1
|
Wernike K, Beer M. More than a decade of research on Schmallenberg virus-Knowns and unknowns. Adv Virus Res 2024; 120:77-98. [PMID: 39455169 DOI: 10.1016/bs.aivir.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Schmallenberg virus, an arbovirus of the Orthobunyavirus genus that primarily infects ruminants, emerged in 2011 near the Dutch-German border region and subsequently caused a large number of abortions and the births of severely malformed newborns in the European livestock population. Immediate intensive research led to the development of reliable diagnostic tests, the identification of competent Culicoides vector species, and the elucidation of the pathogenesis in infected vertebrate hosts. In addition, the structure of the major antigenic domain has been elucidated in great detail, leading to the development of effective marker vaccine candidates. The knowledge gained over the last decade on the biology and pathogenesis of SBV and the experience acquired in its control will be of great value in the future for the control of any similar emerging pathogen of veterinary or public health importance such as Shuni or Oropouche virus. However, some important knowledge gaps remain, for example, the factors contributing to the highly variable transmission rate from dam to fetus or the viral factors responsible for the vector competence of Culicoides midges are largely unknown. Thus, questions still remain for the next decade of research on SBV and related viruses.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
2
|
Dastjerdi A, La Rocca SA, Karuna S, Finnegan C, Peake J, Steinbach F. Examining bull semen for residues of Schmallenberg virus RNA. Transbound Emerg Dis 2021; 69:e153-e160. [PMID: 34343411 PMCID: PMC9544961 DOI: 10.1111/tbed.14275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022]
Abstract
Schmallenberg orthobunyavirus (SBV) was initially detected in 2011 in Germany from dairy cattle with fever and decreased milk yield. The virus infection is now established in many parts of the world with recurrent epidemics. SBV is transmitted through midges and transplacental. No direct virus transmission including via breeding has ever been demonstrated. In some bulls, however, the virus is detectable transiently, in low to minute quantities, in semen post-infection. While the infection is considered of low impact for the dairy industry, some SBV-free countries have adopted a zero-risk approach requiring bull semen batches to be tested for SBV RNA residues prior to import. This, in turn, obligates a protocol to enable sensitive detection of SBV RNA in semen samples for export purposes. Here, we describe how we established a now ISO/IEC 17025 accredited protocol that can effectively detect minute quantities of SBV RNA in semen and also its application to monitor bull semen during two outbreaks in the United Kingdom in 2012 and 2016. The data demonstrate that only a small number of bulls temporarily shed low amounts of SBV.
Collapse
Affiliation(s)
- Akbar Dastjerdi
- Virology Department, Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, Surrey, UK
| | - S Anna La Rocca
- Virology Department, Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, Surrey, UK
| | - Siva Karuna
- Virology Department, Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, Surrey, UK
| | - Christopher Finnegan
- Virology Department, Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, Surrey, UK
| | - Julie Peake
- Virology Department, Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, Surrey, UK
| | - Falko Steinbach
- Virology Department, Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, Surrey, UK
| |
Collapse
|
3
|
Blitvich BJ, Magalhaes T, Laredo-Tiscareño SV, Foy BD. Sexual Transmission of Arboviruses: A Systematic Review. Viruses 2020; 12:v12090933. [PMID: 32854298 PMCID: PMC7552039 DOI: 10.3390/v12090933] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) are primarily maintained in nature in transmission cycles between hematophagous arthropods and vertebrate hosts, but an increasing number of arboviruses have been isolated from or indirectly detected in the urogenital tract and sexual secretions of their vertebrate hosts, indicating that further investigation on the possibility of sexual transmission of these viruses is warranted. The most widely recognized sexually-transmitted arbovirus is Zika virus but other arboviruses, including Crimean-Congo hemorrhagic fever virus and dengue virus, might also be transmitted, albeit occasionally, by this route. This review summarizes our current understanding on the ability of arboviruses to be sexually transmitted. We discuss the sexual transmission of arboviruses between humans and between vertebrate animals, but not arthropod vectors. Every taxonomic group known to contain arboviruses (Asfarviridae, Bunyavirales, Flaviviridae, Orthomyxoviridae, Reoviridae, Rhabdoviridae and Togaviridae) is covered.
