1
|
Cui Y, Wang M, Cheng A, Zhang W, Yang Q, Tian B, Ou X, Huang J, Wu Y, Zhang S, Sun D, He Y, Zhao X, Wu Z, Zhu D, Jia R, Chen S, Liu M. The precise function of alphaherpesvirus tegument proteins and their interactions during the viral life cycle. Front Microbiol 2024; 15:1431672. [PMID: 39015737 PMCID: PMC11250606 DOI: 10.3389/fmicb.2024.1431672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024] Open
Abstract
Alphaherpesvirus is a widespread pathogen that causes diverse diseases in humans and animals and can severely damage host health. Alphaherpesvirus particles comprise a DNA core, capsid, tegument and envelope; the tegument is located between the nuclear capsid and envelope. According to biochemical and proteomic analyses of alphaherpesvirus particles, the tegument contains at least 24 viral proteins and plays an important role in the alphaherpesvirus life cycle. This article reviews the important role of tegument proteins and their interactions during the viral life cycle to provide a reference and inspiration for understanding alphaherpesvirus infection pathogenesis and identifying new antiviral strategies.
Collapse
Affiliation(s)
- Yuxi Cui
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Sinopharm Yangzhou VAC Biological Engineering Co., Ltd., Yangzhou, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Souci L, Denesvre C. Interactions between avian viruses and skin in farm birds. Vet Res 2024; 55:54. [PMID: 38671518 PMCID: PMC11055369 DOI: 10.1186/s13567-024-01310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
This article reviews the avian viruses that infect the skin of domestic farm birds of primary economic importance: chicken, duck, turkey, and goose. Many avian viruses (e.g., poxviruses, herpesviruses, Influenza viruses, retroviruses) leading to pathologies infect the skin and the appendages of these birds. Some of these viruses (e.g., Marek's disease virus, avian influenza viruses) have had and/or still have a devasting impact on the poultry economy. The skin tropism of these viruses is key to the pathology and virus life cycle, in particular for virus entry, shedding, and/or transmission. In addition, for some emergent arboviruses, such as flaviviruses, the skin is often the entry gate of the virus after mosquito bites, whether or not the host develops symptoms (e.g., West Nile virus). Various avian skin models, from primary cells to three-dimensional models, are currently available to better understand virus-skin interactions (such as replication, pathogenesis, cell response, and co-infection). These models may be key to finding solutions to prevent or halt viral infection in poultry.
Collapse
Affiliation(s)
- Laurent Souci
- Laboratoire de Biologie des Virus Aviaires, UMR1282 ISP, INRAE Centre Val-de-Loire, 37380, Nouzilly, France
| | - Caroline Denesvre
- Laboratoire de Biologie des Virus Aviaires, UMR1282 ISP, INRAE Centre Val-de-Loire, 37380, Nouzilly, France.
| |
Collapse
|
3
|
Pasdeloup D, Chuard A, Rémy S, Courvoisier-Guyader K, Denesvre C. The pUL51 Tegument Protein Is Essential for Marek's Disease Virus Growth In Vitro and Bears a Function That Is Critical for Pathogenesis In Vivo. J Virol 2023; 97:e0024223. [PMID: 37154764 PMCID: PMC10231150 DOI: 10.1128/jvi.00242-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023] Open
Abstract
pUL51 is a minor tegument protein important for viral assembly and cell-to-cell spread (CCS) but dispensable for replication in cell culture of all Herpesviruses for which its role has been investigated. Here, we show that pUL51 is essential for the growth of Marek's disease virus, an oncogenic alphaherpesvirus of chickens that is strictly cell-associated in cell culture. MDV pUL51 localized to the Golgi apparatus of infected primary skin fibroblasts, as described for other Herpesviruses. However, the protein was also observed at the surface of lipid droplets in infected chicken keratinocytes, hinting at a possible role of this compartment for viral assembly in the unique cell type involved in MDV shedding in vivo. Deletion of the C-terminal half of pUL51 or fusion of GFP to either the N- or C-terminus were sufficient to disable the protein's essential function(s). However, a virus with a TAP domain fused at the C-terminus of pUL51 was capable of replication in cell culture, albeit with viral spread reduced by 35% and no localization to lipid droplets. In vivo, we observed that although the replication of this virus was moderately impacted, its pathogenesis was strongly impaired. This study describes for the first time the essential role of pUL51 in the biology of a herpesvirus, its association to lipid droplets in a relevant cell type, and its unsuspected role in the pathogenesis of a herpesvirus in its natural host. IMPORTANCE Viruses usually spread from cell to cell through two mechanisms: cell-released virus and/or cell-to-cell spread (CCS). The molecular determinants of CCS and their importance in the biology of viruses during infection of their natural host are unclear. Marek's disease virus (MDV) is a deadly and highly contagious herpesvirus of chickens that produces no cell-free particles in vitro, and therefore, spreads only through CCS in cell culture. Here, we show that viral protein pUL51, an important factor for CCS of Herpesviruses, is essential for MDV growth in vitro. We demonstrate that the fusion of a large tag at the C-terminus of the protein is sufficient to moderately impair viral replication in vivo and almost completely abolish pathogenesis while only slightly reducing viral growth in vitro. This study thus uncovers a role for pUL51 associated with virulence, linked to its C-terminal half, and possibly independent of its essential functions in CCS.
Collapse
Affiliation(s)
- David Pasdeloup
- Laboratory of Biology of Avian Viruses, INRAE-Université de Tours, Nouzilly, France
| | - Aurélien Chuard
- Laboratory of Biology of Avian Viruses, INRAE-Université de Tours, Nouzilly, France
| | - Sylvie Rémy
- Laboratory of Biology of Avian Viruses, INRAE-Université de Tours, Nouzilly, France
| | | | - Caroline Denesvre
- Laboratory of Biology of Avian Viruses, INRAE-Université de Tours, Nouzilly, France
| |
Collapse
|
4
|
Establishment of a culture model for the prolonged maintenance of chicken feather follicles structure in vitro. PLoS One 2022; 17:e0271448. [PMID: 36206252 PMCID: PMC9544018 DOI: 10.1371/journal.pone.0271448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/30/2022] [Indexed: 11/05/2022] Open
Abstract
Protocols allowing the in vitro culture of human hair follicles in a serum free-medium up to 9 days were developed 30 years ago. By using similar protocols, we achieved the prolonged maintenance in vitro of juvenile feather follicles (FF) microdissected from young chickens. Histology showed a preservation of the FF up to 7 days as well as feather morphology compatible with growth and/or differentiation. The integrity of the FF wall epithelium was confirmed by transmission electron microscopy at Day 5 and 7 of culture. A slight elongation of the feathers was detected up to 5 days for 75% of the examined feathers. By immunochemistry, we demonstrated the maintenance of expression and localization of two structural proteins: scaffoldin and fibronectin. Gene expression (assessed by qRT-PCR) of NCAM, LCAM, Wnt6, Notch1, and BMP4 was not altered. In contrast, Shh and HBS1 expression collapsed, DKK3 increased, and KRT14 transiently increased upon cultivation. This indicates that cultivation modifies the mRNA expression of a few genes, possibly due to reduced growth or cell differentiation in the feather, notably in the barb ridges. In conclusion, we have developed the first method that allows the culture and maintenance of chicken FF in vitro that preserves the structure and biology of the FF close to its in vivo state, despite transcriptional modifications of a few genes involved in feather development. This new culture model may serve to study feather interactions with pathogens or toxics and constitutes a way to reduce animal experimentation.
