1
|
Lal JC, Mao C, Zhou Y, Gore-Panter SR, Rennison JH, Lovano BS, Castel L, Shin J, Gillinov AM, Smith JD, Barnard J, Van Wagoner DR, Luo Y, Cheng F, Chung MK. Transcriptomics-based network medicine approach identifies metformin as a repurposable drug for atrial fibrillation. Cell Rep Med 2022; 3:100749. [PMID: 36223777 PMCID: PMC9588904 DOI: 10.1016/j.xcrm.2022.100749] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
Effective drugs for atrial fibrillation (AF) are lacking, resulting in significant morbidity and mortality. This study demonstrates that network proximity analysis of differentially expressed genes from atrial tissue to drug targets can help prioritize repurposed drugs for AF. Using enrichment analysis of drug-gene signatures and functional testing in human inducible pluripotent stem cell (iPSC)-derived atrial-like cardiomyocytes, we identify metformin as a top repurposed drug candidate for AF. Using the active compactor, a new design analysis of large-scale longitudinal electronic health record (EHR) data, we determine that metformin use is significantly associated with a reduced risk of AF (odds ratio = 0.48, 95%, confidence interval [CI] 0.36-0.64, p < 0.001) compared with standard treatments for diabetes. This study utilizes network medicine methodologies to identify repurposed drugs for AF treatment and identifies metformin as a candidate drug.
Collapse
Affiliation(s)
- Jessica C. Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., NE5-305, Cleveland, OH 44195, USA,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Chengsheng Mao
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., NE5-305, Cleveland, OH 44195, USA
| | - Shamone R. Gore-Panter
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA,Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Julie H. Rennison
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Beth S. Lovano
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Laurie Castel
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jiyoung Shin
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA
| | - A. Marc Gillinov
- Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jonathan D. Smith
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA,Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John Barnard
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - David R. Van Wagoner
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yuan Luo
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA,Corresponding author
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., NE5-305, Cleveland, OH 44195, USA,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Corresponding author
| | - Mina K. Chung
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA,Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, 9500 Euclid Ave., J2-2, OH 44195, USA,Corresponding author
| |
Collapse
|
2
|
Abstract
Transforming growth factor-β (TGFβ) isoforms are upregulated and activated in myocardial diseases and have an important role in cardiac repair and remodelling, regulating the phenotype and function of cardiomyocytes, fibroblasts, immune cells and vascular cells. Cardiac injury triggers the generation of bioactive TGFβ from latent stores, through mechanisms involving proteases, integrins and specialized extracellular matrix (ECM) proteins. Activated TGFβ signals through the SMAD intracellular effectors or through non-SMAD cascades. In the infarcted heart, the anti-inflammatory and fibroblast-activating actions of TGFβ have an important role in repair; however, excessive or prolonged TGFβ signalling accentuates adverse remodelling, contributing to cardiac dysfunction. Cardiac pressure overload also activates TGFβ cascades, which initially can have a protective role, promoting an ECM-preserving phenotype in fibroblasts and preventing the generation of injurious, pro-inflammatory ECM fragments. However, prolonged and overactive TGFβ signalling in pressure-overloaded cardiomyocytes and fibroblasts can promote cardiac fibrosis and dysfunction. In the atria, TGFβ-mediated fibrosis can contribute to the pathogenic substrate for atrial fibrillation. Overactive or dysregulated TGFβ responses have also been implicated in cardiac ageing and in the pathogenesis of diabetic, genetic and inflammatory cardiomyopathies. This Review summarizes the current evidence on the role of TGFβ signalling in myocardial diseases, focusing on cellular targets and molecular mechanisms, and discussing challenges and opportunities for therapeutic translation.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Li J, Yang Y, Ng CY, Zhang Z, Liu T, Li G. Association of Plasma Transforming Growth Factor-β1 Levels and the Risk of Atrial Fibrillation: A Meta-Analysis. PLoS One 2016; 11:e0155275. [PMID: 27171383 PMCID: PMC4865111 DOI: 10.1371/journal.pone.0155275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/26/2016] [Indexed: 11/30/2022] Open
Abstract
Introduction Numerous studies have demonstrated that plasma transforming growth factor-β1 (TGF-β1) may be involved in the pathogenesis of atrial fibrillation (AF), but some discrepancy remained. We performed a meta-analysis to evaluate the association between the plasma level of TGF-β1 and the risk of AF. Methods Published clinical studies evaluating the association between the plasma level of TGF-β1 and the risk of AF were retrieved from PubMed and EMBASE databases. Two reviewers independently evaluated the quality of the included studies and extracted study data. Subgroup analysis and sensitivity analysis were performed to evaluate for heterogeneity between studies. Results Of the 395 studies identified initially, 13 studies were included into our analysis, with a total of 3354 patients. Higher plasma level of TGF-β1 was associated with increased risk of AF when evaluated as both a continuous variable (SMD 0.67; 95%CI 0.29–1.05) and a categorical variable (OR 1.01, 95% CI 1.01–1.02). Conclusions This meta-analysis suggests an association between elevated plasma TGF-β1 and new onset AF. Additional studies with larger sample sizes are needed to further investigate the relationship between plasma TGF-β1 and the occurrence of AF.
