 h after the challenge, faeces were collected from all chickens in each group to identify Salmonella excretion with faeces, and the chickens were euthanized. Significant protection against the virulent challenge was observed in all immunized groups based on mortality and post-mortem lesions compared with the non-immunized control group. Blood samples were selected weekly from 5 chickens of each group for 184 days. The antigenic efficacy of the vaccines was studied by reaction of haemagglutination in the obtained serum. The potent antigen-specific response to lymphocyte activation found in all immunized groups indicated the induction of immune responses. Overall, the results showed that persistent immunity is formed in 4 weeks after the revaccination and lasts for a productive period. Immune response of chickens on day 184 after vaccination with Polimun Salmo was 1: 647, indicating that the developed polyvalent vaccine against common serovars of S. enterica in poultry is effective and immunogenic and can be further used in field studies.
Collapse
|
3
|
Kim NH, Ha EJ, Ko DS, Choi KS, Kwon HJ. Comparison of Humoral Immune Responses to Different Forms of Salmonella enterica Serovar Gallinarum Biovar Gallinarum. Front Vet Sci 2020; 7:598610. [PMID: 33240965 PMCID: PMC7677237 DOI: 10.3389/fvets.2020.598610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 02/03/2023] Open
Abstract
Fowl typhoid is caused by Salmonella enterica serovar Gallinarum biovar Gallinarum (SG), and live attenuated, rough vaccine strains have been used. Both humoral and cellular immune responses are involved in protection, but the humoral responses to different forms of SG antigens are unclear. In this study, we compared humoral responses to a killed oil-emulsion (OE) smooth vaccine (SG002) and its rough mutant vaccine (SR2-N6) strains using proteomics techniques. We identified two immunogenic outer membrane proteins (OmpA and OmpX), and the selected linear epitopes were successfully applied in peptide-ELISA. Our peptide- and total OMP-ELISAs were used to compare the temporal humoral responses to various SG antigens: OE SG002 and SR2-N6; live, killed [PBS-suspension (PS) and OE)] and mixed (live and PS) formulations of another rough vaccine strain (SG 9R); and orally challenge with a field strain. Serum antibodies to the linear epitopes of OmpA and OmpX lasted only for the first 2 weeks, but serum antibodies against OMPs increased over time. The rough strain (SR2-N6) and mixed SG 9R induced higher serum antibody titers than the smooth strain (SG002) and single SG 9R (OE, live and PS SG 9R), respectively. Infection with the field strain delayed the serum antibody response by ~2 weeks. Mucosal immunity was not induced by any formulation, except for infection with the field strain after SG 9R vaccination. Thus, our results may be useful to understand humoral immunity against various SG antigens and to improve vaccine programs and serological diagnosis in the field.
Collapse
Affiliation(s)
- Nam-Hyung Kim
- Laboratory of Poultry Medicine, Seoul National University, Seoul, South Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul, South Korea
| | - Eun-Jin Ha
- Laboratory of Poultry Medicine, Seoul National University, Seoul, South Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul, South Korea
| | - Dae-Sung Ko
- Laboratory of Poultry Medicine, Seoul National University, Seoul, South Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul, South Korea
| | - Kang-Seuk Choi
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul, South Korea
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Hyuk-Joon Kwon
- Laboratory of Poultry Medicine, Seoul National University, Seoul, South Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul, South Korea
- Farm Animal Clinical Training and Research Center (FACTRC), GBST, Seoul National University, Seoul, South Korea
| |
Collapse
|
4
|
Moon J, Kim S, Kim W, Rao Z, Park J, Park B, Hur J. Protective efficacy of the recombinant lysozyme-PMAP36 fusion protein-inactivated Salmonella Typhimurium vaccine candidate via oral immunization in a murine model. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2020; 84:241-244. [PMID: 32801461 PMCID: PMC7301672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/14/2019] [Indexed: 06/11/2023]
Abstract
The aim of this study was to evaluate protective efficacy of S. Typhimurium ghost vaccine candidate lysed by the recombinant lysozyme-PMAP36 fusion protein via oral immunization in a murine model. Sixty BALB/c mice were equally divided into 4 groups. Group A mice were inoculated with 20 μL of sterile phosphate-buffered saline (PBS). Groups B-D mice were immunized with approximately 1 × 107, 1 × 108, and 1 × 109 cells of the vaccine candidate, respectively, in 20 μL of PBS. Salmonella-outermembrane-proteins-specific serum IgG was considerably higher in groups B-D than in group A. The interleukin-10 and interferon-γ levels in groups B-D were significantly higher than in group A. Following challenge with wild-type S. Typhimurium, all immunized groups showed a significant level of protection compared with group A. The highest protection was shown in group D. Overall, these results show that oral immunization with the candidate vaccine can effectively protect mice from S. Typhimurium infection.
Collapse
Affiliation(s)
- Jayoung Moon
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan 54596, Republic of Korea (Jayoung Moon, Wonkyong Kim, Jin Hur); Division of Biotechnology, College of Environmental & Bioresources Sciences, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, 54596, Republic of Kore (Soyoung Kim, Zhili Rao, Junghee Park); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Byungyong Park)
| | - Soyoung Kim
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan 54596, Republic of Korea (Jayoung Moon, Wonkyong Kim, Jin Hur); Division of Biotechnology, College of Environmental & Bioresources Sciences, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, 54596, Republic of Kore (Soyoung Kim, Zhili Rao, Junghee Park); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Byungyong Park)
| | - Wonkyong Kim
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan 54596, Republic of Korea (Jayoung Moon, Wonkyong Kim, Jin Hur); Division of Biotechnology, College of Environmental & Bioresources Sciences, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, 54596, Republic of Kore (Soyoung Kim, Zhili Rao, Junghee Park); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Byungyong Park)
| | - Zhili Rao
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan 54596, Republic of Korea (Jayoung Moon, Wonkyong Kim, Jin Hur); Division of Biotechnology, College of Environmental & Bioresources Sciences, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, 54596, Republic of Kore (Soyoung Kim, Zhili Rao, Junghee Park); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Byungyong Park)
| | - Junghee Park
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan 54596, Republic of Korea (Jayoung Moon, Wonkyong Kim, Jin Hur); Division of Biotechnology, College of Environmental & Bioresources Sciences, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, 54596, Republic of Kore (Soyoung Kim, Zhili Rao, Junghee Park); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Byungyong Park)
| | - Byungyong Park
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan 54596, Republic of Korea (Jayoung Moon, Wonkyong Kim, Jin Hur); Division of Biotechnology, College of Environmental & Bioresources Sciences, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, 54596, Republic of Kore (Soyoung Kim, Zhili Rao, Junghee Park); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Byungyong Park)
| | - Jin Hur
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan 54596, Republic of Korea (Jayoung Moon, Wonkyong Kim, Jin Hur); Division of Biotechnology, College of Environmental & Bioresources Sciences, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, 54596, Republic of Kore (Soyoung Kim, Zhili Rao, Junghee Park); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Byungyong Park)
| |
Collapse
|
5
|
Abstract
INTRODUCTION Bacterial ghosts are intact bacterial cell envelopes that are emptied of their content by gentle biological or chemical poring methods. Ghost techniques increase the safety of the killed vaccines, while maintaining their antigenicity due to mild preparation procedures. Moreover, ghost-platforms may express and/or carry several antigens or plasmid-DNA encoding for protein epitopes. AREAS COVERED In this review, the development in ghost-vaccine production over the last 30 years is classified and discussed. The different applications of ghost-vaccines, how they trigger the immune system, their advantages and limitations are displayed. The phage-mediated lysis, molecular manipulation of the lysis-genes, and the biotechnological production of ghosts are described. The trials are classified according to the pattern of lysis and to the type of bacteria. Further subdivision includes chronological ordered application of the ghost as alternative-killed vaccine, recombinant antigen platform, plasmid DNA carrier, adjuvants, and dendritic cell inducer. Particular trials for specific pathogens or from distinct research schools are gathered. EXPERT OPINION Ghosts are highly qualified to act as immune-presenting platforms that express and/or carry several recombinant and DNA vaccines, as well as, being efficient alternative-killed vaccines. The coming years will show more molecular advances to develop ghost-production and to express more antigens.