Collapse
|
5
|
Lantier I, Mallet C, Souci L, Larcher T, Conradie AM, Courvoisier K, Trapp S, Pasdeloup D, Kaufer BB, Denesvre C. In vivo imaging reveals novel replication sites of a highly oncogenic avian herpesvirus in chickens. PLoS Pathog 2022; 18:e1010745. [PMID: 36037230 PMCID: PMC9462805 DOI: 10.1371/journal.ppat.1010745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 09/09/2022] [Accepted: 07/16/2022] [Indexed: 12/04/2022] Open
Abstract
In vivo bioluminescence imaging facilitates the non-invasive visualization of biological processes in living animals. This system has been used to track virus infections mostly in mice and ferrets; however, until now this approach has not been applied to pathogens in avian species. To visualize the infection of an important avian pathogen, we generated Marek’s disease virus (MDV) recombinants expressing firefly luciferase during lytic replication. Upon characterization of the recombinant viruses in vitro, chickens were infected and the infection visualized in live animals over the course of 14 days. The luminescence signal was consistent with the known spatiotemporal kinetics of infection and the life cycle of MDV, and correlated well with the viral load measured by qPCR. Intriguingly, this in vivo bioimaging approach revealed two novel sites of MDV replication, the beak and the skin of the feet covered in scales. Feet skin infection was confirmed using a complementary fluorescence bioimaging approach with MDV recombinants expressing mRFP or GFP. Infection was detected in the intermediate epidermal layers of the feet skin that was also shown to produce infectious virus, regardless of the animals’ age at and the route of infection. Taken together, this study highlights the value of in vivo whole body bioimaging in avian species by identifying previously overlooked sites of replication and shedding of MDV in the chicken host. In vivo bioluminescence imaging is a powerful tool to track virus infection in the whole body of living animals. This system has been successfully used in mice, ferrets, rats and even fishes, but until now never in birds. In this study, we performed the first in vivo imaging assessing the spread of an important avian pathogen, the highly oncogenic Marek’s disease virus (MDV). Using a recombinant virus expressing firefly luciferase, we visualized the course of MDV infection in chicks for 14 days. The bioluminescent signal was consistent with the known kinetics and sites of dissemination of MDV, notably in feathers. With this new approach, we also discovered two novels sites of early infection and replication that may contribute to persistent virus shedding. Both novel sites represent hard skin appendages like the feathers: the beak and the skin of the feet that are covered in scales. These results were confirmed with two recombinant viruses expressing fluorescent proteins. Fifty-five years after the discovery of MDV and thanks to in vivo imaging, we provide new insights in MDV life cycle in vivo, highlighting the importance of bioluminescence imaging of the entire body in living animals.
Collapse
Affiliation(s)
| | - Corentin Mallet
- INRAE, UMR1282 ISP, Centre INRAE Val de Loire, Nouzilly, France
| | - Laurent Souci
- INRAE, UMR1282 ISP, Centre INRAE Val de Loire, Nouzilly, France
| | | | | | | | - Sascha Trapp
- INRAE, UMR1282 ISP, Centre INRAE Val de Loire, Nouzilly, France
| | - David Pasdeloup
- INRAE, UMR1282 ISP, Centre INRAE Val de Loire, Nouzilly, France
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
- * E-mail: (BK); (CD)
| | - Caroline Denesvre
- INRAE, UMR1282 ISP, Centre INRAE Val de Loire, Nouzilly, France
- * E-mail: (BK); (CD)
| |
Collapse
|
6
|
Bussy F, Rémy S, Le Goff M, Collén PN, Trapp-Fragnet L. The sulphated polysaccharides extract ulvans from Ulva armoricana limits Marek's disease virus dissemination in vitro and promotes viral reactivation in lymphoid cells. BMC Vet Res 2022; 18:155. [PMID: 35477401 PMCID: PMC9044586 DOI: 10.1186/s12917-022-03247-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
Background Marek’s disease (MD) is a highly contagious lymphoproliferative disease of chickens caused by an alphaherpesvirus, Marek’s disease virus (MDV). MD is presently controlled by systematic vaccination of animals, which protects efficiently against the development of clinical disease. However, MDV vaccines do not prevent the multiplication and spread of MDV field strains and may favor the emergence of strains with increased virulence. Therefore, MDV persists to be a major problem for the poultry industry and the development of new alternative strategies to control MDV is needed. Seaweed extracts have previously been shown to exert immunomodulatory and antiviral activities, especially against herpesviruses. The objective of the present study was to explore the effect of Ulva armoricana extracts on MDV infection in vitro. Results We could demonstrate that the ulvan extract as well as its vitamin-enriched formulation reduce the viral load by about 80% at 24 h post-infection in infected chicken fibroblasts at concentrations that are innocuous for the cells. We also observed a substantial decrease in MDV plaque size suggesting that ulvans impede MDV cell-to-cell spread in vitro. Moreover, we showed that ulvan extract could promote MDV reactivation in lymphoid cells. Conclusions Our data provide the first evidence that the use of the ulvan extract could be a good alternative to limit MDV infection in poultry.