Collapse
Affiliation(s)
- Jiao Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| | - Yajuan Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| | - Chee Yuan Ng
- Cardiac Arrhythmia Service, Massachusetts General Hospital, 55 Fruit St., Boston, Massachusetts, 02114, United States of America
| | - Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
- * E-mail: (TL); (GL)
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
- * E-mail: (TL); (GL)
| |
Collapse
|
4
|
Lopez-de la Mora DA, Sanchez-Roque C, Montoya-Buelna M, Sanchez-Enriquez S, Lucano-Landeros S, Macias-Barragan J, Armendariz-Borunda J. Role and New Insights of Pirfenidone in Fibrotic Diseases. Int J Med Sci 2015; 12:840-7. [PMID: 26640402 PMCID: PMC4643073 DOI: 10.7150/ijms.11579] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 07/16/2015] [Indexed: 12/16/2022] Open
Abstract
Pirfenidone (PFD) is a non-peptide synthetic molecule issued as a broad-spectrum anti-fibrotic drug with the ability to decrease TGF-β1, TNF-α, PDGF and COL1A1 expression, which is highly related to prevent or remove excessive deposition of scar tissue in several organs. Basic and clinical evidence suggests that PFD may safely slow or inhibit the progressive fibrosis swelling after tissue injuries. Furthermore, a number of evidence suggests that this molecule will have positive effects in the treatment of other inflammatory diseases. This review contains current research in which PFD has been used as the treatment of several diseases, and focus mainly in the outcomes related to improve inflammation and fibrogenesis. Therefore, the main goal of this review is to focus on the novel findings of PFD efficacy rather than deepen in the chemical aspects of the molecule.
Collapse
Affiliation(s)
- David Alejandro Lopez-de la Mora
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico
| | - Cibeles Sanchez-Roque
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico
| | - Margarita Montoya-Buelna
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico
| | - Sergio Sanchez-Enriquez
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico
| | - Silvia Lucano-Landeros
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico
| | - Jose Macias-Barragan
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico. ; 2. Departamento de Ciencias de la Salud, CUValles, University of Guadalajara, Guadalajara - Ameca km. 45.5, Ameca (46600), Mexico
| | - Juan Armendariz-Borunda
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico
| |
Collapse
|
5
|
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. However, the development of preventative therapies for AF has been disappointing. The infiltration of immune cells and proteins that mediate the inflammatory response in cardiac tissue and circulatory processes is associated with AF. Furthermore, the presence of inflammation in the heart or systemic circulation can predict the onset of AF and recurrence in the general population, as well as in patients after cardiac surgery, cardioversion, and catheter ablation. Mediators of the inflammatory response can alter atrial electrophysiology and structural substrates, thereby leading to increased vulnerability to AF. Inflammation also modulates calcium homeostasis and connexins, which are associated with triggers of AF and heterogeneous atrial conduction. Myolysis, cardiomyocyte apoptosis, and the activation of fibrotic pathways via fibroblasts, transforming growth factor-β and matrix metalloproteases are also mediated by inflammatory pathways, which can all contribute to structural remodelling of the atria. The development of thromboembolism, a detrimental complication of AF, is also associated with inflammatory activity. Understanding the complex pathophysiological processes and dynamic changes of AF-associated inflammation might help to identify specific anti-inflammatory strategies for the prevention of AF.