Collapse
Affiliation(s)
- Ali M Batah
- Tropical Disease Research Center, University of Science and Technology , Sana'a, Yemen
| | - Tarek A Ahmad
- Morehouse School of Medicine , Atlanta, GA, USA.,Library Sector, Bibliotheca Alexandrina , Alexandria, Egypt
| |
Collapse
|
6
|
Won G, Senevirathne A, Lee JH. Salmonella Enteritidis ghost vaccine carrying the hemagglutinin globular head (HA1) domain from H1N1 virus protects against salmonellosis and influenza in chickens. Vaccine 2020; 38:4387-4394. [PMID: 32402750 DOI: 10.1016/j.vaccine.2020.04.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 01/29/2023]
Abstract
This study evaluated the attenuated Salmonella Enteritidis (SE) ghost strain JOL2114 (Δlon ΔcpxR Δasd), which displays on the bacterial surface the H1N1 hemagglutinin globular head portion (HA1; amino acid residues 63-286) on the bacterial surface for protective efficacy against Salmonella and H1N1 challenge in the chicken model, as the birds are the predominant reservoirs for both diseases. The ghost system enhanced the lysis process by converging two lysis processes found in bacteriophages: bacteriophage PhiX174 lysis gene E and holin-endolysin genes found in bacteriophage λ, complemented with accessory lysis-related proteins Rz/Rz1. The present lysis machinery resulted in complete lysis of host-attenuated SE strains in about 24 hrs of incubation under a non-permissible temperature of 42 °C in the absence of L-arabinose, an antisense inducer that blocks lysis gene expression during the growth phase. SE ghost JOL2114 surface display of HA1 was confirmed by Western blot analysis resulting in an immune-reactive band of 31 kDa in size. Chicken immunization via intramuscular and oral routes yielded both SE and HA1 antigen-specific immune responses. Protective humoral and cell-mediated immune responses were effectively elicited against both Salmonella and influenza challenge. This efficient strategy of ghost generation employs a dual system of phage lysis for biological generation of SE ghosts that preserves the surface antigenic architecture, offering a rapid and effective way to generate vaccines that could be deployed in urgent circumstances to protect against both Salmonella and influenza infection.
Collapse
Affiliation(s)
- Gayeon Won
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Gobong-ro 79, Iksan 54596, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Gobong-ro 79, Iksan 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Gobong-ro 79, Iksan 54596, Republic of Korea.
| |
Collapse
|
7
|
Kamble NM, Senevirathne A, Koh HB, Lee JI, Lee JH. Self-destructing Salmonella via temperature induced gene E of phage PhiX174 improves influenza HA DNA vaccine immune protection against H1N1 infection in mice model. J Immunol Methods 2019; 472:7-15. [PMID: 31175847 DOI: 10.1016/j.jim.2019.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/22/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
Abstract
The delivery of DNA vaccines is the principle impediment for implementation of DNA vaccination on a mass scale. In this study, we report a temperature induced conditionally expressed phage PhiX174 gene E mediated lysis of Salmonella under in vivo conditions that can increase the immunogenicity of a DNA vaccine delivered via Salmonella carrier system. We electroporated gene E encoding lysis plasmid pJHL187 along with the pcDNA-HA plasmid encoding H1N1 HA into attenuated Salmonella Typhimurium, strain JOL1893. Using C57BL/6 mice as the model, we showed that the mice intragastrically vaccinated with JOL1893 induced significant production of HA-specific humoral and cell mediated immune responses compared to the JOL1837, which carry pcDNA-HA plasmid alone. Furthermore, mice vaccinated with JOL1893 vaccine were fully protected against the lethal H1N1 challenge compared to the JOL1837 strain, which showed 90% protection only. However, none of the animals survived treated with either the PBS or the Salmonella carrying empty vector. Taken together, our results indicate that mucosal immunization with conditional lysis enabled live attenuated S. Typhimurium as a DNA vaccine carrier can induce efficient systemic and mucosal immune responses, and improves immune protection against a highly pathogenic H1N1 infection in mice model.
Collapse
Affiliation(s)
- Nitin Machindra Kamble
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Hong Bum Koh
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae Il Lee
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596, Republic of Korea.
| |
Collapse
|
8
|
Hoseini Shahidi R, Hashemi Tabar G, Bassami MR, Jamshidi A, Dehghani H. The design and application of a bacterial ghost vaccine to evaluate immune response and defense against avian pathogenic Escherichia coli O2:K1 serotype. Res Vet Sci 2019; 125:153-161. [PMID: 31228739 DOI: 10.1016/j.rvsc.2019.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 05/10/2019] [Accepted: 06/03/2019] [Indexed: 12/22/2022]
Abstract
An Escherichia coli (E. coli) O2:K1 bacterial ghost was produced by controlled expression of bacteriophage PhiX 174 lysis gene E. Temperature controlled expression of this gene caused tunnels and holes in the cell wall of E. coli O2:K1 bacterium, leading to loss of cytoplasmic contents. Formation of E. coli O2:K1 ghost was confirmed by scanning electron microscopy and determination of colony forming units. To evaluate the efficiency of this bacterial ghost vaccine to elicit cellular and humoral immune responses, 85 one day old chickens from Ross 308 breed were divided into the following 5 groups; group 1 (non-immunized control), group 2 (vaccine administered by injection of E. coli O2:K1 killed vaccine), group 3 (vaccine administered by injection of E. coli O2:K1 ghost), group 4 (vaccine administered by inhalation of E. coli O2:K1 ghost), and group 5 (neither immunized, nor challenged as negative control). The groups of 2, 3, and 4 were received vaccines at days 7, 14, and 22. Groups 1 to 4 were challenged with the wild type at day 33. Evaluation of post-mortem lesions and immune responses in all groups showed that chicken injected with the killed vaccine and the bacterial ghost had the best protection. These findings suggest that this bacterial ghost has the potential to be used as a poultry colibacillosis vaccine.
Collapse
Affiliation(s)
- Reza Hoseini Shahidi
- Biotechnology Division, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Hashemi Tabar
- Biotechnology Division, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Reza Bassami
- Biotechnology Division, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Division of Poultry Diseases, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdollah Jamshidi
- Division of Food Hygiene, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Biotechnology Division, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Division of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
9
|
Burin AM, Fernandes NLM, Snak A, Fireman A, Horn D, Fernandes JIM. Arginine and manganese supplementation on the immune competence of broilers immune stimulated with vaccine against Salmonella Enteritidis. Poult Sci 2019; 98:2160-2168. [DOI: 10.3382/ps/pey570] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/05/2018] [Indexed: 01/06/2023] Open
|
10
|
Jiang N, Luo L, Xing W, Li T, Yuan D, Xu G, Li W, Ma Z, Jin L, Ji M. Generation and immunity effect evaluation of biotechnology-derived Aeromonas veronii ghost by PhiX174 gene E-mediated inactivation in koi (Cyprinus carprio koi). FISH & SHELLFISH IMMUNOLOGY 2019; 86:327-334. [PMID: 30041051 DOI: 10.1016/j.fsi.2018.07.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Aeromonas veronii is a conditional pathogen causing high mortality in many freshwater fish species worldwide. Bacterial ghosts are nonliving Gram-negative bacteria devoid of cytoplasmic contents, which induce protective immunity against microbial pathogens. The aims of this study were: a) to produce A. veronii ghost (AVG) constructed by PhiX174 gene E; b) to evaluate the specific, non-specific immune effects and protective immunity of AVG against A. veronii in koi. The lysis plasmid pBBR-E was constructed by cloning PhiX174 gene E into the broad-host-range vector pBBR1MCS2, and then transformed into A. veronii 7231. AVG was generated by increasing the incubation temperature up to 42 °C. Lysis of A. veronii occurred 3 h after temperature induction and completed in 12 h. The efficiency of ghost induction was 99.9998 ± 0.0002%. Koi were immunized intraperitoneally with AVG, formalin-killed bacteria (FKC) or phosphate buffered saline (PBS) respectively, and then respiratory burst (RB), myeloperoxidase (MPO), lysozyme (LZM), malondialdehyde (MDA), complement 3 (C3) and antibody activities were examined in serum. Compared with negative control of PBS, the RB, MPO, LZM activities were significantly higher in koi immunized with AVG (P < 0.05). Nevertheless, the MDA activities of AVG treatment were significantly lower than those of PBS treatment (P < 0.05). The serum agglutination titers and IgM antibody titers in AVG group were significantly higher than those in FKC or PBS groups. After challenged with the parent strain A. veronii 7231, the average mortality of AVG group was significantly lower than that of FKC and PBS groups (P < 0.05) and the relative percent survival (RPS) of AVG group (73.92%) was higher than that of FKC group (43.48%). Therefore, AVG have the potential to induce protective immunity and they may be ideal vaccine candidates against A. veronii in koi.