Collapse
Affiliation(s)
- Frédérick Bussy
- Amadeite SAS, 56580, Bréhan, France.,Olmix, SALe Lintan, 56580, Bréhan, France
| | - Sylvie Rémy
- INRAE, Université de Tours, ISP, F-37380, Nouzilly, France
| | - Matthieu Le Goff
- Amadeite SAS, 56580, Bréhan, France.,Olmix, SALe Lintan, 56580, Bréhan, France
| | - Pi Nyvall Collén
- Amadeite SAS, 56580, Bréhan, France.,Olmix, SALe Lintan, 56580, Bréhan, France
| | | |
Collapse
|
7
|
Vychodil T, Wight DJ, Nascimento M, Jolmes F, Korte T, Herrmann A, Kaufer BB. Visualization of Marek’s Disease Virus Genomes in Living Cells during Lytic Replication and Latency. Viruses 2022; 14:v14020287. [PMID: 35215880 PMCID: PMC8877148 DOI: 10.3390/v14020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
Visualization of the herpesvirus genomes during lytic replication and latency is mainly achieved by fluorescence in situ hybridization (FISH). Unfortunately, this technique cannot be used for the real-time detection of viral genome in living cells. To facilitate the visualization of the Marek’s disease virus (MDV) genome during all stages of the virus lifecycle, we took advantage of the well-established tetracycline operator/repressor (TetO/TetR) system. This system consists of a fluorescently labeled TetR (TetR-GFP) that specifically binds to an array of tetO sequences. This tetO repeat array was first inserted into the MDV genome (vTetO). Subsequently, we fused TetR-GFP via a P2a self-cleaving peptide to the C-terminus of the viral interleukin 8 (vIL8), which is expressed during lytic replication and latency. Upon reconstitution of this vTetO-TetR virus, fluorescently labeled replication compartments were detected in the nucleus during lytic replication. After validating the specificity of the observed signal, we used the system to visualize the genesis and mobility of the viral replication compartments. In addition, we assessed the infection of nuclei in syncytia as well as lytic replication and latency in T cells. Taken together, we established a system allowing us to track the MDV genome in living cells that can be applied to many other DNA viruses.
Collapse
Affiliation(s)
- Tereza Vychodil
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (T.V.); (D.J.W.); (M.N.)
| | - Darren J. Wight
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (T.V.); (D.J.W.); (M.N.)
| | - Mariana Nascimento
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (T.V.); (D.J.W.); (M.N.)
| | - Fabian Jolmes
- Department of Biology, Molecular Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany; (F.J.); (T.K.); (A.H.)
| | - Thomas Korte
- Department of Biology, Molecular Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany; (F.J.); (T.K.); (A.H.)
| | - Andreas Herrmann
- Department of Biology, Molecular Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany; (F.J.); (T.K.); (A.H.)
- Institut für Chemie und Biochemie, Freie Universität Berlin, Altensteinstr. 23a, 14195 Berlin, Germany
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (T.V.); (D.J.W.); (M.N.)
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
- Correspondence: ; Tel.: +49-30-838-51936
| |
Collapse
|
8
|
Hypoxia and HIF-1 Trigger Marek’s Disease Virus Reactivation in Lymphoma-Derived Latently Infected T Lymphocytes. J Virol 2021; 96:e0142721. [DOI: 10.1128/jvi.01427-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Latency is a hallmark of herpesviruses, allowing them to persist into their host without virions production. Acute exposure to hypoxia (below 3% O
2
) was identified as a trigger of latent-to-lytic switch (reactivation) for human oncogenic gamma-herpesviruses (KSHV and EBV). Therefore, we hypothesized that hypoxia could also induce reactivation of Marek’s disease virus (MDV), sharing biological properties with EBV and KSHV (notably oncogenic properties), into lymphocytes. Acute exposure to hypoxia (1% O
2
) of two MDV-latently infected cell lines derived from MD tumors (3867K and MSB-1) induced MDV reactivation. A bioinformatic analysis of the RB-1B MDV genome revealed 214 putative hypoxia-response element consensus sequences on 119 open reading frames. RT-qPCR analysis showed five MDV genes strongly upregulated early after hypoxia. In 3867K cells under normoxia, pharmacological agents mimicking hypoxia (MLN4924 and CoCl
2
) increased MDV reactivation, but to a lower level than real hypoxia. Overexpression of wild-type or stabilized human hypoxia inducible factor-1α (HIF-1α) in MSB-1 cells in normoxia also promoted MDV reactivation. In such conditions, lytic cycle was detected in cells with a sustainable HIF-1α expression, but also in HIF-1α negative cells, indicating that MDV reactivation is mediated by HIF-1, in a direct and/or indirect manner. Lastly, we demonstrated by a reporter assay that HIF-1α overexpression induced the transactivation of two viral promoters, shown upregulated in hypoxia. These results suggest that hypoxia may play a crucial role in the late lytic replication phase observed
in vivo
in MDV-infected chickens exhibiting tumors, since a hypoxic microenvironment is a hallmark of most solid tumors.
IMPORTANCE
Latent-to-lytic switch of herpesviruses (aka reactivation) is responsible for pathology recurrences and/or viral shedding. Studying physiological triggers of reactivation is therefore important for health to limit lesions and viral transmission. Marek's disease virus (MDV) is a potent oncogenic alpha-herpesvirus establishing latency in T-lymphocytes and causing lethal T-lymphomas in chickens.
In vivo
, a second lytic phase is observed during tumoral stage. Hypoxia being a hallmark of tumors, we wondered whether hypoxia induces MDV reactivation in latently-infected T-lymphocytes, like previously shown for EBV and KSHV in B-lymphocytes. In this study, we demonstrated that acute hypoxia (1% O2) triggers MDV reactivation in two MDV transformed T-cell lines. We provide some molecular basis of this reactivation by showing that hypoxia inducible factor (HIF-1) overexpression induces MDV reactivation to a similar extend than hypoxia after 24 hours. Hypoxia is therefore a reactivation stimulus shared by mammalian and avian oncogenic herpesviruses of different genus.
Collapse
|
9
|
Methods for the Manipulation of Herpesvirus Genome and the Application to Marek's Disease Virus Research. Microorganisms 2021; 9:microorganisms9061260. [PMID: 34200544 PMCID: PMC8228275 DOI: 10.3390/microorganisms9061260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022] Open
Abstract
Herpesviruses are a group of double-strand DNA viruses that infect a wide range of hosts, including humans and animals. In the past decades, numerous methods have been developed to manipulate herpesviruses genomes, from the introduction of random mutations to specific genome editing. The development of genome manipulation methods has largely advanced the study of viral genes function, contributing not only to the understanding of herpesvirus biology and pathogenesis, but also the generation of novel vaccines and therapies to control and treat diseases. In this review, we summarize the major methods of herpesvirus genome manipulation with emphasis in their application to Marek’s disease virus research.