Collapse
|
6
|
Gu GL, Yang QY, Zeng RL, Xu XL. The association between BMP4 gene polymorphism and its serum level with the incidence of LVH in hypertensive patients. J Transl Med 2015; 13:14. [PMID: 25591903 PMCID: PMC4324029 DOI: 10.1186/s12967-014-0368-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
Background Bone morphogenic proteins 4 (BMP4) is associated with cardiac remodeling under different conditions. However, the role of BMP4 and its gene polymorphism in the incidence of left ventricular hypertrophy (LVH) in hypertensive patients remains unknown. Methods A total of 1265 patients diagnosed with essential hypertension (EH) were recruited. Patients were assigned to LVH+ (n = 420) and LVH- (n = 845) groups. serum BMP4 level was measured and two single nucleotide polymorphism (SNPs) polymorphisms, 6007C > T and -5826G > A of BMP4 gene were genotyped. We also inhibited the BMP4 by small interfering RNA (siRNA). The effect of BMP4 on the hypertrophic response in Human Cardiomyocytes AC16 cells was studied. Results We found that the 6007C > T polymorphism of the BMP4 gene and the serum BMP4 level were significantly associated with the risk to develop LVH. With TT as reference, multivariate logistic regression analysis showed the 6007CC genotype carriers had a higher susceptibility to LVH incidence (adjusted OR = 2.65, 95% CI: 1.63-4.31, adjusted P < 0.001). Our in vitro study shows that the BMP4 inhibition in cardiomyocyte by si-RNA technique significantly decreased the Ang II induced cardiomyocyte size and protein content per cell, indicating the importance of BMP4 in the cardiomyocyte hypertrophy. Conclusion Collectively, our data suggest that both the 6007C > T of the BMP4 gene and the serum BMP4 level may be used as potential marker for LVH incidence among the EH patients. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0368-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- G L Gu
- Department of cardiovascular diseases, Jiangyin Hospital of traditional Chinese medicine affiliated Nanjing University of Chinese Medicine, Jiangyin, 214400, Jiangsu, China.
| | - Q Y Yang
- Department of cardiovascular diseases, Wuxi Hospital of traditional Chinese medicine, Jiangyin, 214400, Jiangsu, China.
| | - R L Zeng
- Department of cardiovascular diseases, The People's Hospital of Jiangyin, Jiangyin, 214400, Jiangsu, China.
| | - X L Xu
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai, 214400, PR China.
| |
Collapse
|
7
|
Lin X, Wu N, Shi Y, Wang S, Tan K, Shen Y, Dai H, Zhong J. Association between transforming growth factor β1 and atrial fibrillation in essential hypertensive patients. Clin Exp Hypertens 2014; 37:82-7. [PMID: 25496287 DOI: 10.3109/10641963.2014.913600] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Xianru Lin
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China and
| | - Na Wu
- Department of Cardiology, Qingdao Municipal Hospital, Medical College, Qingdao University, Jinan, China
| | - Yue Shi
- Department of Cardiology, Qingdao Municipal Hospital, Medical College, Qingdao University, Jinan, China
| | - Shoudong Wang
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China and
| | - Kai Tan
- Department of Cardiology, Qingdao Municipal Hospital, Medical College, Qingdao University, Jinan, China
| | - Yi Shen
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China and
| | - Hongyan Dai
- Department of Cardiology, Qingdao Municipal Hospital, Medical College, Qingdao University, Jinan, China
| | - Jingquan Zhong
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China and
| |
Collapse
|
8
|
Cao H, Zhou Q, Lan R, Røe OD, Chen X, Chen Y, Wang D. A functional polymorphism C-509T in TGFβ-1 promoter contributes to susceptibility and prognosis of lone atrial fibrillation in Chinese population. PLoS One 2014; 9:e112912. [PMID: 25402477 PMCID: PMC4234495 DOI: 10.1371/journal.pone.0112912] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/16/2014] [Indexed: 11/18/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is an important mediator of atrial fibrosis and atrial fibrillation (AF). But the involved genetic mechanism is unknown. Herein, the TGF-β1 C-509 T polymorphism (rs1800469) was genotyped in a case-control study of 840 patients and 845 controls in Chinese population to explore the association between the polymorphism and susceptibility and prognosis of lone AF. As a result, the CT and/or TT genotypes had an increased lone AF risk [adjusted odds ratio (OR) = 1.50 for CT, OR = 3.72 for TT, and OR = 2.15 for CT/TT], compared with the TGF-β1CC genotype. Moreover, patients carrying CT/TT genotypes showed a higher possibility of AF recurrence after catheter ablation, compared with patients carrying CC genotype. In a genotype-phenotype correlation analysis using 24 normal left atrial appendage samples, increasing gradients of atrial TGF-β1 expression levels positively correlated with atrial collagen volume fraction were identified in samples with CC, CT and TT genotypes. The in vitro luciferase assays also showed a higher luciferase activity of the -509 T allele than that of the -509 C allele. In conclusion, the TGF-β1 C-509 T polymorphism is involved in the etiology of lone AF and thus may be a marker for genetic susceptibility to lone AF and predicting prognosis after catheter ablation in Chinese populations. Therefore, we provide new information about treatment strategies and our understanding of TGF-β1 in AF.
