1
|
Câmara RJF, Bueno BL, Resende CF, Balasuriya UBR, Sakamoto SM, dos Reis JKP. Viral Diseases that Affect Donkeys and Mules. Animals (Basel) 2020; 10:ani10122203. [PMID: 33255568 PMCID: PMC7760297 DOI: 10.3390/ani10122203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Donkeys have been neglected and threatened by abandonment, indiscriminate slaughter, and a lack of proper sanitary management. They are often treated as “small horses.” However, donkeys and horses have significant genetic, physiological, and behavioral differences. Specific knowledge about viral infectious diseases that affect donkeys and mules is important to mitigate disease outbreaks. Thus, the purpose of this review is to provide a brief update on viral diseases of donkeys and mules and ways to prevent their spread. Abstract Donkeys (Equus asinus) and mules represent approximately 50% of the entire domestic equine herd in the world and play an essential role in the lives of thousands of people, primarily in developing countries. Despite their importance, donkeys are currently a neglected and threatened species due to abandonment, indiscriminate slaughter, and a lack of proper sanitary management. Specific knowledge about infectious viral diseases that affect this group of Equidae is still limited. In many cases, donkeys and mules are treated like horses, with the physiological differences between these species usually not taken into account. Most infectious diseases that affect the Equidae family are exclusive to the family, and they have a tremendous economic impact on the equine industry. However, some viruses may cross the species barrier and affect humans, representing an imminent risk to public health. Nevertheless, even with such importance, most studies are conducted on horses (Equus caballus), and there is little comparative information on infection in donkeys and mules. Therefore, the objective of this article is to provide a brief update on viruses that affect donkeys and mules, thereby compromising their performance and well-being. These diseases may put them at risk of extinction in some parts of the world due to neglect and the precarious conditions they live in and may ultimately endanger other species’ health and humans.
Collapse
Affiliation(s)
- Rebeca Jéssica Falcão Câmara
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.J.F.C.); (B.L.B.); (C.F.R.)
| | - Bruna Lopes Bueno
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.J.F.C.); (B.L.B.); (C.F.R.)
| | - Cláudia Fideles Resende
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.J.F.C.); (B.L.B.); (C.F.R.)
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, River Rd, Room 1043, Baton Rouge, LA 70803, USA;
| | - Sidnei Miyoshi Sakamoto
- Laboratório Multidisciplinar do Centro de Ciências Biológicas e da Saúde, Departamento de Ciências da Saúde (DCS), Universidade Federal Rural do Semi-Árido, Rio Grande do Norte 59625-900, Brazil;
| | - Jenner Karlisson Pimenta dos Reis
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.J.F.C.); (B.L.B.); (C.F.R.)
- Correspondence: ; Tel.: +55-31-3409-2100
| |
Collapse
|
2
|
Molecular detection, histopathological analysis, and immunohistochemical characterization of equine infectious anemia virus in naturally infected equids. Arch Virol 2020; 165:1333-1342. [PMID: 32266552 DOI: 10.1007/s00705-020-04616-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
Equine infectious anemia (EIA), a disease caused by equine infectious anemia virus (EIAV), is considered an obstacle to the development of the horse industry. There is no treatment or vaccine available for EIA, and its pathogenesis, as well as the immune response against the virus, is not fully understood. Therefore, an immunohistochemistry assay was developed for the detection of viral antigens in tissues of equids naturally infected with EIAV. Sections of organs of six equids from Apodi-RN, Brazil, that tested positive for EIA by serological tests (ELISA and AGID) were fixed in 10% formalin solution and embedded in paraffin. Immunohistochemistry was performed using a polyclonal anti-EIAV antibody. EIAV antigens were observed in red spleen pulp cells and hepatic sinusoids, as well as bronchiolar and alveolar epithelial cells of the lungs and proximal and distal tubules of the kidneys. The presence of EIAV in the spleen and liver was expected due to viral tropism by macrophages, which are abundantly present in these organs. However, EIAV was also found in lung and kidney epithelial cells, indicating that the virus infects cell types other than macrophages. In conclusion, the immunohistochemical assay standardized in this study was able to detect EIAV antigens in spleen, liver, kidney and lung cells from naturally infected EIAV equids. Immunostaining observed in the spleen confirms viral tropism by mononuclear phagocytes; however, the presence of EIAV in lung and kidney epithelial cells indicates that virus may be eliminated in urine and/or oronasal secretions, suggesting new routes for viral excretion.