Collapse
|
10
|
The Tegument Protein pUL47 of Marek's Disease Virus Is Necessary for Horizontal Transmission and Is Important for Expression of Glycoprotein gC. J Virol 2020; 95:JVI.01645-20. [PMID: 32999032 DOI: 10.1128/jvi.01645-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
Viral tropism and transmission of herpesviruses are best studied in their natural host for maximal biological relevance. In the case of alphaherpesviruses, few reports have focused on those aspects, primarily because of the few animal models available as natural hosts that are compatible with such studies. Here, using Marek's disease virus (MDV), a highly contagious and deadly alphaherpesvirus of chickens, we analyze the role of tegument proteins pUL47 and pUL48 in the whole life cycle of the virus. We report that a virus lacking the UL48 gene (vΔUL48) is impaired in growth in cell culture and has diminished virulence in vivo In contrast, a virus lacking UL47 (vΔUL47) is unaffected in its growth in vitro and is as virulent in vivo as the wild-type (WT) virus. Surprisingly, we observed that vΔUL47 was unable to be horizontally transmitted to naive chickens, in contrast to the WT virus. In addition, we show that pUL47 is important for the splicing of UL44 transcripts encoding glycoprotein gC, a protein known as being essential for horizontal transmission of MDV. Importantly, we observed that the levels of gC are lower in the absence of pUL47. Notably, this phenotype is similar to that of another transmission-incompetent mutant ΔUL54, which also affects the splicing of UL44 transcripts. This is the first study describing the role of pUL47 in both viral transmission and the splicing and expression of gC.IMPORTANCE Host-to-host transmission of viruses is ideally studied in vivo in the natural host. Veterinary viruses such as Marek's disease virus (MDV) are, therefore, models of choice to explore these aspects. The natural host of MDV, the chicken, is small, inexpensive, and economically important. MDV is a deadly and contagious herpesvirus that can kill infected animals in less than 4 weeks. The virus naturally infects epithelial cells of the feather follicle epithelium from where it is shed into the environment. In this study, we demonstrate that the viral protein pUL47 is an essential factor for bird-to-bird transmission of the virus. We provide some molecular basis to this function by showing that pUL47 enhances the splicing and the expression of another viral gene, UL44, which is essential for viral transmission. pUL47 may have a similar function in human herpesviruses such as varicella-zoster virus or herpes simplex viruses.
Collapse
|
11
|
Role of DNA Methylation and CpG Sites in the Viral Telomerase RNA Promoter during Gallid Herpesvirus 2 Pathogenesis. J Virol 2020; 94:JVI.01488-20. [PMID: 32967954 PMCID: PMC7654267 DOI: 10.1128/jvi.01488-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Previous studies demonstrated that telomerase RNAs possess functions that promote tumor development independent of the telomerase complex. vTR is a herpesvirus-encoded telomerase RNA subunit that plays a crucial role in virus-induced tumorigenesis and is expressed by a robust viral promoter that is highly regulated by the c-Myc oncoprotein binding to the E-boxes. Here, we demonstrated that the DNA methylation patterns in the functional c-Myc response elements of the vTR promoter change upon reactivation from latency, and that demethylation strongly increases telomerase activity in virus-infected cells. Moreover, the introduction of mutation in the CpG dinucleotides of the c-Myc binding sites resulted in decreased vTR expression and complete abrogation of tumor formation. Our study provides further confirmation of the involvement of specific DNA methylation patterns in the regulation of vTR expression and vTR importance for virus-induced tumorigenesis. Gallid herpesvirus type 2 (GaHV-2) is an oncogenic alphaherpesvirus that induces malignant T-cell lymphoma in chicken. GaHV-2 encodes a viral telomerase RNA subunit (vTR) that plays a crucial role in virus-induced tumorigenesis, enhances telomerase activity, and possesses functions independent of the telomerase complex. vTR is driven by a robust viral promoter, highly expressed in virus-infected cells, and regulated by two c-Myc response elements (c-Myc REs). The regulatory mechanisms involved in controlling vTR and other genes during viral replication and latency remain poorly understood but are crucial to understanding this oncogenic herpesvirus. Therefore, we investigated DNA methylation patterns of CpG dinucleotides found in the vTR promoter and measured the impact of methylation on telomerase activity. We demonstrated that telomerase activity was considerably increased following viral reactivation. Furthermore, CpG sites within c-Myc REs showed specific changes in methylation after in vitro reactivation and in infected animals over time. Promoter reporter assays indicated that one of the c-Myc REs is involved in regulating vTR transcription, and that methylation strongly influenced vTR promoter activity. To study the importance of the CpG sites found in c-Myc REs in virus-induced tumorigenesis, we generated recombinant virus containing mutations in CpG sites of c-Myc REs together with the revertant virus by two-step Red-mediated mutagenesis. Introduced mutations in the vTR promoter did not affect the replication properties of the recombinant viruses in vitro. In contrast, replication of the mutant virus in infected chickens was severely impaired, and tumor formation completely abrogated. Our data provides an in-depth characterization of c-Myc oncoprotein REs and the involvement of DNA methylation in transcriptional regulation of vTR. IMPORTANCE Previous studies demonstrated that telomerase RNAs possess functions that promote tumor development independent of the telomerase complex. vTR is a herpesvirus-encoded telomerase RNA subunit that plays a crucial role in virus-induced tumorigenesis and is expressed by a robust viral promoter that is highly regulated by the c-Myc oncoprotein binding to the E-boxes. Here, we demonstrated that the DNA methylation patterns in the functional c-Myc response elements of the vTR promoter change upon reactivation from latency, and that demethylation strongly increases telomerase activity in virus-infected cells. Moreover, the introduction of mutation in the CpG dinucleotides of the c-Myc binding sites resulted in decreased vTR expression and complete abrogation of tumor formation. Our study provides further confirmation of the involvement of specific DNA methylation patterns in the regulation of vTR expression and vTR importance for virus-induced tumorigenesis.
Collapse
|
12
|
Rémy S, Le Pape G, Gourichon D, Gardin Y, Denesvre C. Chickens can durably clear herpesvirus vaccine infection in feathers while still carrying vaccine-induced antibodies. Vet Res 2020; 51:24. [PMID: 32093754 PMCID: PMC7041111 DOI: 10.1186/s13567-020-00749-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/29/2020] [Indexed: 11/21/2022] Open
Abstract
Marek’s disease (MD) is a major disease of chickens induced by Marek’s disease virus (MDV) associated to lethal lymphomas. Current MD vaccines protect against lymphomas, but fail to prevent infection and shedding. The control of MDV shedding is crucial in order to eradicate this highly contagious virus. Like pathogenic MDV, MD vaccines infect the feather follicles of the skin before being shed into the environment. MD vaccines constitute excellent models to study virus interaction with feathers, the unique excretion source of these viruses. Herein we studied the viral persistence in feathers of a MD vaccine, the recombinant turkey herpesvirus (rHVT-ND). We report that most of the birds showed a persistent HVT infection of feathers over 41 weeks with moderate viral loads. Interestingly, 20% of the birds were identified as low HVT producers, among which six birds cleared the infection. Indeed, after week 14–26, these birds named controllers had undetectable HVT DNA in their feathers through week 41. All vaccinated birds developed antibodies to NDV, which lasted until week 41 in 95% of the birds, including the controllers. No correlation was found between HVT loads in feathers and NDV antibody titers over time. Interestingly, no HVT DNA was detected in the spleens of four controllers. This is the first description of chickens that durably cleared MD vaccine infection of feathers suggesting that control of Mardivirus shedding is achievable by the host.