Collapse
Affiliation(s)
- Hailong Cao
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing Zhou
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Rongfang Lan
- Department of Cardiology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Oluf Dimitri Røe
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Xin Chen
- Department of Cardiology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yijiang Chen
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
9
|
Susianti H, Handono K, Purnomo BB, Widodo N, Gunawan A, Kalim H. Changes to signal peptide and the level of transforming growth factor- β1 due to T869C polymorphism of TGF β1 associated with lupus renal fibrosis. SPRINGERPLUS 2014; 3:514. [PMID: 25279306 PMCID: PMC4179638 DOI: 10.1186/2193-1801-3-514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/02/2014] [Indexed: 11/17/2022]
Abstract
Lupus Nephritis (LN) is a serious manifestation of lupus that can lead to End Stage Renal Disease (ESRD). Fibrosis is the main feature of ESRD, and it is likely influenced by Transforming Growth Factor Beta1 (TGFβ1). The T869C gene polymorphism of TGFβ1 is assumed to change the signal peptide, that has potential to interfere the urine production and renal protein expression of TGFβ1. The influence of T869C gene polymorphism on TGFβ1 production and renal fibrosis was evaluated in this study. Subjects were 45 patients LN with renal fibrosis and 45 participants without renal fibrosis as control, that were recruited from 2011 to 2013.Their urinary TGFβ1 levels and TGFβ1 gene polymorphisms were examined. All lupus patients underwent renal biopsy to assess their protein expression of TGFβ1 in the renal tissue by immunohistochemistry and their renal fibrosis by morphometry and chronicity index. Changes in the signal peptide interaction with Signal Recognition Particle (SRP) and translocon of endoplasmic reticulum were analyzed by Bioinformatics. Levels of urinary and protein expression of TGFβ1 increased in the LN with renal fibrosis group. There were significant differences in levels of urinary TGFβ1 in T, C allele and TT, TC, CC genotypes between case and control groups. Furthermore, patients with C allele are 3.86 times more at risk of renal fibrosis than T allele. The C allele encodes proline, which stabilizes the interaction of the TGFβ1 signal peptide with SRP and translocon, resulting in elevation of TGFβ1 secretion. Our results indicated that T869C gene polymorphism of TGFβ1 changes the signal peptide, that contributes to the production of urinary TGFβ1 and affects renal fibrosis in lupus nephritis.
Collapse
Affiliation(s)
- Hani Susianti
- Department of Clinical Pathology, Faculty of Medicine Brawijaya University/Dr. Saiful Anwar Hospital, Malang, Indonesia
| | - Kusworini Handono
- Department of Clinical Pathology, Faculty of Medicine Brawijaya University/Dr. Saiful Anwar Hospital, Malang, Indonesia
| | - Basuki B Purnomo
- Department of Urology, Faculty of Medicine Brawijaya University/Dr. Saiful Anwar Hospital, Malang, Indonesia
| | - Nashi Widodo
- Department of Biology, Faculty of Science, Brawijaya University, Malang, Indonesia
| | - Atma Gunawan
- Department of Internal Medicine, Faculty of Medicine Brawijaya University/Dr. Saiful Anwar Hospital, Malang, Indonesia
| | - Handono Kalim
- Department of Internal Medicine, Faculty of Medicine Brawijaya University/Dr. Saiful Anwar Hospital, Malang, Indonesia
| |
Collapse
|
10
|
BMP-4 genetic variants and protein expression are associated with platinum-based chemotherapy response and prognosis in NSCLC. BIOMED RESEARCH INTERNATIONAL 2014; 2014:801640. [PMID: 24779016 PMCID: PMC3977566 DOI: 10.1155/2014/801640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 01/27/2023]
Abstract
To explore the role of genetic polymorphisms of bone morphogenic proteins 4 (BMP-4) in the response to platinum-based chemotherapy and the clinical outcome in patients with advanced nonsmall cell lung cancer (NSCLC), 938 patients with stage III (A+B) or IV NSCLC were enrolled in this study. We found that the variant genotypes of 6007C > T polymorphisms significantly associated with the chemotherapy response. The 6007CC genotype carriers had a higher chance to be responder to chemotherapy (adjusted odd ratio = 2.77; 95% CI: 1.83–4.18; adjusted < 0.001). The 6007C > T polymorphisms and BMP-4 expression also affect the prognosis of NSCLC. Patients with high BMP-4 expression had a significantly higher chance to be resistant to chemotherapy than those with low BMP-4 expression (OR = 2.81; 95% CI: 1.23–6.44; P = 0.01). The hazard ratio (HR) for 6007TT was 2.37 times higher than 6007CC (P = 0.003). In summary, the 6007C > T polymorphism of BMP-4 gene and BMP-4 tissue expression may be used as potential predictor for the chemotherapy response and prognosis of advanced NSCLC.