Collapse
Affiliation(s)
- Na Jiang
- Beijing Fisheries Research Institute, Beijing, 100068, China
| | - Lin Luo
- Beijing Fisheries Research Institute, Beijing, 100068, China
| | - Wei Xing
- Beijing Fisheries Research Institute, Beijing, 100068, China
| | - Tieliang Li
- Beijing Fisheries Research Institute, Beijing, 100068, China
| | - Ding Yuan
- Beijing Fisheries Research Institute, Beijing, 100068, China
| | - Guanling Xu
- Beijing Fisheries Research Institute, Beijing, 100068, China
| | - Wentong Li
- Beijing Fisheries Research Institute, Beijing, 100068, China
| | - Zhihong Ma
- Beijing Fisheries Research Institute, Beijing, 100068, China.
| | - Liangyun Jin
- Electron Microscope Room of Central Laboratory, Capital Medical University, Beijing, 100069, China
| | - Man Ji
- Electron Microscope Room of Central Laboratory, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
11
|
Kim WK, Moon JY, Cho JS, Ochirkhuyag E, Akanda MR, Park BY, Hur J. Protective efficacy of an inactivated Brucella abortus vaccine candidate lysed by GI24 against brucellosis in Korean black goats. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2019; 83:68-74. [PMID: 30670904 PMCID: PMC6318821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/02/2018] [Indexed: 06/09/2023]
Abstract
The efficacy of GI24-lysed Brucella abortus cells as a vaccine candidate against brucellosis in goats was evaluated on 2 groups of Korean black goats. Group A goats were immunized subcutaneously (SC) with sterile phosphate-buffered saline, whereas group B goats were immunized SC with approximately 3 × 109 lysed B. abortus cells. Subcutaneous immunization with the lysed cells did not cause any negative impact on the overall clinical status, such as behavior and appetite, throughout the study period. The enzyme-linked immunosorbent assay (ELISA) optical densities values for B. abortus lipopolysaccharide in serum were considerably higher in group B than those in group A. Also, the levels of the cytokines interleukin 4 (IL-4), tumor necrosis factor-alpha (TNF-α), and interferon gamma (IFN-γ) were significantly elevated in group B compared with those in group A. Following intraconjunctival challenge with B. abortus strain 544, the severity of brucellosis in terms of infection index and colonization of B. abortus in tissues was significantly lower in group B than in group A. The present study concluded that 3 of 5 goats immunized with GI24-lysed bacteria were completely protected against challenge. Future investigations are required to improve the protective efficacy offered by lysed B. abortus cells for practical applications in small ruminants.
Collapse
Affiliation(s)
- Wong-Kyong Kim
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Kim, Moon, Cho, Ochirkhuyag, Hur); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Akanda, Park)
| | - Ja-Young Moon
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Kim, Moon, Cho, Ochirkhuyag, Hur); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Akanda, Park)
| | - Jeong-Sang Cho
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Kim, Moon, Cho, Ochirkhuyag, Hur); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Akanda, Park)
| | - Enkhsaikhan Ochirkhuyag
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Kim, Moon, Cho, Ochirkhuyag, Hur); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Akanda, Park)
| | - Md Rashedunnabi Akanda
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Kim, Moon, Cho, Ochirkhuyag, Hur); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Akanda, Park)
| | - Byung-Yong Park
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Kim, Moon, Cho, Ochirkhuyag, Hur); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Akanda, Park)
| | - Jin Hur
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Kim, Moon, Cho, Ochirkhuyag, Hur); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Akanda, Park)
| |
Collapse
|
12
|
Hou R, Li M, Tang T, Wang R, Li Y, Xu Y, Tang L, Wang L, Liu M, Jiang Y, Cui W, Qiao X. Construction of Lactobacillus casei ghosts by Holin-mediated inactivation and the potential as a safe and effective vehicle for the delivery of DNA vaccines. BMC Microbiol 2018; 18:80. [PMID: 30055567 PMCID: PMC6064150 DOI: 10.1186/s12866-018-1216-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/28/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial ghosts (BGs) are empty bacterial cell envelopes generated by releasing the cellular contents. In this study, a phage infecting Lactobacillus casei ATCC 393 (L. casei 393) was isolated and designated Lcb. We aimed at using L. casei 393 as an antigen delivery system to express phage-derived holin for development of BGs. RESULTS A gene fragment encoding holin of Lcb (hocb) was amplified by polymerase chain reaction (PCR). We used L. casei 393 as an antigen delivery system to construct the recombinant strain pPG-2-hocb/L. casei 393. Then the recombinants were induced to express hocb. The immunoreactive band corresponding to hocb was observed by western-blotting, demonstrating the efficiency and specificity of hocb expression in recombinants. The measurements of optical density at 600 nm (OD600) after induction showed that expression of hocb can be used to convert L. casei cells into BGs. TEM showed that the cytomembrane and cell walls of hocb expressing cells were partially disrupted, accompanied by the loss of cellular contents, whereas control cells did not show any morphological changes. SEM showed that lysis pores were distributed in the middle or at the poles of the cells. To examine where the plasmid DNA was associated, we analyzed the L. casei ghosts loading SYBR Green I labeled pCI-EGFP by confocal microscopy. The result demonstrated that the DNA interacted with the inside rather than with the outside surface of the BGs. To further analyze where the DNA were loaded, we stained BGs with MitoTracker Green FM and the loaded plasmids were detected using EGFP-specific Cy-3-labeled probes. Z-scan sections through the BGs revealed that pCI-EGFP (red) was located within the BGs (green), but not on the outside. Flow cytometry and qPCR showed that the DNA was loaded onto BGs effectively and stably. CONCLUSIONS Our study constructed L. casei BGs by a novel method, which may be a promising technology for promoting the further application of DNA vaccine, providing experimental data to aid the development of other Gram-positive BGs.
Collapse
Affiliation(s)
- Rui Hou
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Muzi Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Tingting Tang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Ruichong Wang
- Institute for Radiological Protection, Heilongjiang Province Center for Disease Control and Prevention, 40 Youfang Street, Harbin, 150030, China
| | - Yijing Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Yigang Xu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Lijie Tang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Li Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Min Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Yanping Jiang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Wen Cui
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Xinyuan Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China.
| |
Collapse
|
13
|
Won G, Kim B, Lee JH. A novel method to generate Salmonella Typhi Ty21a ghosts exploiting the λ phage holin-endolysin system. Oncotarget 2018. [PMID: 28637001 PMCID: PMC5564637 DOI: 10.18632/oncotarget.18383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human typhoid fever caused by Salmonella Typhi still poses a severe global disease burden in developing countries despite the availability of commercial vaccines. In this study, we constructed a non-living S. Typhi Ty21a vaccine candidate by employing a lambda (λ) phage-derived holin-endolysin system to efficiently construct bacterial ghosts. The lysis plasmid pJHL464 harbors an R lysis cassette that is stringently regulated by dual promoters containing cI857/λPR and ParaBAD/araC components. The plasmid was introduced into an asd gene-deleted S. Typhi Ty21a strain designated JOL1675. The in vitro expression of endolysin (~17.76 kDa) in the subsequent JOL1675 vaccine construct when grown under lysis inducible conditions was validated by immunoblotting. In scanning electron microscopy analysis, surface transmembrane tunnels and a collapsed body were visualized in the ghosts. Following 48 h of lysis, no viable JOL1675 cells remained, indicating that lysis of all cells was achieved. Subcutaneous immunizations of mice with the JOL1675 ghosts produced significantly increasing titers of serum IgG and vaginal wash secretory IgA antibodies against JOL1675 outer membrane proteins during the observational period. Further, serum collected at 6 weeks post-immunization of rabbits exhibited effective bactericidal activity against wild type S. Typhi in the presence of complement. These data showed that JOL1675 ghosts are highly immunogenic and elicit humoral and mucosal responses expected to correlate with protective immunity against S. typhi. Collectively, our findings support the conclusion that incorporating a λ phage holin-endolysin-mediated lysis construct into S. Typhi is an efficient strategy for developing a novel and safe non-living typhoid vaccine candidate.
