1
|
Shah S, Yu S, Zhang C, Ali I, Wang X, Qian Y, Xiao T. Retrotransposon SINEs in age-related diseases: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 101:102539. [PMID: 39395576 DOI: 10.1016/j.arr.2024.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Retrotransposons are self-replicating genomic elements that move from one genomic location to another using a "copy-and-paste" method involving RNA intermediaries. One family of retrotransposon that has garnered considerable attention for its association with age-related diseases and anti-aging interventions is the short interspersed nuclear elements (SINEs). This review summarizes current knowledge on the roles of SINEs in aging processes and therapies. To underscore the significant research on the involvement of SINEs in aging-related diseases, we commence by outlining compelling evidence on the classification and mechanism, highlighting implications in age-related phenomena. The intricate relationship between SINEs and diseases such as neurodegenerative disorders, heart failure, high blood pressure, atherosclerosis, type 2 diabetes mellitus, osteoporosis, visual system dysfunctions, and cancer is explored, emphasizing their roles in various age-related diseases. Recent investigations into the anti-aging potential of SINE-targeted treatments are examined, with particular attention to how SINE antisense RNA mitigate age-related alterations at the cellular and molecular levels, offering insights into potential therapeutic targets for age-related pathologies. This review aims to compile the most recent advances on the multifaceted roles of SINE retrotransposons in age-related diseases and anti-aging interventions, providing valuable insights into underlying mechanisms and therapeutic avenues for promoting healthy aging.
Collapse
Affiliation(s)
- Suleman Shah
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen 518055, China
| | - Siyi Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chen Zhang
- Department of Thoracic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Ilyas Ali
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen 518055, China
| | - Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang 050017, China
| | - Youhui Qian
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Tian Xiao
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
2
|
Coordinated regulation of microRNA genes in C19MC by SETDB1. Biochem Biophys Res Commun 2022; 637:17-22. [DOI: 10.1016/j.bbrc.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
3
|
DNA methylation patterns of LINE-1 and Alu for pre-symptomatic dementia in type 2 diabetes. PLoS One 2020; 15:e0234578. [PMID: 32525932 PMCID: PMC7289438 DOI: 10.1371/journal.pone.0234578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
The identification of early markers of dementia is important for higher-risk populations such as those with type 2 diabetes (T2D). Retrotransposons, including long interspersed nuclear element 1 (LINE-1) and Alu, comprise ~40% of the human genome. Although dysregulation of these retrotransposons can induce aberrant gene regulation and genomic instability, their role in the development of pre-symptomatic dementia (PSD) among T2D patients is unknown. Here, we examined locus-specific changes in LINE-1 and Alu methylation in PSD and the potential to offset these changes via supplementation with folate and vitamin B12. We interrogated DNA methylation patterns corresponding to 22,352 probes for LINE-1 and Alu elements using publicly-available Illumina Infinium 450K methylation datasets from i) an 18-month prospective study in 28 T2D patients (GSE62003) and ii) an intervention study in which 44 individuals were supplemented with folic acid (400 μg/day) and vitamin B12 (500 μg/day) over two years (GSE74548). We identified 714 differentially methylated positions (DMP) mapping to retrotransposons in T2D patients who developed PSD in comparison to those who did not (PFDR < 0.05), comprised of 2.4% (228 probes) of all LINE-1 probes and 3.8% (486 probes) of all Alu probes. These loci were enriched in genes with functions related to Alzheimer's disease and cognitive decline, including GNB5, GNG7 and PKN3 (p < 0.05). In older individuals supplemented with folate/vitamin B12, 85 (11.9%) PSD retrotransposon loci showed significant changes in methylation (p < 0.05): participants with the MTHFR CC genotype predominantly showed hypermethylation at these loci, while hypomethylation was observed more frequently in those with the TT genotype. In T2D patients, LINE-1 and Alu elements are differentially methylated in PSD in a locus-specific manner and may offer clinical utility in monitoring risk of dementia. Further work is required to examine the potential for dietary supplementation in lowering the risk of PSD.
Collapse
|
4
|
Chen C, Wang W, Wang X, Shen D, Wang S, Wang Y, Gao B, Wimmers K, Mao J, Li K, Song C. Retrotransposons evolution and impact on lncRNA and protein coding genes in pigs. Mob DNA 2019; 10:19. [PMID: 31080521 PMCID: PMC6501411 DOI: 10.1186/s13100-019-0161-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/11/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Retrotransposons are the major determinants of genome sizes and they have shaped both genes and genomes in mammalian organisms, but their overall activity, diversity, and evolution dynamics, particularly their impact on protein coding and lncRNA genes in pigs remain largely unknown. RESULTS In the present study, we performed de novo detection of retrotransposons in pigs by using multiple pipelines, four distinct families of pig-specific L1 s classified into 51 distinct subfamilies and representing four evolution models and three expansion waves of pig-specific SINEs represented by three distinct families were identified. ERVs were classified into 18 families and found two most "modern" subfamilies in the pig genome. The transposition activity of pig L1 was verified by experiment, the sense and antisense promoter activities of young L1 5'UTRs and ERV LTRs and expression profiles of young retrotransposons in multiple tissues and cell lines were also validated. Furthermore, retrotransposons had an extensive impact on lncRNA and protein coding genes at both the genomic and transcriptomic levels. Most protein coding and lncRNA (> 80%) genes contained retrotransposon insertions, and about half of protein coding genes (44.30%) and one-fourth (24.13%) of lncRNA genes contained the youngest retrotransposon insertions. Nearly half of protein coding genes (43.78%) could generate chimeric transcripts with retrotransposons. Significant distribution bias of retrotransposon composition, location, and orientation in lncRNA and protein coding genes, and their transcripts, were observed. CONCLUSIONS In the current study, we characterized the classification and evolution profile of retrotransposons in pigs, experimentally proved the transposition activity of the young pig L1 subfamily, characterized the sense and antisense expression profiles and promoter activities of young retrotransposons, and investigated their impact on lncRNA and protein coding genes by defining the mobilome landscapes at the genomic and transcriptomic levels. These findings help provide a better understanding of retrotransposon evolution in mammal and their impact on the genome and transcriptome.