Collapse
|
3
|
Epidemiologic Status of Equine Viral Arteritis, Equine Infectious Anemia, and Glanders in Jordan. J Equine Vet Sci 2016. [DOI: 10.1016/j.jevs.2016.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Evolution of equine infectious anaemia in naturally infected mules with different serological reactivity patterns prior and after immune suppression. Vet Microbiol 2016; 189:15-23. [PMID: 27259822 DOI: 10.1016/j.vetmic.2016.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 11/21/2022]
Abstract
Information on equine infectious anaemia (EIA) in mules, including those with an equivocal reaction in agar gel immunodiffusion test (AGIDT), is scarce. For this, a study was conducted to evaluate the clinical, viral loads and pathological findings of two groups of naturally infected asymptomatic mules, respectively with a negative/equivocal and positive AGIDT reactivity, which were subjected to pharmacological immune suppression (IS). A non-infected control was included in the study that remained negative during the observation period. Throughout the whole study, even repeated episodes of recrudescence of EIA were observed in 9 infected mules, independently from their AGIDT reactivity. These events were generally characterised by mild, transient alterations, typical of the EIA acute form represented by hyperthermia and thrombocytopenia, in concomitance with viral RNA (vRNA) peaks that were higher in the Post-IS period, reaching values similar to those of horses during the clinical acute phase of EIA. Total tissue viral nucleic acid loads were greatest in animals with the major vRNA activity and in particular in those with negative/equivocal AGIDT reactivity. vRNA replication levels were around 10-1000 times lower than those reported in horses, with the animals still presenting typical alterations of EIA reactivation. Macroscopic lesions were absent in all the infected animals while histological alterations were characterised by lymphomonocyte infiltrates and moderate hemosiderosis in the cytoplasm of macrophages. On the basis of the above results, even mules with an equivocal/negative AGIDT reaction may act as EIAV reservoirs. Moreover, such animals could escape detection due to the low AGIDT sensitivity and therefore contribute to the maintenance and spread of the infection.
Collapse
|
5
|
Liu Q, Ma J, Wang XF, Xiao F, Li LJ, Zhang JE, Lin YZ, Du C, He XJ, Wang X, Zhou JH. Infection with equine infectious anemia virus vaccine strain EIAVDLV121 causes no visible histopathological lesions in target organs in association with restricted viral replication and unique cytokine response. Vet Immunol Immunopathol 2016; 170:30-40. [PMID: 26832985 PMCID: PMC7112881 DOI: 10.1016/j.vetimm.2016.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 11/10/2015] [Accepted: 01/20/2016] [Indexed: 11/06/2022]
Abstract
The live equine infectious anemia virus (EIAV) vaccine strain EIAVDLV121 was developed by in vitro attenuation of a virulent strain, EIAVLN40, in the 1970s, and it has been demonstrated to induce protective immunity under laboratory and natural EIAV infection conditions. The detailed biological features of this attenuated virus remain to be further investigated. Experimental inoculation with EIAVDLV121 did not result in clinical symptoms even with immunosuppressive treatment in our previous studies. Here, we further investigated whether the replication of the vaccine strain EIAVDLV121 in experimentally infected horses causes histopathological lesions to develop in the targeted organs. Both the lungs and the spleen have been demonstrated to support EIAV replication. By evaluating the gross macroscopic and histological changes, we found that EIAVDLV121 did not cause detectable histopathological lesions and that it replicated several hundred times more slowly than its parental virulent strain, EIAVLN40, in tissues. Immunochemical assays of these tissues indicated that the primary target cells of EIAVDLV121 were monocytes/macrophages, but that EIAVLN40 also infected alveolar epithelial cells and vascular endothelial cells. In addition, both of these viral strains promoted the up- and down-regulation of the expression of various cytokines and chemokines, implicating the potential involvement of these cellular factors in the pathological outcomes of EIAV infection and host immune responses. Taken together, these results demonstrate that the EIAV vaccine strain does not cause obvious histopathological lesions or clinical symptoms and that it induces a unique cytokine response profile. These features are considered essential for EIAVDLV121 to function as an effective live vaccine.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jian Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Fei Xiao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Li-Jia Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jiao-Er Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yue-Zhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xi-Jun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China; Harbin Pharmaceutical Group Biovaccine Company, Harbin 150069, China.