Collapse
Affiliation(s)
- Bradley J. Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
- Correspondence: ; Tel.: +1-515-294-9861; Fax: +1-515-294-8500
| | - Tereza Magalhaes
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (T.M.); (B.D.F.)
| | - S. Viridiana Laredo-Tiscareño
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Brian D. Foy
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (T.M.); (B.D.F.)
| |
Collapse
|
4
|
Le Tortorec A, Matusali G, Mahé D, Aubry F, Mazaud-Guittot S, Houzet L, Dejucq-Rainsford N. From Ancient to Emerging Infections: The Odyssey of Viruses in the Male Genital Tract. Physiol Rev 2020; 100:1349-1414. [PMID: 32031468 DOI: 10.1152/physrev.00021.2019] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The male genital tract (MGT) is the target of a number of viral infections that can have deleterious consequences at the individual, offspring, and population levels. These consequences include infertility, cancers of male organs, transmission to the embryo/fetal development abnormalities, and sexual dissemination of major viral pathogens such as human immunodeficiency virus (HIV) and hepatitis B virus. Lately, two emerging viruses, Zika and Ebola, have additionally revealed that the human MGT can constitute a reservoir for viruses cleared from peripheral circulation by the immune system, leading to their sexual transmission by cured men. This represents a concern for future epidemics and further underlines the need for a better understanding of the interplay between viruses and the MGT. We review here how viruses, from ancient viruses that integrated the germline during evolution through old viruses (e.g., papillomaviruses originating from Neanderthals) and more modern sexually transmitted infections (e.g., simian zoonotic HIV) to emerging viruses (e.g., Ebola and Zika) take advantage of genital tract colonization for horizontal dissemination, viral persistence, vertical transmission, and endogenization. The MGT immune responses to viruses and the impact of these infections are discussed. We summarize the latest data regarding the sources of viruses in semen and the complex role of this body fluid in sexual transmission. Finally, we introduce key animal findings that are relevant for our understanding of viral infection and persistence in the human MGT and suggest future research directions.
Collapse
Affiliation(s)
- Anna Le Tortorec
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Giulia Matusali
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Dominique Mahé
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Florence Aubry
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Séverine Mazaud-Guittot
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Laurent Houzet
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Nathalie Dejucq-Rainsford
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| |
Collapse
|
5
|
Collins ÁB, Doherty ML, Barrett DJ, Mee JF. Schmallenberg virus: a systematic international literature review (2011-2019) from an Irish perspective. Ir Vet J 2019; 72:9. [PMID: 31624588 PMCID: PMC6785879 DOI: 10.1186/s13620-019-0147-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/05/2019] [Indexed: 11/10/2022] Open
Abstract
In Autumn 2011, nonspecific clinical signs of pyrexia, diarrhoea, and drop in milk yield were observed in dairy cattle near the German town of Schmallenberg at the Dutch/German border. Targeted veterinary diagnostic investigations for classical endemic and emerging viruses could not identify a causal agent. Blood samples were collected from animals with clinical signs and subjected to metagenomic analysis; a novel orthobunyavirus was identified and named Schmallenberg virus (SBV). In late 2011/early 2012, an epidemic of abortions and congenital malformations in calves, lambs and goat kids, characterised by arthrogryposis and hydranencephaly were reported in continental Europe. Subsequently, SBV RNA was confirmed in both aborted and congenitally malformed foetuses and also in Culicoides species biting midges. It soon became evident that SBV was an arthropod-borne teratogenic virus affecting domestic ruminants. SBV rapidly achieved a pan-European distribution with most countries confirming SBV infection within a year or two of the initial emergence. The first Irish case of SBV was confirmed in the south of the country in late 2012 in a bovine foetus. Since SBV was first identified in 2011, a considerable body of scientific research has been conducted internationally describing this novel emerging virus. The aim of this systematic review is to provide a comprehensive synopsis of the most up-to-date scientific literature regarding the origin of SBV and the spread of the Schmallenberg epidemic, in addition to describing the species affected, clinical signs, pathogenesis, transmission, risk factors, impact, diagnostics, surveillance methods and control measures. This review also highlights current knowledge gaps in the scientific literature regarding SBV, most notably the requirement for further research to determine if, and to what extent, SBV circulation occurred in Europe and internationally during 2017 and 2018. Moreover, recommendations are also made regarding future arbovirus surveillance in Europe, specifically the establishment of a European-wide sentinel herd surveillance program, which incorporates bovine serology and Culicoides entomology and virology studies, at national and international level to monitor for the emergence and re-emergence of arboviruses such as SBV, bluetongue virus and other novel Culicoides-borne arboviruses.