Collapse
Affiliation(s)
- Sylvie Rémy
- Laboratoire de Biologie des Virus Aviaires, ISP, INRAE, Université Tours, Nouzilly, France
| | - Gilles Le Pape
- Anastats, 14 rue de la Bretonnerie, 37000, Tours, France
| | | | | | - Caroline Denesvre
- Laboratoire de Biologie des Virus Aviaires, ISP, INRAE, Université Tours, Nouzilly, France.
| |
Collapse
|
13
|
Identification of Marek's Disease Virus VP22 Tegument Protein Domains Essential for Virus Cell-to-Cell Spread, Nuclear Localization, Histone Association and Cell-Cycle Arrest. Viruses 2019; 11:v11060537. [PMID: 31181775 PMCID: PMC6631903 DOI: 10.3390/v11060537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/05/2019] [Indexed: 12/30/2022] Open
Abstract
VP22 is a major tegument protein of alphaherpesviruses encoded by the UL49 gene. Two properties of VP22 were discovered by studying Marek's disease virus (MDV), the Mardivirus prototype; it has a major role in virus cell-to-cell spread and in cell cycle modulation. This 249 AA-long protein contains three regions including a conserved central domain. To decipher the functional VP22 domains and their relationships, we generated three series of recombinant MDV genomes harboring a modified UL49 gene and assessed their effect on virus spread. Mutated VP22 were also tested for their ability to arrest the cell cycle, subcellular location and histones copurification after overexpression in cells. We demonstrated that the N-terminus of VP22 associated with its central domain is essential for virus spread and cell cycle modulation. Strikingly, we demonstrated that AAs 174-190 of MDV VP22 containing the end of a putative extended alpha-3 helix are essential for both functions and that AAs 159-162 located in the putative beta-strand of the central domain are mandatory for cell cycle modulation. Despite being non-essential, the 59 C-terminal AAs play a role in virus spread efficiency. Interestingly, a positive correlation was observed between cell cycle modulation and VP22 histones association, but none with MDV spread.
Collapse
|
14
|
Berthault C, Larcher T, Härtle S, Vautherot JF, Trapp-Fragnet L, Denesvre C. Atrophy of primary lymphoid organs induced by Marek's disease virus during early infection is associated with increased apoptosis, inhibition of cell proliferation and a severe B-lymphopenia. Vet Res 2018; 49:31. [PMID: 29587836 PMCID: PMC5870490 DOI: 10.1186/s13567-018-0526-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/18/2018] [Indexed: 12/18/2022] Open
Abstract
Marek's disease is a multi-faceted highly contagious disease affecting chickens caused by the Marek's disease alphaherpesvirus (MDV). MDV early infection induces a transient immunosuppression, which is associated with thymus and bursa of Fabricius atrophy. Little is known about the cellular processes involved in primary lymphoid organ atrophy. Here, by in situ TUNEL assay, we demonstrate that MDV infection results in a high level of apoptosis in the thymus and bursa of Fabricius, which is concomitant to the MDV lytic cycle. Interestingly, we observed that in the thymus most of the MDV infected cells at 6 days post-infection (dpi) were apoptotic, whereas in the bursa of Fabricius most of the apoptotic cells were uninfected suggesting that MDV triggers apoptosis by two different modes in these two primary lymphoid organs. In addition, a high decrease of cell proliferation was observed from 6 to 14 dpi in the bursa of Fabricius follicles, and not in the thymus. Finally, with an adapted absolute blood lymphocyte count, we demonstrate a major B-lymphopenia during the two 1st weeks of infection, and propose this method as a potent non-invasive tool to diagnose MDV bursa of Fabricius infection and atrophy. Our results demonstrate that the thymus and bursa of Fabricius atrophies are related to different cell mechanisms, with different temporalities, that affect infected and uninfected cells.
Collapse
Affiliation(s)
| | | | - Sonja Härtle
- Department of Veterinary Science, Ludwig-Maximilians University of Munich, 80539, Muenchen, Germany
| | | | | | | |
Collapse
|
15
|
Conrad SJ, Silva RF, Hearn CJ, Climans M, Dunn JR. Attenuation of Marek's disease virus by codon pair deoptimization of a core gene. Virology 2018; 516:219-226. [DOI: 10.1016/j.virol.2018.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/05/2018] [Accepted: 01/25/2018] [Indexed: 12/24/2022]
|
16
|
Induction of DNA Damages upon Marek's Disease Virus Infection: Implication in Viral Replication and Pathogenesis. J Virol 2017; 91:JVI.01658-17. [PMID: 28978699 DOI: 10.1128/jvi.01658-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 12/23/2022] Open
Abstract
Marek's disease virus (MDV) is a highly contagious alphaherpesvirus that infects chickens and causes a deadly neoplastic disease. We previously demonstrated that MDV infection arrests cells in S phase and that the tegument protein VP22 plays a major role in this process. In addition, expression of VP22 induces double-strand breaks (DSBs) in the cellular DNA, suggesting that DNA damage and the associated cellular response might be favorable for the MDV life cycle. Here, we addressed the role of DNA damage in MDV replication and pathogenesis. We demonstrated that MDV induces DSBs during lytic infection in vitro and in the peripheral blood mononuclear cells of infected animals. Intriguingly, we did not observe DNA damage in latently infected MDV-induced lymphoblastoid cells, while MDV reactivation resulted in the onset of DNA lesions, suggesting that DNA damage and/or the resulting DNA damage response might be required for efficient MDV replication and reactivation. In addition, reactivation was significantly enhanced by the induction of DNA damage using a number of chemicals. Finally, we used recombinant viruses to show that VP22 is required for the induction of DNA damage in vivo and that this likely contributes to viral oncogenesis.IMPORTANCE Marek's disease virus is an oncogenic alphaherpesvirus that causes fatal T-cell lymphomas in chickens. MDV causes substantial losses in the poultry industry and is also used in small-animal models for virus-induced tumor formation. DNA damage not only is implicated in tumor development but also aids in the life cycle of several viruses; however, its role in MDV replication, latency, and reactivation remains elusive. Here, we demonstrate that MDV induces DNA lesions during lytic replication in vitro and in vivo DNA damage was not observed in latently infected cells; however, it was reinitiated during reactivation. Reactivation was significantly enhanced by the induction of DNA damage. Recombinant viruses that lacked the ability to induce DNA damage were defective in their ability to induce tumors, suggesting that DNA damage might also contribute to cellular transformation processes leading to MDV lymphomagenesis.