Collapse
|
11
|
Zheng W, Yan C, Wang X, Luo Z, Chen F, Yang Y, Liu D, Gai X, Hou J, Huang M. TheTGFB1 functional polymorphism rs1800469 and susceptibility to atrial fibrillation in two Chinese Han populations. PLoS One 2013; 8:e83033. [PMID: 24349426 PMCID: PMC3861462 DOI: 10.1371/journal.pone.0083033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/29/2013] [Indexed: 01/18/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is related to the degree of atrial fibrosis and plays critical roles in the induction and perpetuation of atrial fibrillation (AF). To investigate the association of the common promoter polymorphism rs1800469 in the TGF-β1 gene (TGFB1) with the risk of AF in Chinese Han population, we carried out a case-control study of two hospital-based independent populations: Southeast Chinese population (581 patients with AF and 723 controls), and Northeast Chinese population (308 AF patients and 292 controls). Two hundred and seventy-eight cases of AF were lone AF and 334 cases of AF were diagnosed as paroxysmal AF. In both populations, AF patients had larger left atrial diameters than the controls did. The rs1800469 genotypes in the TGFB1 gene were determined by polymerase chain reaction-restriction fragment length polymorphism. The genotype and allele frequencies of rs1800469 were not different between AF patients and controls of the Southeast Chinese population, Northeast Chinese population, and total Study Population. After adjustment for age, sex, hypertension and LAD, there was no association between the rs1800469 polymorphism and the risk of AF under the dominant, recessive and additive genetic models. Similar results were obtained from subanalysis of the lone and paroxymal AF subgroups. Our results do not support the role of the TGFB1 rs1800469 functional gene variant in the development of AF in the Chinese Han population.
Collapse
Affiliation(s)
- Weixing Zheng
- Department of Cardiology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Chenghui Yan
- Department of Cardiology, Shenyang General Hospital, Shenyang, China
| | - Xiaohu Wang
- Department of Cardiology, Fujian Provincial Hospital, Fuzhou, China
| | - Zhurong Luo
- Department of Cardiology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Fengping Chen
- Department of Cardiology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Yuhui Yang
- Department of Cardiology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Donglin Liu
- Department of Cardiology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaobo Gai
- Department of Cardiology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Jianping Hou
- Department of Cardiology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Mingfang Huang
- Department of Cardiology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
- * E-mail:
| |
Collapse
|
12
|
Association of inflammatory factors with occurrence and recurrence of atrial fibrillation: A meta-analysis. Int J Cardiol 2013; 169:62-72. [DOI: 10.1016/j.ijcard.2013.08.078] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/21/2013] [Accepted: 08/28/2013] [Indexed: 11/20/2022]
|
13
|
Velagapudi P, Turagam MK, Leal MA, Kocheril AG. Atrial fibrosis: a risk stratifier for atrial fibrillation. Expert Rev Cardiovasc Ther 2013; 11:155-60. [PMID: 23405837 DOI: 10.1586/erc.12.174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Atrial fibrillation (AF), especially persistent and long-standing persistent AF, may result in electro-anatomical changes in the left atrium, resulting in remodeling and deposition of fibrous tissue. There are emerging data that atrial substrate modification may increase the risk of thromboembolic complications, including stroke. Several studies have reported that atrial fibrosis is due to complex interactions among several cellular and neurohumoral mediators. Late gadolinium enhancement MRI has been reported to allow quantitative assessment of myocardial fibrosis in patients at risk of developing a stroke. Current stroke risk stratification criteria for AF do not utilize atrial fibrosis as an independent risk factor despite its association with AF and stroke. Further research is required in developing adequate risk stratification tools for predicting the stroke risk and catheter ablation outcomes in AF.
Collapse
Affiliation(s)
- Poonam Velagapudi
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | | | | | | |
Collapse
|