Collapse
Affiliation(s)
- Áine B Collins
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland.,2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Michael L Doherty
- 2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Damien J Barrett
- Department of Agriculture, Surveillance, Animal By-Products and TSE Division, Food and the Marine, Backweston, Celbridge, Co. Kildare Ireland
| | - John F Mee
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland
| |
Collapse
|
6
|
Potential use of hematological and acute phase protein parameters in the diagnosis of acute Schmallenberg virus infection in experimentally infected calves. Comp Immunol Microbiol Infect Dis 2019; 64:146-152. [PMID: 31174690 DOI: 10.1016/j.cimid.2019.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 11/20/2022]
Abstract
The initial viraemic phase of Schmallenberg virus (SBV) infection in bovine animals is characterized by the non-specific and inconspicuous clinical signs of pyrexia (>40 °C), drop in milk yield and sometimes diarrhea. As a result, the early detection of SBV epizootics can difficult, and typically only become apparent when the congenital form of the disease is observed. The aim of the study was to describe the course of the acute phase response and haematological findings in bovine calves following experimental SBV infection. No clinical signs except for increase in rectal temperature were observed in the calves inoculated subcutaneously with a Polish strain of SBV. Viral RNA was detected in serum at 2 and 4 days post inoculation (dpi). SBV antibodies were first detected by ELISA (9-21 dpi), and subsequently by virus neutralization test (14-32 dpi). The hematological parameters showed a reduction in mid-size leucocytes (MID), and also in red blood cell count (RBC). An increase in mean corpuscular hemoglobin was also observed in SBV infected calves. No significant difference in acute phase proteins (APP) was observed between experimentally infected and control calves, suggesting limited potential as diagnostic biomarker of acute SBV infection.
Collapse
|
7
|
Abstract
In late 2011, unspecific clinical symptoms such as fever, diarrhea, and decreased milk production were observed in dairy cattle in the Dutch/German border region. After exclusion of classical endemic and emerging viruses by targeted diagnostic systems, blood samples from acutely diseased cows were subjected to metagenomics analysis. An insect-transmitted orthobunyavirus of the Simbu serogroup was identified as the causative agent and named Schmallenberg virus (SBV). It was one of the first detections of the introduction of a novel virus of veterinary importance to Europe using the new technology of next-generation sequencing. The virus was subsequently isolated from identical samples as used for metagenomics analysis in insect and mammalian cell lines and disease symptoms were reproduced in calves experimentally infected with both, this culture-grown virus and blood samples of diseased cattle. Since its emergence, SBV spread very rapidly throughout the European ruminant population causing mild unspecific disease in adult animals, but also premature birth or stillbirth and severe fetal malformation when naive dams were infected during a critical phase of gestation. In the following years, SBV recirculated regularly to a larger extend; in the 2014 and 2016 vector seasons the virus was again repeatedly detected in the blood of adult ruminants, and in the following winter and spring months, a number of malformed calves and lambs was born. The genome of viruses present in viremic adult animals showed a very high sequence stability; in sequences generated between 2012 and 2016, only a few amino acid substitutions in comparison to the initial SBV isolate could be detected. In contrast, a high sequence variability was identified in the aminoterminal part of the glycoprotein Gc-encoding region of viruses present in the brain of malformed newborns. This mutation hotspot is independent of the region or host species from which the samples originated and is potentially involved in immune evasion mechanisms.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
8
|
Abstract
The purpose of this paper is to review scientific evidence concerning pathogens that could potentially be transmitted via bovine semen. As a result of a careful analysis of the characteristics of infections that may cause transmission of disease through semen, effective control procedures can be identified that provide minimal constraint to the introduction of new bulls into herds for natural breeding and importation of valuable novel genetics through artificial insemination. The potential for transmission through bovine semen and corresponding effective control procedures are described for bovine herpesvirus 1, bovine viral diarrhea virus, bovine leukemia virus, lumpy skin disease virus, bluetongue virus, foot-and-mouth disease virus, and Schmallenberg virus. Brief consideration is also provided regarding the potential for transmission via semen of Tritrichomonas foetus, Campylobacter fetus venerealis, Brucella abortus, Leptospira spp., Histophilus somni, Ureaplasma diversum, Mycobacterium avium subsp. paratuberculosis, Chlamydiaceae, Mycobacterium bovis, Coxiella burnetii, Mycoplasma mycoides ssp. mycoides and Neospora caninum. Thoughtful and systematic control procedures can ensure the safety of introducing new bulls and cryopreserved semen into cattle production systems.