Collapse
Affiliation(s)
- Gayeon Won
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Iksan, Republic of Korea
| | - Boram Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Iksan, Republic of Korea
| |
Collapse
|
14
|
Cao J, Zhang J, Ma L, Li L, Zhang W, Li J. Identification of fish source Vibrio alginolyticus and evaluation of its bacterial ghosts vaccine immune effects. Microbiologyopen 2018; 7:e00576. [PMID: 29349911 PMCID: PMC6011932 DOI: 10.1002/mbo3.576] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 12/27/2022] Open
Abstract
Vibrio alginolyticus (V. alginolyticus) is a common pathogen for humans and marine aquatic animals. Vibriosis of marine aquatic animals, caused by V. alginolyticus, has become more prevalent globally in recent years. Hence, a safe and effective vaccine is urgently needed for the control of this disease. Here, the strain 16‐3 isolated from the large yellow croaker (Larimichthys crocea) suffered from canker was identified as V. alginolyticus based on morphological, biochemical, and 16S rDNA sequencing analysis. Then, recombinant temperature‐controlled lysis plasmid pBV220‐lysisE was electroporated into the strain 16‐3 to generate V. alginolyticus bacterial ghosts (VaBGs) by inducing lysis gene E expression, and the safety and immune effects of VaBGs were further investigated in mice and large yellow croaker. The results showed that VaBGs were as safe as formalin‐killed V. alginolyticus cells (FKC) to mice and fish. Compared with FKC and PBS groups, significant elevations of the serum agglutinating antibody titer, serum bactericidal activity, lymphocyte proliferative responses, and levels of four different cytokines (Th1 type: IL‐2, TNF‐α; Th2 type: IL‐4 and IL‐6) in serum were detected in the VaBGs group, indicating that a Th1/Th2‐mediated mixed immune response was elicited by the VaBGs. More importantly, after challenged with the parent strain 16‐3, VaBGs‐vaccinated mice and fish showed higher protection than FKC‐vaccinated mice, the relative percent of survival (RPS) being 60%, 66.7% and 40%, respectively. Taken together, this is the first demonstration that the newly constructed V. alginolyticus ghosts may be developed as a safe and effective vaccine against V. alginolyticus infection in aquaculture.
Collapse
Affiliation(s)
- Ji Cao
- Key Laboratory of Zoonoses, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jiajun Zhang
- Key Laboratory of Zoonoses, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lin Ma
- Key Laboratory of Zoonoses, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lin Li
- Key Laboratory of Zoonoses, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wenchang Zhang
- Key Laboratory of Zoonoses, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jinnian Li
- Key Laboratory of Zoonoses, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
15
|
Moon JY, Kim SY, Kim WK, Rao Z, Park JH, Mun JY, Kim B, Choi HS, Hur J. Protective efficacy of a Salmonella Typhimurium ghost vaccine candidate constructed with a recombinant lysozyme-PMAP36 fusion protein in a murine model. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2017; 81:297-303. [PMID: 29081588 PMCID: PMC5644453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
A Salmonella Typhimurium ghost vaccine was constructed with the use of a recombinant fusion protein consisting of lysozyme and porcine myeloid antimicrobial peptide 36 expressed by the Escherichia coli overexpression system. After confirmation of its effectiveness by transmission electron microscopy the vaccine was evaluated in a murine model. Of the 60 BALB/c mice equally divided into 4 groups, group A mice were intramuscularly inoculated with 100 μL of sterile phosphate-buffered saline, and the mice in groups B, C, and D were intramuscularly inoculated with approximately 1.0 × 104, 1.0 × 105, or 1.0 × 106 cells of the S. Typhimurium ghost vaccine, respectively, in 100-μL amounts. The serum IgG titers against S. Typhimurium outer membrane proteins were significantly higher in groups B to D than in group A, as were the concentrations of interleukin-10 and interferon gamma in supernatants of harvested splenocytes. After challenge with wild-type S. Typhimurium, all the vaccinated groups showed significant protection compared with group A, notably perfect protection in groups C and D. Overall, these results show that intramuscular vaccination with 1.0 × 105 cells of this ghost vaccine candidate provided efficient protection against systemic infection with virulent S. Typhimurium.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jin Hur
- Address all correspondence to Dr. Jin Hur; telephone: +82-63-850-0959; fax: +82-63-850-0910; e-mail:
| |
Collapse
|
16
|
A Salmonella typhimurium ghost vaccine induces cytokine expression in vitro and immune responses in vivo and protects rats against homologous and heterologous challenges. PLoS One 2017; 12:e0185488. [PMID: 28961267 PMCID: PMC5621678 DOI: 10.1371/journal.pone.0185488] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 09/13/2017] [Indexed: 01/13/2023] Open
Abstract
Salmonella enteritidis and Salmonella typhimurium are important food-borne bacterial pathogens, which are responsible for diarrhea and gastroenteritis in humans and animals. In this study, S. typhimurium bacterial ghost (STG) was generated based on minimum inhibitory concentration (MIC) of sodium hydroxide (NaOH). Experimental studies performed using in vitro and in vivo experimental model systems to characterize effects of STG as a vaccine candidate. When compared with murine macrophages (RAW 264.7) exposed to PBS buffer (98.1%), the macrophages exposed to formalin-killed inactivated cells (FKC), live wild-type bacterial cells and NaOH-induced STG at 1 × 108 CFU/mL showed 85.6%, 66.5% and 84.6% cell viability, respectively. It suggests that STG significantly reduces the cytotoxic effect of wild-type bacterial cells. Furthermore, STG is an excellent inducer for mRNAs of pro-inflammatory cytokine (TNF-α, IL-1β) and factor (iNOS), anti-inflammatory cytokine (IL-10) and dual activities (IL-6) in the stimulated macrophage cells. In vivo, STG vaccine induced humoral and cellular immune responses and protection against homologous and heterologous challenges in rats. Furthermore, the immunogenicity and protective efficacy of STG vaccine were compared with those of FKC and non-vaccinated PBS control groups. The vaccinated rats from STG group exhibited higher levels of serum IgG antibody responses, serum bactericidal antibodies, and CD4+ and CD8+ T-cell populations than those of the FKC and PBS control groups. Most importantly, after challenge with homologous and heterologous strains, the bacterial loads in the STG group were markedly lower than the FKC and PBS control groups. In conclusion, these findings suggest that the STG vaccine induces protective immunity against homologous and heterologous challenges.
Collapse
|
17
|
Abstract
Bacterial ghosts (BG) are empty cell envelopes derived from Gram-negative bacteria. They contain many innate immunostimulatory agonists, and are potent activators of a broad range of cell types involved in innate and adaptive immunity. Several considerable studies have demonstrated the effectiveness of BG as adjuvants as well as their ability to induce proinflammatory cytokine production by a range of immune and non-immune cell types. These proinflammatory cytokines trigger a generalized recruitment of T and B lymphocytes to lymph nodes that maximize the chances of encounter with their cognate antigen, and subsequent elicitation of potent immune responses. The plasticity of BG has allowed for the generation of envelope-bound foreign antigens in immunologically active forms that have proven to be effective vaccines in animal models. Besides their adjuvant property, BG also effectively deliver DNA-encoded antigens to dendritic cells, thereby leading to high transfection efficiencies, which subsequently result in higher gene expressions and improved immunogenicity of DNA-based vaccines. In this review, we summarize our understanding of BG interactions with the host immune system, their exploitation as an adjuvant and a delivery system, and address important areas of future research interest.
Collapse
Affiliation(s)
- Irshad A Hajam
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Pervaiz A Dar
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Gayeon Won
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
18
|
Won G, John Hwa L. Potent immune responses induced by a Salmonella ghost delivery system that expresses the recombinant Stx2eB, FedF, and FedA proteins of the Escherichia coli-producing F18 and Shiga toxin in a murine model and evaluation of its protective effect as a porcine vaccine candidate. Vet Q 2017; 37:81-90. [DOI: 10.1080/01652176.2017.1308040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Gayeon Won
- College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Lee John Hwa
- College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
19
|
Improved lysis efficiency and immunogenicity of Salmonella ghosts mediated by co-expression of λ phage holin-endolysin and ɸX174 gene E. Sci Rep 2017; 7:45139. [PMID: 28332591 PMCID: PMC5362813 DOI: 10.1038/srep45139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/15/2017] [Indexed: 12/19/2022] Open
Abstract
Bacterial ghosts (BGs) are empty cell envelopes derived from Gram-negative bacteria by bacteriophage ɸX174 gene E mediated lysis. They represent a novel inactivated vaccine platform; however, the practical application of BGs for human vaccines seems to be limited due to the safety concerns on the presence of viable cells in BGs. Therefore, to improve the lysis efficiency of the gene E, we exploited the peptidoglycan hydrolyzing ability of the λ phage holin-endolysins to expedite the process of current BG production system. In this report, we constructed a novel ghost plasmid encoding protein E and holin-endolysins in tandem. We observed that sequential expressions of the gene E and the holin-endolysins elicited rapid and highly efficient Salmonella lysis compared to the lysis mediated by gene E only. These lysed BGs displayed improved immunogenicity in mice compared to the gene E mediated BGs. Consequently, seventy percent of the mice immunized with these novel ghosts survived against a lethal challenge while all the mice vaccinated with gene E mediated ghosts died by day 9 post-infection. We conclude that this novel strategy has the potential to generate highly efficient inactivated candidate vaccines that could replace the currently available bacterial vaccines.