| |
Collapse
|
6
|
Cruz F, Fores P, Ireland J, Moreno MA, Newton R. Freedom from equine infectious anaemia virus infection in Spanish Purebred horses. Vet Rec Open 2015; 2:e000074. [PMID: 26392894 PMCID: PMC4567151 DOI: 10.1136/vetreco-2014-000074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/08/2014] [Accepted: 12/15/2014] [Indexed: 11/10/2022] Open
Abstract
Introduction No cases of equine infectious anaemia (EIA) have been reported in Spain since 1983. Factors that could increase the risk of reintroducing equine infectious anaemia virus (EIAV) into Spain include the recent occurrence of the disease in Europe and the absence of compulsory serological testing before importation into Spain. Aims and objectives Given the importance of the Spanish Purebred (SP) horse breeding industry in Spain, the aim of this cross-sectional study was to provide evidence of freedom from EIAV in SP stud farms in Central Spain. Materials and methods Serum samples from 555 SP horses, collected between September 2011 and November 2013, were tested using a commercially available EIAV ELISA with a published sensitivity of 100 per cent. Results All 555 samples were negative for antibody to EIAV, providing evidence of a true EIAV seroprevalence between 0 per cent and 0.53 per cent (95% CIs of the sensitivity and specificity of the ELISA technique used Q10 were 100 per cent and 99.3 per cent, respectively) among the SP breeding population in Central Spain. Conclusions These findings should serve to increase confidence when exporting SP horses to other countries.
Collapse
Affiliation(s)
- Fatima Cruz
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria , Universidad Complutense , Madrid , Spain
| | - Paloma Fores
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria , Universidad Complutense , Madrid , Spain
| | - Joanne Ireland
- Centre for Preventive Medicine, Animal Health Trust , Lanwades Park, Kentford, Newmarket, Suffolk , UK
| | - Miguel A Moreno
- Centro de Vigilancia Sanitaria Veterinaria, Universidad Complutense , Madrid , Spain ; Departamento de Sanidad Animal, Facultad de Veterinaria , Universidad Complutense , Madrid , Spain
| | - Richard Newton
- Centre for Preventive Medicine, Animal Health Trust , Lanwades Park, Kentford, Newmarket, Suffolk , UK
| |
Collapse
|
7
|
Issel CJ, Cook RF, Mealey RH, Horohov DW. Equine infectious anemia in 2014: live with it or eradicate it? Vet Clin North Am Equine Pract 2014; 30:561-77. [PMID: 25441114 DOI: 10.1016/j.cveq.2014.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
In the absence of an effective vaccine, the success of the test and removal approach for the control of equine infectious anemia (EIA) cannot be overstated, at least in those areas where testing has been traditionally routine. This article addresses 4 main aspects: what has been learned about EIA virus, host control of its replication, and inapparent carriers; international status regarding the control of EIA; diagnostic and laboratory investigation; and reducing the spread of blood-borne infections by veterinarians. An attempt is made to put these issues into practical contemporary perspectives for the equine practitioner.
Collapse
Affiliation(s)
- Charles J Issel
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| | - R Frank Cook
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | - Robert H Mealey
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, PO Box 647040, Pullman, WA 99164-7040, USA
| | - David W Horohov
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
8
|
Cook R, Leroux C, Issel C. Equine infectious anemia and equine infectious anemia virus in 2013: A review. Vet Microbiol 2013; 167:181-204. [DOI: 10.1016/j.vetmic.2013.09.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 09/16/2013] [Accepted: 09/21/2013] [Indexed: 10/26/2022]
|