Collapse
|
9
|
Laloy E, Braud C, Bréard E, Kaandorp J, Bourgeois A, Kohl M, Meyer G, Sailleau C, Viarouge C, Zientara S, Chai N. Schmallenberg Virus in Zoo Ruminants, France and the Netherlands. Emerg Infect Dis 2018; 22:2201-2203. [PMID: 27869605 PMCID: PMC5189124 DOI: 10.3201/eid2212.150983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
10
|
Zhai SL, Lv DH, Wen XH, Zhu XL, Yang YQ, Chen QL, Wei WK. Preliminary serological evidence for Schmallenberg virus infection in China. Trop Anim Health Prod 2017; 50:449-453. [DOI: 10.1007/s11250-017-1433-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/20/2017] [Indexed: 11/28/2022]
|
11
|
Stavrou A, Daly JM, Maddison B, Gough K, Tarlinton R. How is Europe positioned for a re-emergence of Schmallenberg virus? Vet J 2017; 230:45-51. [PMID: 28668462 DOI: 10.1016/j.tvjl.2017.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/23/2017] [Accepted: 04/17/2017] [Indexed: 11/30/2022]
Abstract
Schmallenberg virus (SBV) caused a large scale epidemic in Europe from 2011 to 2013, infecting ruminants and causing foetal deformities after infection of pregnant animals. The main impact of the virus was financial loss due to restrictions on trade of animals, meat and semen. Although effective vaccines were produced, their uptake was never high. Along with the subsequent decline in new SBV infections and natural replacement of previously exposed livestock, this has resulted in a decrease in the number of protected animals. Recent surveillance has shown that a large population of naïve animals is currently present in Europe and that the virus is circulating at a low level. These changes in animal status, in combination with favourable conditions for insect vectors, may open the door to the re-emergence of SBV and another large scale outbreak in Europe. This review details the potential and preparedness for SBV re-emergence in Europe, discusses possible co-ordinated sentinel monitoring programmes for ruminant seroconversion and the presence of SBV in the insect vectors, and provides an overview of the economic impact associated with diagnosis, control and the effects of non-vaccination.
Collapse
Affiliation(s)
- Anastasios Stavrou
- School of Veterinary Medicine and Science the University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Janet M Daly
- School of Veterinary Medicine and Science the University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Ben Maddison
- Biotechnology Group, ADAS, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Kevin Gough
- School of Veterinary Medicine and Science the University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Rachael Tarlinton
- School of Veterinary Medicine and Science the University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom.
| |
Collapse
|
12
|
Boshra HY, Charro D, Lorenzo G, Sánchez I, Lazaro B, Brun A, Abrescia NGA. DNA vaccination regimes against Schmallenberg virus infection in IFNAR -/- mice suggest two targets for immunization. Antiviral Res 2017; 141:107-115. [PMID: 28235558 DOI: 10.1016/j.antiviral.2017.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/04/2017] [Accepted: 02/20/2017] [Indexed: 11/19/2022]
Abstract
Schmallenberg virus (SBV) is an RNA virus of the Bunyaviridae family, genus Orthobunyavirus that infects wild and livestock species of ruminants. While inactivated and attenuated vaccines have been shown to prevent SBV infection, little is known about their mode of immunity; specifically, which components of the virus are responsible for inducing immunological responses in the host. As previous DNA vaccination experiments on other bunyaviruses have found that glycoproteins, as well as modified (i.e. ubiquitinated) nucleoproteins (N) can confer immunity against virulent viral challenge, constructs encoding for fragments of SBV glycoproteins GN and GC, as well as ubiquitinated and non-ubiquitinated N were cloned in mammalian expression vectors, and vaccinated intramuscularly in IFNAR-/- mice. Upon viral challenge with virulent SBV, disease progression was monitored. Both the ubiquitinated and non-ubiquitinated nucleoprotein candidates elicited high titers of antibodies against SBV, but only the non-ubiquitinated candidate induced statistically significant protection of the vaccinated mice from viral challenge. Another construct encoding for a putative ectodomain of glycoprotein GC (segment aa. 678-947) also reduced the SBV-viremia in mice after SBV challenge. When compared to other experimental groups, both the nucleoprotein and GC-ectodomain vaccinated groups displayed significantly reduced viremia, as well as exhibiting no clinical signs of SBV infection. These results show that both the nucleoprotein and the putative GC-ectodomain can serve as protective immunological targets against SBV infection, highlighting that viral glycoproteins, as well as nucleoproteins are potent targets in vaccination strategies against bunyaviruses.