Collapse
|
17
|
Tiede C, Bedford R, Heseltine SJ, Smith G, Wijetunga I, Ross R, AlQallaf D, Roberts APE, Balls A, Curd A, Hughes RE, Martin H, Needham SR, Zanetti-Domingues LC, Sadigh Y, Peacock TP, Tang AA, Gibson N, Kyle H, Platt GW, Ingram N, Taylor T, Coletta LP, Manfield I, Knowles M, Bell S, Esteves F, Maqbool A, Prasad RK, Drinkhill M, Bon RS, Patel V, Goodchild SA, Martin-Fernandez M, Owens RJ, Nettleship JE, Webb ME, Harrison M, Lippiat JD, Ponnambalam S, Peckham M, Smith A, Ferrigno PK, Johnson M, McPherson MJ, Tomlinson DC. Affimer proteins are versatile and renewable affinity reagents. eLife 2017; 6:e24903. [PMID: 28654419 PMCID: PMC5487212 DOI: 10.7554/elife.24903] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/07/2017] [Indexed: 12/11/2022] Open
Abstract
Molecular recognition reagents are key tools for understanding biological processes and are used universally by scientists to study protein expression, localisation and interactions. Antibodies remain the most widely used of such reagents and many show excellent performance, although some are poorly characterised or have stability or batch variability issues, supporting the use of alternative binding proteins as complementary reagents for many applications. Here we report on the use of Affimer proteins as research reagents. We selected 12 diverse molecular targets for Affimer selection to exemplify their use in common molecular and cellular applications including the (a) selection against various target molecules; (b) modulation of protein function in vitro and in vivo; (c) labelling of tumour antigens in mouse models; and (d) use in affinity fluorescence and super-resolution microscopy. This work shows that Affimer proteins, as is the case for other alternative binding scaffolds, represent complementary affinity reagents to antibodies for various molecular and cell biology applications.
Collapse
Affiliation(s)
- Christian Tiede
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Robert Bedford
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Sophie J Heseltine
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Gina Smith
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Imeshi Wijetunga
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Rebecca Ross
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Danah AlQallaf
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Alexander Balls
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Alistair Curd
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Ruth E Hughes
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Heather Martin
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Sarah R Needham
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | | | | | - Anna A Tang
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Naomi Gibson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Hannah Kyle
- Avacta Life Sciences, Wetherby, United Kingdom
| | | | - Nicola Ingram
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Thomas Taylor
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Louise P Coletta
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Iain Manfield
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Margaret Knowles
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Sandra Bell
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| | - Filomena Esteves
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Azhar Maqbool
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Raj K Prasad
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Mark Drinkhill
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Robin S Bon
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | | | | | - Marisa Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Ray J Owens
- Oxford Protein Production Facility UK, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Joanne E Nettleship
- Oxford Protein Production Facility UK, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Michael E Webb
- School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Michael Harrison
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Jonathan D Lippiat
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Sreenivasan Ponnambalam
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Michelle Peckham
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | | | | | - Michael J McPherson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Darren Charles Tomlinson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
18
|
Comparison of different sites in recombinant Marek’s disease virus for the expression of green fluorescent protein. Virus Res 2017; 235:82-85. [DOI: 10.1016/j.virusres.2017.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 11/21/2022]
|
19
|
Vautherot JF, Jean C, Fragnet-Trapp L, Rémy S, Chabanne-Vautherot D, Montillet G, Fuet A, Denesvre C, Pain B. ESCDL-1, a new cell line derived from chicken embryonic stem cells, supports efficient replication of Mardiviruses. PLoS One 2017; 12:e0175259. [PMID: 28406989 PMCID: PMC5391029 DOI: 10.1371/journal.pone.0175259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Marek’s disease virus is the etiological agent of a major lymphoproliferative disorder in poultry and the prototype of the Mardivirus genus. Primary avian somatic cells are currently used for virus replication and vaccine production, but they are largely refractory to any genetic modification compatible with the preservation of intact viral susceptibility. We explored the concept of induction of viral replication permissiveness in an established pluripotent chicken embryonic stem cell-line (cES) in order to derive a new fully susceptible cell-line. Chicken ES cells were not permissive for Mardivirus infection, but as soon as differentiation was triggered, replication of Marek’s disease virus was detected. From a panel of cyto-differentiating agents, hexamethylene bis (acetamide) (HMBA) was found to be the most efficient regarding the induction of permissiveness. These initial findings prompted us to analyse the effect of HMBA on gene expression, to derive a new mesenchymal cell line, the so-called ESCDL-1, and monitor its susceptibility for Mardivirus replication. All Mardiviruses tested so far replicated equally well on primary embryonic skin cells and on ESCDL-1, and the latter showed no variation related to its passage number in its permissiveness for virus infection. Viral morphogenesis studies confirmed efficient multiplication with, as in other in vitro models, no extra-cellular virus production. We could show that ESCDL-1 can be transfected to express a transgene and subsequently cloned without any loss in permissiveness. Consequently, ESCDL-1 was genetically modified to complement viral gene deletions thus yielding stable trans-complementing cell lines. We herein claim that derivation of stable differentiated cell-lines from cES cell lines might be an alternative solution to the cultivation of primary cells for virology studies.
Collapse
Affiliation(s)
| | - Christian Jean
- Univ Lyon, Université Lyon 1, INSERM, INRA, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | | | - Sylvie Rémy
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | | | - Guillaume Montillet
- Univ Lyon, Université Lyon 1, INSERM, INRA, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Aurélie Fuet
- Univ Lyon, Université Lyon 1, INSERM, INRA, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Caroline Denesvre
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Bertrand Pain
- Univ Lyon, Université Lyon 1, INSERM, INRA, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| |
Collapse
|
20
|
Boodhoo N, Gurung A, Sharif S, Behboudi S. Marek's disease in chickens: a review with focus on immunology. Vet Res 2016; 47:119. [PMID: 27894330 PMCID: PMC5127044 DOI: 10.1186/s13567-016-0404-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022] Open
Abstract
Marek's disease (MD), caused by Marek's disease virus (MDV), is a commercially important neoplastic disease of poultry which is only controlled by mass vaccination. Importantly, vaccines that can provide sterile immunity and inhibit virus transmission are lacking; such that vaccines are only capable of preventing neuropathy, oncogenic disease and immunosuppression, but are unable to prevent MDV transmission or infection, leading to emergence of increasingly virulent pathotypes. Hence, to address these issues, developing more efficacious vaccines that induce sterile immunity have become one of the important research goals for avian immunologists today. MDV shares very close genomic functional and structural characteristics to most mammalian herpes viruses such as herpes simplex virus (HSV). MD also provides an excellent T cell lymphoma model for gaining insights into other herpesvirus-induced oncogenesis in mammals and birds. For these reasons, we need to develop an in-depth knowledge and understanding of the host-viral interaction and host immunity against MD. Similarly, the underlying genetic variation within different chicken lines has a major impact on the outcome of infection. In this review article, we aim to investigate the pathogenesis of MDV infection, host immunity to MD and discuss areas of research that need to be further explored.