Collapse
|
20
|
Won G, Kim TH, Lee JH. A novel Salmonella strain inactivated by a regulated autolysis system and expressing the B subunit of Shiga toxin 2e efficiently elicits immune responses and confers protection against virulent Stx2e-producing Escherichia coli. BMC Vet Res 2017; 13:40. [PMID: 28143511 PMCID: PMC5286835 DOI: 10.1186/s12917-017-0962-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Salmonella Typhimurium (S. Typhimurium) inactivated by a regulated autolysis system was genetically engineered to express the homo-pentameric B subunit of Shiga toxin 2e (Stx2eB) on its surface. To prepare a strain able to yield autolyzed Salmonella bearing Stx2eB, the plasmid pJHL184 harboring stx 2eB gene was transformed into the attenuated S. Typhimurium strain, JOL1454. Stx2eB subcloned into the antigen delivery cassette of the plasmid was expressed as fusion protein with the outer membrane protein RESULTS: The expression of Stx2eB fused to the signal peptide in JOL1454 was validated by immunoblot analysis. To determine the immunogenicity of JOL1454, female BALB/c mice were intramuscularly injected with 1 × 108 CFU of the inactivated cells at weeks 0 and 2. Significantly elevated levels of IgG and IgA specific to Stx2eB was observed at weeks 4 and 6 post-immunization (PI) (P <0.05). Proportion of CD3+CD4+ T lymphocyte subpopulation was also significantly augmented in in vivo stimulated splenocytes relative to that in the control group. The increased titers of IgG1 and IgG2a, and of immunomodulatory cytokines indicated that the immunization elicited Th1 and Th2 immune responses. Further, immunomodulatory cytokine genes (IL-6, IL-17A, IL21 and JOL1454) efficiently upregulated in naïve porcine peripheral blood mononuclear cells (PBMCs) pulsed with JOL1454. At week 6 PI, following the challenge with a virulent Stx2e-producing Escherichia coli in the mice, all immunized mice survived whereas approximately 30% of the mice in the control group died. CONCLUSIONS JOL1454 provided superior immunogenicity and effective protection against challenge with a sublethal dose, which demonstrates its potential as a candidate vaccine against edema disease.
Collapse
Affiliation(s)
- Gayeon Won
- College of Veterinary Medicine, Chonbuk National University, Iksan campus, Gobong-ro 79, Iksan, 54596, Republic of Korea
| | - Tae Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan campus, Gobong-ro 79, Iksan, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan campus, Gobong-ro 79, Iksan, 54596, Republic of Korea.
| |
Collapse
|
21
|
Kamble NM, Lee JH. Homologous prime-boost immunization with live attenuated Salmonella enterica serovar Senftenberg and its preventive efficacy against experimental challenge with various strains of S. Senftenberg. BMC Vet Res 2017; 13:39. [PMID: 28143524 PMCID: PMC5282702 DOI: 10.1186/s12917-017-0960-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/21/2017] [Indexed: 12/03/2022] Open
Abstract
Background The heterogeneity observed regarding persistence, and subsequent fecal shedding pattern of the Salmonella Senftenberg (S. Senftenberg) serovar in chicken’s calls for development of the optimized immunization strategy which can provide protection against various S. Senftenberg isolated. Optimization of an immunization strategy with a live attenuated S. Senftenberg (Δlon and ΔcpxR) vaccine candidate (JOL1587) was undertaken in this study to evaluate the ability of a homologous prime-boost immunization strategy (using JOL1587) to confer protection against four different S. Senftenberg isolates in chickens. Results After oral immunization with JOL1587, the humoral, mucosal and cell-mediated immune responses were significantly higher in double immunized chickens than in single immunized and control group chickens. A significant increase in the multifunctional cytokine IL-6 and in helper and cytotoxic T cell populations after a booster immunization also indicated the advantage of double over single immunization. The four different S. Senftenberg field isolates were characterized by their persistence levels in chickens, and were subsequently used for challenge experiments to evaluate the differences in protective efficacy conferred by single and double immunization. Chickens from the doubleimmunized group exhibited significant reduction in the shedding of all four wild-type S. Senftenberg challenge strains below the detection limit in the fecal samples. Single immunized chickens showed a decrease in fecal shedding, but failed to exhibit complete protection against all the challenge strains. Conclusion Although single immunization with JOL1587 showed a reduction in the fecal shedding of challenge strains, only the homologous prime-boost immunization strategy provided an adequate immune response for increased protection against all four challenge strains of S. Senftenberg from the feces of chickens.
Collapse
Affiliation(s)
- Nitin M Kamble
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan Campus, 570-752, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan Campus, 570-752, Republic of Korea.
| |
Collapse
|
22
|
Won G, Lee JH. Multifaceted immune responses and protective efficacy elicited by a recombinant autolyzed Salmonella expressing FliC flagellar antigen of F18+ Escherichia coli. Vaccine 2016; 34:6335-6342. [DOI: 10.1016/j.vaccine.2016.10.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 12/20/2022]
|
23
|
Kwon AJ, Moon JY, Kim WK, Kim S, Hur J. Protection efficacy of the Brucella abortus ghost vaccine candidate lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36) in murine models. J Vet Med Sci 2016; 78:1541-1548. [PMID: 27349900 PMCID: PMC5095622 DOI: 10.1292/jvms.16-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brucella abortus cells were lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid
antimicrobial peptide 36). Next, the protection efficacy of the lysed fragment as a vaccine candidate was evaluated. Group A mice were immunized with sterile
PBS, group B mice were intraperitoneally (ip) immunized with 3 × 108 colony-forming units (CFUs) of B. abortus strain RB51, group C
mice were immunized ip with 3 × 108 cells of the B. abortus vaccine candidate, and group D mice were orally immunized with 3 ×
109 cells of the B. abortus vaccine candidate. Brucella lipopolysaccharide (LPS)-specific serum IgG titers were
considerably higher in groups C and D than in group A. The levels of interleukin (IL)-4, IL-10, tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ)
were significantly higher in groups B–D than in group A. After an ip challenge with B. abortus 544, only group C mice showed a significant
level of protection as compared to group A. Overall, these results show that ip immunization with a vaccine candidate lysed by GI24 can effectively protect mice
from systemic infection with virulent B. abortus.
Collapse
Affiliation(s)
- Ae Jeong Kwon
- Veterinary Public Health, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
Kamble N, Jawale C, Lee J. Activation of chicken bone marrow-derived dendritic cells induced by a Salmonella Enteritidis ghost vaccine candidate. Poult Sci 2016; 95:2274-80. [DOI: 10.3382/ps/pew158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/13/2016] [Indexed: 01/17/2023] Open
|
25
|
Won G, Chaudhari AA, Lee JH. Protective efficacy and immune responses by homologous prime-booster immunizations of a novel inactivated Salmonella Gallinarum vaccine candidate. Clin Exp Vaccine Res 2016; 5:148-58. [PMID: 27489805 PMCID: PMC4969279 DOI: 10.7774/cevr.2016.5.2.148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/22/2016] [Accepted: 06/30/2016] [Indexed: 11/17/2022] Open
Abstract
Purpose Salmonella enterica serovar Gallinarum (SG) ghost vaccine candidate was recently constructed. In this study, we evaluated various prime-boost vaccination strategies using the candidate strain to optimize immunity and protection efficacy against fowl typhoid. Materials and Methods The chickens were divided into five groups designated as group A (non-immunized control), group B (orally primed and boosted), group C (primed orally and boosted intramuscularly), group D (primed and boosted intramuscularly), and group E (primed intramuscularly and boosted orally). The chickens were primed with the SG ghost at 7 days of age and were subsequently boosted at the fifth week of age. Post-immunization, the plasma IgG and intestinal secretory IgA (sIgA) levels, and the SG antigen-specific lymphocyte stimulation were monitored at weekly interval and the birds were subsequently challenged with a virulent SG strain at the third week post-second immunization. Results Chickens in group D showed an optimized protection with significantly increased plasma IgG, sIgA, and lymphocyte stimulation response compared to all groups. The presence of CD4+ and CD8+ T cells and monocyte/macrophage (M/M) in the spleen, and splenic expression of cytokines such as interferon γ (IFN-γ) and interleukin 6 (IL-6) in the immunized chickens were investigated. The prime immunization induced significantly higher splenic M/M population and mRNA levels of IFN-γ whereas the booster showed increases of splenic CD4+ and CD8+ T-cell population and IL-6 cytokine in mRNA levels. Conclusion Our results indicate that the prime immunization with the SG ghost vaccine induced Th1 type immune response and the booster elicited both Th1- and Th2-related immune responses.