Collapse
Affiliation(s)
- Hani Y Boshra
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Spain
| | - Diego Charro
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Spain
| | | | | | | | | | - Nicola G A Abrescia
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
13
|
Zhang Y, Wu S, Song S, Lv J, Feng C, Lin X. Generation and characterization of a potentially applicable Vero cell line constitutively expressing the Schmallenberg virus nucleocapsid protein. Cytotechnology 2017; 69:145-156. [PMID: 28083834 DOI: 10.1007/s10616-016-0046-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/22/2016] [Indexed: 01/17/2023] Open
Abstract
Schmallenberg virus (SBV) is a Culicoides-transmitted orthobunyavirus that poses a threat to susceptible livestock species such as cattle, sheep and goats. The nucleocapsid (N) protein of SBV is an ideal diagnostic antigen for the detection of viral infection. In this study, a stable Vero cell line, Vero-EGFP-SBV-N, constitutively expressing the SBV-N protein was established using a lentivirus system combined with puromycin selection. This cell line spontaneously emitted green fluorescent signals distributed throughout the cytoplasm, in which the expression of SBV-N fusion protein was confirmed by western blot analysis. The expression of SBV-N protein in Vero-EGFP-SBV-N cells was stable for more than fifty passages without puromycin pressure. The SBV-N fusion protein contained both an N-terminal enhanced green fluorescent protein (EGFP) tag and a C-terminal hexa-histidine (6 × His) tag, by which the N protein was successfully purified using Ni-NTA affinity chromatography. The cell line was further demonstrated to be reactive with SBV antisera and an anti-SBV monoclonal antibody in indirect immunofluorescence assays. Taken together, our results demonstrate that the Vero-EGFP-SBV-N cell line has potential for application in the serological diagnosis of SBV infection.
Collapse
Affiliation(s)
- Yongning Zhang
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Building No. 241 Huixinli, Chaoyang District, Beijing, 100029, China
| | - Shaoqiang Wu
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Building No. 241 Huixinli, Chaoyang District, Beijing, 100029, China
| | - Shanshan Song
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Building No. 241 Huixinli, Chaoyang District, Beijing, 100029, China
| | - Jizhou Lv
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Building No. 241 Huixinli, Chaoyang District, Beijing, 100029, China
| | - Chunyan Feng
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Building No. 241 Huixinli, Chaoyang District, Beijing, 100029, China
| | - Xiangmei Lin
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Building No. 241 Huixinli, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
14
|
Kęsik-Maliszewska J, Larska M. Detection of Schmallenberg Virus RNA in Bull Semen in Poland. Pol J Vet Sci 2016; 19:655-657. [DOI: 10.1515/pjvs-2016-0083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The detection of Schmallenberg virus (SBV) in the breeding bull semen raised the question of the possibility of venereal transmission of SBV which could result in cost-intensive restrictions in the trade of bovine semen. In order to evaluate the presence of SBV RNA in bovine semen, 131 bull semen samples from four locations in Poland collected between 2013 and 2015 were analysed by RT-PCR for viral RNA. SBV RNA was detected in 5.3% of the samples. The study has revealed that application of an appropriate RNA extraction method is crucial to detect virus excretion via semen.
Collapse
|
15
|
Wernike K, Beer M, Hoffmann B. Schmallenberg Virus Infection Diagnosis: Results of a German Proficiency Trial. Transbound Emerg Dis 2016; 64:1405-1410. [DOI: 10.1111/tbed.12517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 11/27/2022]
Affiliation(s)
- K. Wernike
- Institute of Diagnostic Virology; Friedrich-Loeffler-Institut; Greifswald - Insel Riems Germany
| | - M. Beer
- Institute of Diagnostic Virology; Friedrich-Loeffler-Institut; Greifswald - Insel Riems Germany
| | - B. Hoffmann
- Institute of Diagnostic Virology; Friedrich-Loeffler-Institut; Greifswald - Insel Riems Germany
| |
Collapse
|
16
|
Laloy E, Riou M, Barc C, Belbis G, Bréard E, Breton S, Cordonnier N, Crochet D, Delaunay R, Moreau J, Pozzi N, Raimbourg M, Sarradin P, Trapp S, Viarouge C, Zientara S, Ponsart C. Schmallenberg virus: experimental infection in goats and bucks. BMC Vet Res 2015; 11:221. [PMID: 26297244 PMCID: PMC4546222 DOI: 10.1186/s12917-015-0516-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022] Open
Abstract
Background Schmallenberg virus (SBV) is an emerging Orthobunyavirus of ruminant livestock species currently circulating in Europe. SBV causes a subclinical or mild disease in adult animals but vertical transmission to pregnant dams may lead to severe malformations in the offspring. Data on the onset of clinical signs, viremia and seroconversion in experimentally infected adult animals are available for cattle and sheep but are still lacking for goats. For a better understanding of the pathogenesis of SBV infection in adult ruminants, we carried out experimental infections in adult goats. Our specific objectives were: (i) to record clinical signs, viremia and seroconversion; (ii) to monitor viral excretion in the semen of infected bucks; (iii) to determine in which tissues SBV replication took place and virus-induced lesions developed. Results Four goats and two bucks were inoculated with SBV. Virus inoculation was followed by a short viremic phase lasting 3 to 4 days and a seroconversion occurring between days 7 and 14 pi in all animals. The inoculated goats did not display any clinical signs, gross lesions or histological lesions. Viral genomic RNA was found in one ovary but could not be detected in other organs. SBV RNA was not found in the semen samples collected from two inoculated bucks. Conclusions In the four goats and two bucks, the kinetics of viremia and seroconversion appeared similar to those previously described for sheep and cattle. Our limited set of data provides no evidence of viral excretion in buck semen.