Collapse
Affiliation(s)
- Nitish Boodhoo
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Angila Gurung
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Shahriar Behboudi
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK.
| |
Collapse
|
21
|
Couteaudier M, Courvoisier K, Trapp-Fragnet L, Denesvre C, Vautherot JF. Keratinocytes derived from chicken embryonic stem cells support Marek's disease virus infection: a highly differentiated cell model to study viral replication and morphogenesis. Virol J 2016; 13:7. [PMID: 26742789 PMCID: PMC4705758 DOI: 10.1186/s12985-015-0458-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/23/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Marek's disease is a virus disease with worldwide distribution that causes major losses to poultry production. Vaccines against Marek's disease virus, an oncogenic alphaherpesvirus, reduce tumour formation but have no effect on virus shedding. Successful horizontal virus transmission is linked to the active viral replication in feather follicle epithelial cells of infected chickens, from which infectious viral particles are shed into the environment. The feather follicle epithelium is the sole tissue in which those infectious particles are produced and no in vitro cell-systems can support this highly efficient morphogenesis. We previously characterized embryonic stem-cell-derived keratinocytes, showing they display a marker-gene profile similar to skin keratinocytes, and therefore we tested their susceptibility to Marek's disease virus infection. FINDINGS We show herein that keratinocytes derived from chicken embryonic stem-cells are fully permissive to the replication of either non-pathogenic or pathogenic Marek's disease viruses. All viruses replicated on all three keratinocyte lines and kinetics of viral production as well as viral loads were similar to those obtained on primary cells. Morphogenesis studies were conducted on infected keratinocytes and on corneocytes, showing that all types of capsids/virions were present inside the cells, but extracellular viruses were absent. CONCLUSIONS The keratinocyte lines are the first epithelial cell-line showing ectodermal specific markers supporting Marek's disease virus replication. In this in vitro model the replication lead to the production of cell-associated viral progeny. Further work will be devoted to the study of relationship between 3D differentiation of keratinocytes and Marek's disease virus replication.
Collapse
Affiliation(s)
- Mathilde Couteaudier
- INRA - Université François-Rabelais de Tours, UMR 1282 Infectiologie et Santé Publique, ISP, F-37380, Nouzilly, France.
| | - Katia Courvoisier
- INRA - Université François-Rabelais de Tours, UMR 1282 Infectiologie et Santé Publique, ISP, F-37380, Nouzilly, France.
| | - Laetitia Trapp-Fragnet
- INRA - Université François-Rabelais de Tours, UMR 1282 Infectiologie et Santé Publique, ISP, F-37380, Nouzilly, France.
| | - Caroline Denesvre
- INRA - Université François-Rabelais de Tours, UMR 1282 Infectiologie et Santé Publique, ISP, F-37380, Nouzilly, France.
| | - Jean-François Vautherot
- INRA - Université François-Rabelais de Tours, UMR 1282 Infectiologie et Santé Publique, ISP, F-37380, Nouzilly, France.
| |
Collapse
|
22
|
Denesvre C, Rémy S, Trapp-Fragnet L, Smith LP, Georgeault S, Vautherot JF, Nair V. Marek's disease virus undergoes complete morphogenesis after reactivation in a T-lymphoblastoid cell line transformed by recombinant fluorescent marker virus. J Gen Virol 2015; 97:480-486. [PMID: 26612074 DOI: 10.1099/jgv.0.000354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
T-lymphocytes are central targets of Marek's disease, a major chicken disease induced by the oncogenic alphaherpesvirus Marek's disease virus (MDV). T-lymphocyte infection is also associated with immunosuppression and virus latency. To decipher viral morphogenesis in T-lymphocytes, we used the recombinant vRB-1B 47EGFP marker virus to generate a new lymphoblastoid cell line, 3867K, that exhibited typical properties of other MDV-transformed chicken cell lines in term of cell markers, reactivation rate and infectivity. Examination of reactivating EGFP-positive 3867K cells by transmission electron microscopy revealed the presence of most types of herpesvirus particles inside the cells but no extracellular ones. Quantification of virion types indicated only 5% cytoplasmic particles, with 0.5% being mature. This study demonstrated that MDV morphogenesis is complete upon reactivation in T-lymphocytes, albeit with poor efficiency, with a defect in the exit of virions from the nucleus and secondary envelopment, as occurs in infected fibroblasts.
Collapse
Affiliation(s)
- Caroline Denesvre
- INRA UMR1282 Infectious Disease and Public Health, ISP, BIOVA team, 37380 Nouzilly, France
| | - Sylvie Rémy
- INRA UMR1282 Infectious Disease and Public Health, ISP, BIOVA team, 37380 Nouzilly, France
| | - Laetitia Trapp-Fragnet
- INRA UMR1282 Infectious Disease and Public Health, ISP, BIOVA team, 37380 Nouzilly, France
| | - Lorraine P Smith
- Avian Oncogenic Virus Group, The Pirbright Institute, Guildford, GU24 0NF, UK
| | - Sonia Georgeault
- Département des Microscopies (Plateau Technologique Analyse des Systèmes Biologiques), Université François Rabelais, Tours, France
| | | | - Venugopal Nair
- Avian Oncogenic Virus Group, The Pirbright Institute, Guildford, GU24 0NF, UK
| |
Collapse
|
23
|
Denesvre C, Dumarest M, Rémy S, Gourichon D, Eloit M. Chicken skin virome analyzed by high-throughput sequencing shows a composition highly different from human skin. Virus Genes 2015. [PMID: 26223320 DOI: 10.1007/s11262-015-1231-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies show that human skin at homeostasis is a complex ecosystem whose virome include circular DNA viruses, especially papillomaviruses and polyomaviruses. To determine the chicken skin virome in comparison with human skin virome, a chicken swabs pool sample from fifteen indoor healthy chickens of five genetic backgrounds was examined for the presence of DNA viruses by high-throughput sequencing (HTS). The results indicate a predominance of herpesviruses from the Mardivirus genus, coming from either vaccinal origin or presumably asymptomatic infection. Despite the high sensitivity of the HTS method used herein to detect small circular DNA viruses, we did not detect any papillomaviruses, polyomaviruses, or circoviruses, indicating that these viruses may not be resident of the chicken skin. The results suggest that the turkey herpesvirus is a resident of chicken skin in vaccinated chickens. This study indicates major differences between the skin viromes of chickens and humans. The origin of this difference remains to be further studied in relation with skin physiology, environment, or virus population dynamics.