Collapse
Affiliation(s)
- Gayeon Won
- College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Atul A Chaudhari
- College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| |
Collapse
|
26
|
Wang C, Peng B, Li H, Peng XX. TolC plays a crucial role in immune protection conferred by Edwardsiella tarda whole-cell vaccines. Sci Rep 2016; 6:29488. [PMID: 27406266 PMCID: PMC4942608 DOI: 10.1038/srep29488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/21/2016] [Indexed: 12/26/2022] Open
Abstract
Although vaccines developed from live organisms have better efficacy than those developed from dead organisms, the mechanisms underlying this differential efficacy remain unexplored. In this study, we combined sub-immunoproteomics with immune challenge to investigate the action of the outer membrane proteome in the immune protection conferred by four Edwardsiella tarda whole-cell vaccines prepared via different treatments and to identify protective immunogens that play a key role in this immune protection. Thirteen spots representing five outer membrane proteins and one cytoplasmic protein were identified, and it was found that their abundance was altered in relation with the immune protective abilities of the four vaccines. Among these proteins, TolC and OmpA were found to be the key immunogens conferring the first and second highest degrees of protection, respectively. TolC was detected in the two effective vaccines (live and inactivated-30-F). The total antiserum and anti-OmpA titers were higher for the two effective vaccines than for the two ineffective vaccines (inactivated-80-F and inactivated-100). Further evidence demonstrated that the live and inactivated-30-F vaccines demonstrated stronger abilities to induce CD8+ and CD4+ T cell differentiation than the other two evaluated vaccines. Our results indicate that the outer membrane proteome changes dramatically following different treatments, which contributes to the effectiveness of whole-cell vaccines.
Collapse
Affiliation(s)
- Chao Wang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China.,Freshwater fisheries Academy of Shandong province, Jinan 250117, People's Republic of China
| | - Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| |
Collapse
|
27
|
Guo R, Geng S, Jiao H, Pan Z, Chen X, Jiao X. Evaluation of protective efficacy of a novel inactivated Salmonella Pullorum ghost vaccine against virulent challenge in chickens. Vet Immunol Immunopathol 2016; 173:27-33. [PMID: 27090623 DOI: 10.1016/j.vetimm.2016.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/18/2016] [Accepted: 03/25/2016] [Indexed: 12/14/2022]
Abstract
Salmonella Gallinarum biovar Pullorum is the causative agent of pullorum disease in poultry, an acute systemic disease that results in a high mortality rate in young chickens. Vaccines have been considered in many developing countries where levels of infection are high and eradication is not a realistic option. An attenuated strain combined with protein E-mediated cell lysis was used to generate a safety enhanced Salmonella Pullorum ghost vaccine. Immune responses and protection induced by ghost vaccine in chickens were investigated following a prime-boost immunization administered via intramuscular and oral routes. Chickens from vaccinated groups showed significant increases in antigen-specific IgG, especially after booster immunization. Lymphocyte proliferation responses were also significantly increased in all immunized groups at 2-weeks post-final vaccination. The Salmonella Pullorum ghost vaccine provided satisfactory protection against virulent Salmonella Pullorum infection, as shown by the robust stimulation of both humoral and cell-mediated immune responses as well as the reduction in the number of bacterial recovered post-challenge. Moreover, the immune effects and survival rates indicated intramuscular injection is more efficient than oral vaccination. In conclusion, our results suggest that Salmonella Pullorum ghosts may be used as a safe and effective novel inactivated vaccine candidate to protect against virulent Salmonella Pullorum infection.
Collapse
Affiliation(s)
- Rongxian Guo
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shizhong Geng
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hongmei Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
28
|
Kim CS, Hur J, Eo SK, Park SY, Lee JH. Generation of Salmonella ghost cells expressing fimbrial antigens of enterotoxigenic Escherichia coli and evaluation of their antigenicity in a murine model. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2016; 80:40-48. [PMID: 26733731 PMCID: PMC4686033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/26/2015] [Indexed: 06/05/2023]
Abstract
Salmonella Typhimurium ghost cells expressing K88ab, K88ac, K99, and FasA fimbriae of enterotoxigenic Escherichia coli (ETEC) in their envelopes were constructed. The genes encoding the fimbriae were individually cloned into an expression plasmid, pMMP81, carrying the asd gene, which was subsequently electroporated into the Δasd S. Typhimurium mutant. Plasmid pJHLP99, carrying the phiX174 lysis gene E, was also subsequently electroporated into the Salmonella mutant. The presence of the individual fimbriae on the ghost cells was examined by Western blot analysis. Forty BALB/c mice were equally divided into 2 groups of 20 mice each. Group A mice were intramuscularly vaccinated with a mixture of the 4 ghost cells expressing the individual fimbriae. The group B mice were inoculated with sterile phosphate-buffered saline as a control. The antigen-specific serum IgG concentrations were significantly higher in group A than in group B from week 2 until week 6 after inoculation. In addition, the antigen-specific IgA concentrations in fecal samples were significantly higher in group A than in group B at week 2 after inoculation. A large difference between the groups in the number of antigen-specific IgA-secreting cells in the small intestine was observed by immunohistochemical study. Also, the splenic lymphocyte proliferative responses were significantly greater in group A than in the control mice. These results suggest that vaccination with our Salmonella ghost cells can induce both humoral and cell-mediated immune responses and that the increased number of antigen-specific IgA-secreting cells in the small intestine may be correlated with the elevated fecal IgA immune response.
Collapse
Affiliation(s)
| | | | | | | | - John Hwa Lee
- Address all correspondence to Dr. John Hwa Lee; telephone: +82-63-850-0940; fax: +82-63-850-0910; e-mail:
| |
Collapse
|
29
|
Jawale CV, Pawar PS, Eo SK, Park SY, Lee JH. Utilization of a Modified Phage E Protein Lysis System Accounts for Increased Biomass in Salmonella Gallinarum Ghosts. Avian Dis 2015; 59:269-76. [PMID: 26473678 DOI: 10.1637/10977-111114-regr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A major limiting issue of bacterial ghost technology involves the stable maintenance of Phix174 lysis gene E expression. Unwanted leaky expression of gene E in the absence of induction temperature results in reduced biomass production of host bacterium, consequently leading to the lower yield of bacterial ghost. To mitigate the leaky expression status of lysis gene E, we utilized a novel E-lysis system in which gene E is located between sense λpR promoter with a CI857 regulator and antisense ParaBAD promoter with the AraC regulator. In the presence of L-arabinose at 28 C, unwanted transcription of lysis gene E from λpR promoter is repressed by a simultaneous transcription event from ParaBAD promoter by means of anti-sense RNA-mediated inhibition. Tight repression of lysis gene E in the absence of induction temperature resulted in higher bacterial cell number in culture suspension and, consequently, higher production of Salmonella Gallinarum (SG) ghost biomass. The safety and protective efficacy of the SG ghost vaccine were further examined in chickens. All of the immunized chickens showed significantly higher mucosal and systemic antibody responses accompanied by a potent antigen-specific lymphocyte proliferative response. Vaccination of chickens with SG ghost preparation offered efficient protection against wild-type SG challenge.
Collapse
Affiliation(s)
- Chetan V Jawale
- College of Veterinary Medicine, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | | | | | | | | |
Collapse
|
30
|
Hajam IA, Dar PA, Appavoo E, Kishore S, Bhanuprakash V, Ganesh K. Bacterial Ghosts of Escherichia coli Drive Efficient Maturation of Bovine Monocyte-Derived Dendritic Cells. PLoS One 2015; 10:e0144397. [PMID: 26669936 PMCID: PMC4684396 DOI: 10.1371/journal.pone.0144397] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/17/2015] [Indexed: 01/28/2023] Open
Abstract
Bacterial ghosts (BGs) are empty cell envelopes derived from Gram-negative bacteria. They not only represent a potential platform for development of novel vaccines but also provide a tool for efficient adjuvant and antigen delivery system. In the present study, we investigated the interaction between BGs of Escherichia coli (E. coli) and bovine monocyte-derived dendritic cells (MoDCs). MoDCs are highly potent antigen-presenting cells and have the potential to act as a powerful tool for manipulating the immune system. We generated bovine MoDCs in vitro from blood monocytes using E. coli expressed bovine GM-CSF and IL-4 cytokines. These MoDCs displayed typical morphology and functions similar to DCs. We further investigated the E. coli BGs to induce maturation of bovine MoDCs in comparison to E. coli lipopolysaccharide (LPS). We observed the maturation marker molecules such as MHC-II, CD80 and CD86 were induced early and at higher levels in BG stimulated MoDCs as compared to the LPS stimulated MoDCs. BG mediated stimulation induced significantly higher levels of cytokine expression in bovine MoDCs than LPS. Both pro-inflammatory (IL-12 and TNF-α) and anti-inflammatory (IL-10) cytokines were induced in MoDCs after BGs stimulation. We further analysed the effects of BGs on the bovine MoDCs in an allogenic mixed lymphocyte reaction (MLR). We found the BG-treated bovine MoDCs had significantly (p<0.05) higher capacity to stimulate allogenic T cell proliferation in MLR as compared to the LPS. Taken together, these findings demonstrate the E. coli BGs induce a strong activation and maturation of bovine MoDCs.