Collapse
Affiliation(s)
- E Laloy
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Unité d'anatomie pathologique, 7 avenue du Général de Gaulle, 94704, Maisons-Alfort, France.
| | - M Riou
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie Expérimentale, secteur 3, route de Crotelles, 37380, Nouzilly, France.
| | - C Barc
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie Expérimentale, secteur 3, route de Crotelles, 37380, Nouzilly, France.
| | - G Belbis
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Unité de pathologie des animaux de production, 7 avenue du Général de Gaulle, 94704, Maisons-Alfort, France.
| | - E Bréard
- ANSES, UMR 1161 Virologie ANSES-INRA-ENVA, 23 avenue du Général de Gaulle, 94704, Maisons-Alfort, France.
| | - S Breton
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie Expérimentale, secteur 3, route de Crotelles, 37380, Nouzilly, France.
| | - N Cordonnier
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Unité d'anatomie pathologique, 7 avenue du Général de Gaulle, 94704, Maisons-Alfort, France.
| | - D Crochet
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie Expérimentale, secteur 3, route de Crotelles, 37380, Nouzilly, France.
| | - R Delaunay
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie Expérimentale, secteur 3, route de Crotelles, 37380, Nouzilly, France.
| | - J Moreau
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie Expérimentale, secteur 3, route de Crotelles, 37380, Nouzilly, France.
| | - N Pozzi
- LNCR, Laboratoire national de contrôle des reproducteurs, 13 rue Jouët, 94703, Maisons-Alfort, France.
| | - M Raimbourg
- LNCR, Laboratoire national de contrôle des reproducteurs, 13 rue Jouët, 94703, Maisons-Alfort, France.
| | - P Sarradin
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie Expérimentale, secteur 3, route de Crotelles, 37380, Nouzilly, France.
| | - S Trapp
- INRA Centre Val de Loire, UMR 1282 Infectiologie et Santé Publique, 37380, Nouzilly, France. .,Université François Rabelais de Tours, UMR 1282 Infectiologie et Santé Publique, 37000, Tours, France.
| | - C Viarouge
- ANSES, UMR 1161 Virologie ANSES-INRA-ENVA, 23 avenue du Général de Gaulle, 94704, Maisons-Alfort, France.
| | - S Zientara
- ANSES, UMR 1161 Virologie ANSES-INRA-ENVA, 23 avenue du Général de Gaulle, 94704, Maisons-Alfort, France.
| | - C Ponsart
- LNCR, Laboratoire national de contrôle des reproducteurs, 13 rue Jouët, 94703, Maisons-Alfort, France.
| |
Collapse
|
17
|
Zientara S, Ponsart C. Viral emergence and consequences for reproductive performance in ruminants: two recent examples (bluetongue and Schmallenberg viruses). Reprod Fertil Dev 2015; 27:63-71. [PMID: 25472045 DOI: 10.1071/rd14367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Viruses can emerge unexpectedly in different regions of the world and may have negative effects on reproductive performance. This paper describes the consequences for reproductive performance that have been reported after the introduction to Europe of two emerging viruses, namely the bluetongue (BTV) and Schmallenberg (SBV) viruses. Following the extensive spread of BTV in northern Europe, large numbers of pregnant cows were infected with BTV serotype 8 (BTV-8) during the breeding season of 2007. Initial reports of some cases of abortion and hydranencephaly in cattle in late 2007 were followed by quite exhaustive investigations in the field that showed that 10%-35% of healthy calves were infected with BTV-8 before birth. Transplacental transmission and fetal abnormalities in cattle and sheep had been previously observed only with strains of the virus that were propagated in embryonated eggs and/or cell culture, such as vaccine strains or vaccine candidate strains. After the unexpected emergence of BTV-8 in northern Europe in 2006, another arbovirus, namely SBV, emerged in Europe in 2011, causing a new economically important disease in ruminants. This new virus, belonging to the Orthobunyavirus genus in the Bunyaviridae family, was first detected in Germany, in The Netherlands and in Belgium in 2011 and soon after in the UK, France, Italy, Luxembourg, Spain, Denmark and Switzerland. Adult animals show no or only mild clinical symptoms, whereas infection during a critical period of gestation can lead to abortion, stillbirth or the birth of severely malformed offspring. The impact of the disease is usually greater in sheep than in cattle. The consequences of SBV infection in domestic ruminants and more precisely the secondary effects on off-springs will be described.