Collapse
Affiliation(s)
- Caroline Denesvre
- INRA, UMR1282, Infectious Diseases and Public Health, ISP, BIOlogy of Avian Viruses Team, 37380, Nouzilly, France.
| | - Marine Dumarest
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, 75015, Paris, France
| | - Sylvie Rémy
- INRA, UMR1282, Infectious Diseases and Public Health, ISP, BIOlogy of Avian Viruses Team, 37380, Nouzilly, France
| | - David Gourichon
- INRA, Pôle d'expérimentation avicole de Tours, 37380, Nouzilly, France
| | - Marc Eloit
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, 75015, Paris, France. .,PathoQuest, Paris, 25 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
24
|
Jarosinski KW, Donovan KM, Du G. Expression of fluorescent proteins within the repeat long region of the Marek's disease virus genome allows direct identification of infected cells while retaining full pathogenicity. Virus Res 2015; 201:50-60. [PMID: 25725150 DOI: 10.1016/j.virusres.2015.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/20/2022]
Abstract
Marek's disease virus (MDV) is a lymphotropic alphaherpesvirus and causes Marek's disease (MD) in chickens. RLORF4 is an MDV-specific gene located in the repeat long (RL) regions of the genome and is directly involved in attenuation. In this report, we generated recombinant (r)MDVs in which eGFP or mRFP was inserted in-frame of the 3' end of the RLORF4 gene. In vitro growth was unaffected and infected cells could be identified by using fluorescent microscopy. Interestingly, though inserted in-frame with RLORF4, eGFP and mRFP were expressed alone, confirming mRNA expression and splicing within the RL of MDV is complex. In vivo, rMDVs expressing mRFP or eGFP caused tumors similar to wild-type MDV. Fluorescent protein expression could be seen in spleen, tumor, and feather follicle epithelial cells. These results show that expression of fluorescent proteins within the RL region results in fluorescent rMDVs that still maintains full pathogenicity in the chicken.
Collapse
Affiliation(s)
- Keith W Jarosinski
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | - Kathleen M Donovan
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | - Guixin Du
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
25
|
Trapp-Fragnet L, Bencherit D, Chabanne-Vautherot D, Le Vern Y, Remy S, Boutet-Robinet E, Mirey G, Vautherot JF, Denesvre C. Cell cycle modulation by Marek's disease virus: the tegument protein VP22 triggers S-phase arrest and DNA damage in proliferating cells. PLoS One 2014; 9:e100004. [PMID: 24945933 PMCID: PMC4063868 DOI: 10.1371/journal.pone.0100004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 05/21/2014] [Indexed: 01/22/2023] Open
Abstract
Marek's disease is one of the most common viral diseases of poultry affecting chicken flocks worldwide. The disease is caused by an alphaherpesvirus, the Marek's disease virus (MDV), and is characterized by the rapid onset of multifocal aggressive T-cell lymphoma in the chicken host. Although several viral oncogenes have been identified, the detailed mechanisms underlying MDV-induced lymphomagenesis are still poorly understood. Many viruses modulate cell cycle progression to enhance their replication and persistence in the host cell, in the case of some oncogenic viruses ultimately leading to cellular transformation and oncogenesis. In the present study, we found that MDV, like other viruses, is able to subvert the cell cycle progression by triggering the proliferation of low proliferating chicken cells and a subsequent delay of the cell cycle progression into S-phase. We further identified the tegument protein VP22 (pUL49) as a major MDV-encoded cell cycle regulator, as its vector-driven overexpression in cells lead to a dramatic cell cycle arrest in S-phase. This striking functional feature of VP22 appears to depend on its ability to associate with histones in the nucleus. Finally, we established that VP22 expression triggers the induction of massive and severe DNA damages in cells, which might cause the observed intra S-phase arrest. Taken together, our results provide the first evidence for a hitherto unknown function of the VP22 tegument protein in herpesviral reprogramming of the cell cycle of the host cell and its potential implication in the generation of DNA damages.
Collapse
Affiliation(s)
- Laëtitia Trapp-Fragnet
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe Biologie des Virus Aviaires, Nouzilly, France
- * E-mail:
| | - Djihad Bencherit
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe Biologie des Virus Aviaires, Nouzilly, France
| | | | - Yves Le Vern
- INRA, UMR1282 Infectiologie et Santé Publique, Laboratoire de Cytométrie, Nouzilly, France
| | - Sylvie Remy
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe Biologie des Virus Aviaires, Nouzilly, France
| | - Elisa Boutet-Robinet
- INRA, UMR 1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- University of Toulouse, UPS, UMR1331, Toxalim, Toulouse, France
| | - Gladys Mirey
- INRA, UMR 1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- University of Toulouse, UPS, UMR1331, Toxalim, Toulouse, France
| | - Jean-François Vautherot
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe Biologie des Virus Aviaires, Nouzilly, France
| | - Caroline Denesvre
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe Biologie des Virus Aviaires, Nouzilly, France
| |
Collapse
|
26
|
Couteaudier M, Denesvre C. Marek's disease virus and skin interactions. Vet Res 2014; 45:36. [PMID: 24694064 PMCID: PMC4030002 DOI: 10.1186/1297-9716-45-36] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/10/2014] [Indexed: 12/21/2022] Open
Abstract
Marek's disease virus (MDV) is a highly contagious herpesvirus which induces T-cell lymphoma in the chicken. This virus is still spreading in flocks despite forty years of vaccination, with important economical losses worldwide. The feather follicles, which anchor feathers into the skin and allow their morphogenesis, are considered as the unique source of MDV excretion, causing environmental contamination and disease transmission. Epithelial cells from the feather follicles are the only known cells in which high levels of infectious mature virions have been observed by transmission electron microscopy and from which cell-free infectious virions have been purified. Finally, feathers harvested on animals and dust are today considered excellent materials to monitor vaccination, spread of pathogenic viruses, and environmental contamination. This article reviews the current knowledge on MDV-skin interactions and discusses new approaches that could solve important issues in the future.
Collapse
Affiliation(s)
- Mathilde Couteaudier
- INRA, UMR1282, Infectious Diseases and Public Health, ISP, BIOVA team, F-37380 Nouzilly, France
| | - Caroline Denesvre
- INRA, UMR1282, Infectious Diseases and Public Health, ISP, BIOVA team, F-37380 Nouzilly, France
| |
Collapse
|