Collapse
Affiliation(s)
- Irshad Ahmed Hajam
- FMD Research Center, Indian Veterinary Research Institute, Bangalore, India
| | - Pervaiz Ahmad Dar
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Srinagar, India
- * E-mail: (PAD); (KG)
| | - Elamurugan Appavoo
- FMD Research Center, Indian Veterinary Research Institute, Bangalore, India
| | - Subodh Kishore
- FMD Research Center, Indian Veterinary Research Institute, Bangalore, India
| | | | - Kondabattula Ganesh
- FMD Research Center, Indian Veterinary Research Institute, Bangalore, India
- * E-mail: (PAD); (KG)
| |
Collapse
|
31
|
Montanaro J, Inic-Kanada A, Ladurner A, Stein E, Belij S, Bintner N, Schlacher S, Schuerer N, Mayr UB, Lubitz W, Leisch N, Barisani-Asenbauer T. Escherichia coli Nissle 1917 bacterial ghosts retain crucial surface properties and express chlamydial antigen: an imaging study of a delivery system for the ocular surface. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3741-54. [PMID: 26229437 PMCID: PMC4516183 DOI: 10.2147/dddt.s84370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To target chronic inflammatory ocular surface diseases, a drug delivery platform is needed that is safe, possesses immunomodulatory properties, and can be used either for drug delivery, or as a foreign antigen carrier. A new therapeutic approach that we have previously proposed uses nonliving bacterial ghosts (BGs) as a carrier-delivery system which can be engineered to carry foreign antigens and/or be loaded with therapeutic drugs. The parent strain chosen for development of our BG delivery system is the probiotic Escherichia coli strain Nissle 1917 (EcN), whose intrinsic properties trigger the innate immune system with the flagella and fimbriae used to attach and stimulate epithelial cells. In previous studies, we have shown that EcN BGs are safe for the ocular surface route, but evidence that EcN BGs retain flagella and fimbriae after transformation, has never been visually confirmed. In this study, we used different visualization techniques to determine whether flagella and fimbriae are retained on EcN BGs engineered either for drug delivery or as a foreign antigen carrier. We have also shown by immunoelectron microscopy that EcN retains two foreign antigens after processing to become EcN BGs. Furthermore, we demonstrated that BGs derived from EcN and expressing a foreign antigen attachment to conjunctival epithelial cells in vitro without causing reduced cell viability. These results are an important step in constructing a delivery system based on a nonliving probiotic that is suitable for use in ocular surface diseases pairing immunomodulation and targeted delivery.
Collapse
Affiliation(s)
- Jacqueline Montanaro
- Laura Bassi Centres of Expertise, OCUVAC - Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Aleksandra Inic-Kanada
- Laura Bassi Centres of Expertise, OCUVAC - Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Angela Ladurner
- Laura Bassi Centres of Expertise, OCUVAC - Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Stein
- Laura Bassi Centres of Expertise, OCUVAC - Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sandra Belij
- Laura Bassi Centres of Expertise, OCUVAC - Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nora Bintner
- Laura Bassi Centres of Expertise, OCUVAC - Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Simone Schlacher
- Laura Bassi Centres of Expertise, OCUVAC - Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nadine Schuerer
- Laura Bassi Centres of Expertise, OCUVAC - Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | - Nikolaus Leisch
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Talin Barisani-Asenbauer
- Laura Bassi Centres of Expertise, OCUVAC - Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Jawale CV, Lee JH. A novel approach for the generation of Salmonella Gallinarum ghosts and evaluation of their vaccine potential using a prime-booster immunization strategy. Vaccine 2014; 32:6776-82. [DOI: 10.1016/j.vaccine.2014.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
|
33
|
Tian EJ, Zhou BH, Wang XY, Zhao J, Deng W, Wang HW. Effect of diclazuril on intestinal morphology and SIgA expression in chicken infected with Eimeria tenella. Parasitol Res 2014; 113:4057-64. [PMID: 25154426 DOI: 10.1007/s00436-014-4074-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/05/2014] [Indexed: 12/14/2022]
Abstract
Secretory immunoglobulin A (SIgA), as a vital actor involving in the mucosal immunity, plays a key role in defending a variety of pathogenic infections, such as bacteria, viruses and parasites. Eimeria tenella is an obligate intracellular apicomplexan parasite contacting with the digestive tract mucosa and specially parasitizes chicken caecum, causing a severe form of coccidiosis. Coccidiosis is currently mainly controlled using chemotherapeutic agents. Diclazuril, a classic coccidiostat, was used widely in the poultry industry. Because of the rising problem of drug resistance, it is therefore crucial to understand the pattern of the SIgA expression in the action of diclazuril against E. tenella. In this study, the intestinal morphology in the caecum was analyzed by haematoxylin-eosin (HE) staining, and the SIgA expression was examined by immunohistochemical technique. At the same time, the duodenum, jejunum and ileum tissues have also been evaluated. HE staining results showed that E. tenella infection caused severe damage characterized by structural disorder, haemorrhage, inflammatory cell infiltration, serous and fibrinous exudation in chicken caecum and invisible damage in the duodenum, jejunum and ileum. With the treatment of diclazuril, the damage in the caecum was alleviated obviously. Immunohistochemical analysis demonstrated that the SIgA level in the infected group was increased in the duodenum (p < 0.05), jejunum and ileum, respectively, but decreased (p < 0.01) in the caecum, compared with the control group. Interestingly, the SIgA level was decreased in the duodenum (p < 0.05), jejunum and ileum but increased (p < 0.05) in the caecum in the infected/diclazuril group in comparison to the infected group. The results showed that diclazuril effectively alleviated the damage in the caecum induced by E. tenella and provided a cure for coccidiosis by improving the immune function in chickens.
Collapse
Affiliation(s)
- Er-jie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Tianjin Road 70, Luoyang, Henan, 471003, People's Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
Chaudhari AA, Kariyawasam S. An experimental infection model for Escherichia coli egg peritonitis in layer chickens. Avian Dis 2014; 58:25-33. [PMID: 24758109 DOI: 10.1637/10536-032213-reg.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The present study describes an experimental infection model for avian pathogenic Escherichia coli (APEC)-induced egg peritonitis in layer chickens. First, a pilot study which consisted of two separate experiments was carried out to compare two routes of inoculations of APEC to induce peritonitis and to examine if the presence of egg yolk in the peritoneum would facilitate APEC-induced peritonitis. This study showed that the presence of egg yolk in the peritoneum facilitated the development of egg peritonitis when the APEC was inoculated via the intra-uterine (IU) route. Based on the results of the pilot study, 56-wk-old white leghorn hens were divided into two groups of five chickens, Group G (inoculated with E. coli APECO78 strain) and Group H (control). Both groups were inoculated with 2-3 ml of egg yolk via the intraperitoneal route (IP). Subsequently, hens in Group H were inoculated with only egg yolk whereas the hens in Group G were inoculated with 1 x 10(9) colony-forming units of APECO78 bacteria via the IU route. Parameters such as mortality, clinical signs (anorexia, depression, and egg production efficiency), gross lesion scores, bacterial loads in internal organs, and histopathology of ovary and oviduct were assessed to evaluate the success of the infection model. Group G showed 40% acute mortality, severe depression, and anorexia with markedly reduced egg production and developed peritonitis-associated lesions such as accumulation of yellowish caseous fluid in the peritoneum, salpingitis, and oophoritis. Histopathologically, ovarian and oviduct tissues from group G exhibited severe inflammatory changes such as infiltration of mononuclear cells and edema. Group G also showed significant bacterial loads in the peritoneum, ovary, and oviduct. Interestingly, deceased birds from group G had also developed mild perihepatitis and pericarditis with heavy bacterial loads in the internal organs. On the other hand, group H birds did not exhibit any of the clinical signs and remained healthy until the end of the experiment. To summarize, our results demonstrate that IP administration of egg yolk followed by IU inoculation of APECO78 induced peritonitis in laying hens. Experimental infection models are often required to understand the mechanisms of disease pathogenesis. Therefore, the present infection model will aid in the studies of pathogenesis of layer peritonitis caused by APEC and in evaluating vaccine candidates to control the disease.