Collapse
Affiliation(s)
- Stéphan Zientara
- UPE, ANSES, INRA, ENVA, UMR 1161 ANSES/INRA/ENVA, Laboratoire de santé animale d'Alfort, 23 Avenue du Général de gaulle, 94703 Maisons-Alfort, France
| | - Claire Ponsart
- ANSES, Unité des zoonoses bactériennes, Laboratoire de santé animale d'Alfort, 23 Avenue du Général de gaulle, 94703 Maisons-Alfort, France
| |
Collapse
|
18
|
Schulz C, van der Poel WHM, Ponsart C, Cay AB, Steinbach F, Zientara S, Beer M, Hoffmann B. European interlaboratory comparison of Schmallenberg virus (SBV) real-time RT-PCR detection in experimental and field samples: The method of extraction is critical for SBV RNA detection in semen. J Vet Diagn Invest 2015; 27:422-30. [PMID: 26185122 DOI: 10.1177/1040638715593798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Molecular methods for the detection of Schmallenberg virus (SBV) RNA were rapidly developed after the emergence of this novel orthobunyavirus in Europe. The SBV epizootic wave has declined, but infectious SBV in SBV RNA-positive semen remains a possible risk for the distribution of SBV. However, the abilities of SBV molecular detection methods used at European laboratories have not yet been assessed, to our knowledge. The performances of extraction and real-time reverse transcription polymerase chain reaction (RT-qPCR) methods used at 27 German and 17 other European laboratories for SBV RNA detection in the matrices of whole blood, serum, tissue homogenate, RNA eluates, and bovine semen were evaluated in 2 interlaboratory trials with special emphasis on semen extraction methods. For reliable detection of viral genome in bovine semen samples, highly effective extraction methods are essential to cope with the potential inhibitory effects of semen components on PCR results. All methods used by the 44 laboratories were sufficiently robust to detect SBV RNA with high diagnostic sensitivity (100%) and specificity (95.8%) in all matrices, except semen. The trials demonstrated that the published recommended semen extraction methods (Hoffmann et al. 2013) and a combination of TRIzol LS with an alternative extraction kit have a considerably higher diagnostic sensitivity to detect SBV RNA in semen up to a detection limit of Cq ≤35 compared to other extraction methods used. A thorough validation of extraction methods with standardized semen batches is essential before their use for SBV RNA detection in bovine semen.
Collapse
Affiliation(s)
- Claudia Schulz
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany (Schulz, Beer, Hoffmann)Central Veterinary Institute of Wageningen University and Research Centre, Department of Virology, Lelystad, The Netherlands (Van der Poel)Virology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France (Ponsart, Zientara)Enzootic and (re)emerging Diseases Unit, Veterinary and Agrochemical Research Centre, Brussel, Belgium (Cay)Virology Department, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, United Kingdom (Steinbach)
| | - Wim H M van der Poel
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany (Schulz, Beer, Hoffmann)Central Veterinary Institute of Wageningen University and Research Centre, Department of Virology, Lelystad, The Netherlands (Van der Poel)Virology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France (Ponsart, Zientara)Enzootic and (re)emerging Diseases Unit, Veterinary and Agrochemical Research Centre, Brussel, Belgium (Cay)Virology Department, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, United Kingdom (Steinbach)
| | - Claire Ponsart
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany (Schulz, Beer, Hoffmann)Central Veterinary Institute of Wageningen University and Research Centre, Department of Virology, Lelystad, The Netherlands (Van der Poel)Virology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France (Ponsart, Zientara)Enzootic and (re)emerging Diseases Unit, Veterinary and Agrochemical Research Centre, Brussel, Belgium (Cay)Virology Department, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, United Kingdom (Steinbach)
| | - Ann Brigitte Cay
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany (Schulz, Beer, Hoffmann)Central Veterinary Institute of Wageningen University and Research Centre, Department of Virology, Lelystad, The Netherlands (Van der Poel)Virology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France (Ponsart, Zientara)Enzootic and (re)emerging Diseases Unit, Veterinary and Agrochemical Research Centre, Brussel, Belgium (Cay)Virology Department, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, United Kingdom (Steinbach)
| | - Falko Steinbach
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany (Schulz, Beer, Hoffmann)Central Veterinary Institute of Wageningen University and Research Centre, Department of Virology, Lelystad, The Netherlands (Van der Poel)Virology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France (Ponsart, Zientara)Enzootic and (re)emerging Diseases Unit, Veterinary and Agrochemical Research Centre, Brussel, Belgium (Cay)Virology Department, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, United Kingdom (Steinbach)