Collapse
|
35
|
Vinod N, Oh S, Kim S, Choi CW, Kim SC, Jung CH. Chemically induced Salmonella enteritidis ghosts as a novel vaccine candidate against virulent challenge in a rat model. Vaccine 2014; 32:3249-55. [DOI: 10.1016/j.vaccine.2014.03.090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/25/2014] [Accepted: 03/26/2014] [Indexed: 01/01/2023]
|
36
|
Characterization of adaptive immune responses induced by a new genetically inactivated Salmonella Enteritidis vaccine. Comp Immunol Microbiol Infect Dis 2014; 37:159-67. [DOI: 10.1016/j.cimid.2014.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/28/2014] [Accepted: 05/07/2014] [Indexed: 01/20/2023]
|
37
|
Salmonella enterica serovar enteritidis ghosts carrying the Escherichia coli heat-labile enterotoxin B subunit are capable of inducing enhanced protective immune responses. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:799-807. [PMID: 24671556 DOI: 10.1128/cvi.00016-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Escherichia coli heat-labile enterotoxin B subunit (LTB) is a potent vaccine adjuvant. Salmonella enterica serovar Enteritidis ghosts carrying LTB (S. Enteritidis-LTB ghosts) were genetically constructed using a novel plasmid, pJHL187-LTB, designed for the coexpression of the LTB and E lysis proteins. S. Enteritidis-LTB ghosts were characterized using scanning electron microscopy to visualize their transmembrane tunnel structures. The expression of LTB in S. Enteritidis-LTB ghost preparations was confirmed by immunoblot and enzyme-linked immunosorbent assays. The parenteral adjuvant activity of LTB was demonstrated by immunizing chickens with either S. Enteritidis-LTB ghosts or S. Enteritidis ghosts. Chickens were intramuscularly primed at 5 weeks of age and subsequently boosted at 8 weeks of age. In total, 60 chickens were equally divided into three groups (n = 20 for each): group A, nonvaccinated control; group B, immunized with S. Enteritidis-LTB ghosts; and group C, immunized with S. Enteritidis ghosts. Compared with the nonimmunized chickens (group A), the immunized chickens (groups B and C) exhibited increased titers of plasma IgG and intestinal secretory IgA antibodies. The CD3(+) CD4(+) subpopulation of T cells was also significantly increased in both immunized groups. Among the immunized chickens, those in group B exhibited significantly increased titers of specific plasma IgG and intestinal secretory IgA (sIgA) antibodies compared with those in group C, indicating the immunomodulatory effects of the LTB adjuvant. Furthermore, both immunized groups exhibited decreased bacterial loads in their feces and internal organs. These results indicate that parenteral immunization with S. Enteritidis-LTB ghosts can stimulate superior induction of systemic and mucosal immune responses compared to immunization with S. Enteritidis ghosts alone, thus conferring efficient protection against salmonellosis.
Collapse
|
38
|
Jawale CV, Kim SW, Lee JH. Tightly regulated bacteriolysis for production of empty Salmonella Enteritidis envelope. Vet Microbiol 2014; 169:179-87. [DOI: 10.1016/j.vetmic.2014.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/04/2014] [Accepted: 01/08/2014] [Indexed: 01/03/2023]
|
39
|
Generation of a safety enhanced Salmonella Gallinarum ghost using antibiotic resistance free plasmid and its potential as an effective inactivated vaccine candidate against fowl typhoid. Vaccine 2014; 32:1093-9. [PMID: 24406393 DOI: 10.1016/j.vaccine.2013.12.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 12/10/2013] [Accepted: 12/18/2013] [Indexed: 02/07/2023]
Abstract
A safety enhanced Salmonella Gallinarum (SG) ghost was constructed using an antibiotic resistance gene free plasmid and evaluated its potential as fowl typhoid (FT) vaccine candidate. The antibiotic resistance free pYA3342 plasmid possesses aspartate semialdehyde dehydrogenase gene which is complimentary to the deletion of the chromosomal asd gene in the bacterial host. This plasmid was incorporated with a ghost cassette containing the bacteriophage PhiX174 lysis gene E, designated as pJHL101. The plasmid pJHL101 was transformed into a two virulence genes-deleted SG. The SG ghosts with tunnel formation and loss of cytoplasmic contents were observed by scanning electron microscopy and transmission electron microscopy. The cell viability of the culture solution was decreased to 0% at 24h after the induction of gene E expression by an increase in temperature from 37°C to 42°C. The safety and protective efficacy of the SG ghost vaccine was further examined in chickens which were divided into three groups: group A (non-immunized control), group B (orally immunized), and group C (intramuscularly immunized). The birds were immunized at 7d of age. No clinical symptoms associated with FT such as anorexia, depression and greenish diarrhea were observed in the immunized chickens. Upon challenge with a virulent SG strain at 3 week post-immunization, the chickens immunized with the SG ghost via various routes were efficiently protected, as shown by significantly lower mortality and post-mortem lesions in comparison with control group. In addition, all the immunized chickens showed significantly higher antibody responses accompanied by a potent antigen-specific lymphocyte proliferative response along with significantly increased numbers of CD4⁺ and CD8⁺ T lymphocytes. Overall, our results provide a promising approach of generating SG ghosts using the antibiotic resistance free plasmid in order to prepare a non-living bacterial vaccine candidate which could be environmentally safe yet efficient to prevent FT in chickens.
Collapse
|
40
|
Jawale CV, Lee JH. Development of a biosafety enhanced and immunogenic Salmonella enteritidis ghost using an antibiotic resistance gene free plasmid carrying a bacteriophage lysis system. PLoS One 2013; 8:e78193. [PMID: 24205152 PMCID: PMC3799721 DOI: 10.1371/journal.pone.0078193] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/09/2013] [Indexed: 12/16/2022] Open
Abstract
In the development of genetically inactivated bacterial vaccines, plasmid retention often requires the antibiotic resistance gene markers, the presence of which can cause the potential biosafety hazards such as the horizontal spread of resistance genes. The new lysis plasmid was constructed by utilizing the approach of balanced-lethal systems based on auxotrophic gene Aspartate semialdehyde dehydrogenase (asd). The PhiX174 lysis gene E and λPR37-cI857 temperature-sensitive regulatory system was cloned in the asd gene positive plasmid and this novel approach allowed the production of antibiotic resistance marker free Salmonella Enteritidis (S. Enteritidis) ghost. The immunogenic potential of the biosafety enhanced antibiotic resistance gene free S. Enteritidis ghost was evaluated in chickens by employing the prime-boost vaccination strategy using a combination of oral and intramuscular routes. A total of 75 two-week-old chickens were equally divided into five groups: group A (non-immunized control), group B (intramuscularly primed and boosted), group C (primed intramuscularly and boosted orally), group D (primed and boosted orally), and group E (primed orally and boosted intramuscularly). Chickens from all immunized groups demonstrated significant increases in plasma IgG, intestinal secretory IgA levels, and antigen-specific lymphocyte proliferative response. After a virulent S. Enteritidis challenge, all immunized groups showed fewer gross lesions and decreased bacterial recovery from organs in comparison with the non-immunized control group. Among the immunized chickens, groups B and D chickens showed optimized protection, indicating that the prime-booster immunization with the ghost via intramuscular or oral route is efficient. Taken together, our results demonstrate that an antibiotic resistance gene free lysis plasmid was successfully constructed and utilized for production of safety enhanced S. Enteritidis ghost, which can be used as a safe and effective vaccine against virulent S. Enteritidis infections.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/genetics
- Antibodies, Bacterial/immunology
- Antibody Formation/immunology
- Bacterial Vaccines/genetics
- Bacterial Vaccines/immunology
- Bacteriophages/genetics
- Bacteriophages/immunology
- Chickens/immunology
- Chickens/microbiology
- Drug Resistance, Microbial/genetics
- Drug Resistance, Microbial/immunology
- Genes, Bacterial/genetics
- Genes, Bacterial/immunology
- Immunization/methods
- Immunoglobulin A/immunology
- Immunoglobulin G/immunology
- Plasmids/genetics
- Plasmids/immunology
- Poultry Diseases/immunology
- Poultry Diseases/microbiology
- Salmonella Infections, Animal/immunology
- Salmonella Infections, Animal/microbiology
- Salmonella Vaccines/genetics
- Salmonella Vaccines/immunology
- Salmonella enteritidis/genetics
- Salmonella enteritidis/immunology
- Vaccination/methods
- Vaccines, Inactivated/genetics
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Chetan V. Jawale
- College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea
- * E-mail:
| |
Collapse
|