| | - Stéphan Zientara
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany (Schulz, Beer, Hoffmann)Central Veterinary Institute of Wageningen University and Research Centre, Department of Virology, Lelystad, The Netherlands (Van der Poel)Virology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France (Ponsart, Zientara)Enzootic and (re)emerging Diseases Unit, Veterinary and Agrochemical Research Centre, Brussel, Belgium (Cay)Virology Department, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, United Kingdom (Steinbach)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany (Schulz, Beer, Hoffmann)Central Veterinary Institute of Wageningen University and Research Centre, Department of Virology, Lelystad, The Netherlands (Van der Poel)Virology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France (Ponsart, Zientara)Enzootic and (re)emerging Diseases Unit, Veterinary and Agrochemical Research Centre, Brussel, Belgium (Cay)Virology Department, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, United Kingdom (Steinbach)
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany (Schulz, Beer, Hoffmann)Central Veterinary Institute of Wageningen University and Research Centre, Department of Virology, Lelystad, The Netherlands (Van der Poel)Virology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France (Ponsart, Zientara)Enzootic and (re)emerging Diseases Unit, Veterinary and Agrochemical Research Centre, Brussel, Belgium (Cay)Virology Department, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, United Kingdom (Steinbach)
| |
Collapse
|
19
|
Claine F, Coupeau D, Wiggers L, Muylkens B, Kirschvink N. Schmallenberg virus infection of ruminants: challenges and opportunities for veterinarians. VETERINARY MEDICINE-RESEARCH AND REPORTS 2015; 6:261-272. [PMID: 30101112 PMCID: PMC6067779 DOI: 10.2147/vmrr.s83594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In 2011, European ruminant flocks were infected by Schmallenberg virus (SBV) leading to transient disease in adult cattle but abortions and congenital deformities in calves, lambs, and goat kids. SBV belonging to the Simbu serogroup (family Bunyaviridae and genus Orthobunyavirus) was first discovered in the same region where bluetongue virus serotype 8 (BTV-8) emerged 5 years before. Both viruses are transmitted by biting midges (Culicoides spp.) and share several similarities. This paper describes the current knowledge of temporal and geographical spread, molecular virology, transmission and susceptible species, clinical signs, diagnosis, prevention and control, impact on ruminant health, and productivity of SBV infection in Europe, and compares SBV infection with BTV-8 infection in ruminants.
Collapse
Affiliation(s)
- François Claine
- Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium,
| | - Damien Coupeau
- Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium,
| | - Laetitia Wiggers
- Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium,
| | - Benoît Muylkens
- Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium,
| | - Nathalie Kirschvink
- Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium,
| |
Collapse
|
20
|
Impact of temperature, feeding preference and vaccination on Schmallenberg virus transmission in Scotland. Sci Rep 2014; 4:5746. [PMID: 25034464 PMCID: PMC4102919 DOI: 10.1038/srep05746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/01/2014] [Indexed: 11/17/2022] Open
Abstract
First identified in 2011, Schmallenberg virus (SBV) is principally transmitted by Culicoides midges and affects ruminants. Clinical presentation is typified by foetal abnormalities, but despite very high infection rates, relatively few animals present with clinical signs. In this paper we further develop a previously published stochastic mathematical model of SBV spread to investigate the optimal deployment of a vaccine for SBV in Scotland, a country that has experienced only sporadic and isolated cases of SBV. We consider the use of the vaccine under different temperatures and explore the effects of a vector preference for feeding on cattle. We demonstrate that vaccine impact is optimised by targeting it at the high risk areas in the south of Scotland, or vaccinating only cattle. At higher than average temperatures, and hence increased transmission potential, the relative impact of vaccination is considerably enhanced. Vaccine impact is also enhanced if vectors feed preferentially on cattle. These findings are of considerable importance when planning control strategies for SBV and also have important implications for management of other arboviruses such as Bluetongue virus. Environmental determinants and feeding preferences should be researched further to inform development of effective control strategies.
Collapse
|
21
|
|