Collapse
Affiliation(s)
- Cai Chen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Wei Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Xiaoyan Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Dan Shen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Saisai Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Yali Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Bo Gao
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Jiude Mao
- Life Science Center, University of Missouri, Columbia, MO 65211 USA
| | - Kui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengyi Song
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
5
|
Lannes R, Rizzon C, Lerat E. Does the Presence of Transposable Elements Impact the Epigenetic Environment of Human Duplicated Genes? Genes (Basel) 2019; 10:genes10030249. [PMID: 30917603 PMCID: PMC6470583 DOI: 10.3390/genes10030249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications have an important role to explain part of the intra- and inter-species variation in gene expression. They also have a role in the control of transposable elements (TEs) whose activity may have a significant impact on genome evolution by promoting various mutations, which are expected to be mostly deleterious. A change in the local epigenetic landscape associated with the presence of TEs is expected to affect the expression of neighboring genes since these modifications occurring at TE sequences can spread to neighboring sequences. In this work, we have studied how the epigenetic modifications of genes are conserved and what the role of TEs is in this conservation. For that, we have compared the conservation of the epigenome associated with human duplicated genes and the differential presence of TEs near these genes. Our results show higher epigenome conservation of duplicated genes from the same family when they share similar TE environment, suggesting a role for the differential presence of TEs in the evolutionary divergence of duplicates through variation in the epigenetic landscape.
Collapse
Affiliation(s)
- Romain Lannes
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, F-69622 Villeurbanne, France.
| | - Carène Rizzon
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), Université d'Evry Val d'Essonne, UMR CNRS 8071, ENSIIE, USC INRA, 23 bvd de France, 91037, Evry CEDEX Paris, France.
| | - Emmanuelle Lerat
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, F-69622 Villeurbanne, France.
| |
Collapse
|
6
|
Klein SJ, O'Neill RJ. Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res 2018; 26:5-23. [PMID: 29332159 PMCID: PMC5857280 DOI: 10.1007/s10577-017-9569-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
Abstract
Although it was nearly 70 years ago when transposable elements (TEs) were first discovered “jumping” from one genomic location to another, TEs are now recognized as contributors to genomic innovations as well as genome instability across a wide variety of species. In this review, we illustrate the ways in which active TEs, specifically retroelements, can create novel chromosome rearrangements and impact gene expression, leading to disease in some cases and species-specific diversity in others. We explore the ways in which eukaryotic genomes have evolved defense mechanisms to temper TE activity and the ways in which TEs continue to influence genome structure despite being rendered transpositionally inactive. Finally, we focus on the role of TEs in the establishment, maintenance, and stabilization of critical, yet rapidly evolving, chromosome features: eukaryotic centromeres. Across centromeres, specific types of TEs participate in genomic conflict, a balancing act wherein they are actively inserting into centromeric domains yet are harnessed for the recruitment of centromeric histones and potentially new centromere formation.
Collapse
Affiliation(s)
- Savannah J Klein
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
7
|
Pugacheva EM, Teplyakov E, Wu Q, Li J, Chen C, Meng C, Liu J, Robinson S, Loukinov D, Boukaba A, Hutchins AP, Lobanenkov V, Strunnikov A. The cancer-associated CTCFL/BORIS protein targets multiple classes of genomic repeats, with a distinct binding and functional preference for humanoid-specific SVA transposable elements. Epigenetics Chromatin 2016; 9:35. [PMID: 27588042 PMCID: PMC5007689 DOI: 10.1186/s13072-016-0084-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/18/2016] [Indexed: 12/20/2022] Open
Abstract
Background A common aberration in cancer is the activation of germline-specific proteins. The DNA-binding proteins among them could generate novel chromatin states, not found in normal cells. The germline-specific transcription factor BORIS/CTCFL, a paralog of chromatin architecture protein CTCF, is often erroneously activated in cancers and rewires the epigenome for the germline-like transcription program. Another common feature of malignancies is the changed expression and epigenetic states of genomic repeats, which could alter the transcription of neighboring genes and cause somatic mutations upon transposition. The role of BORIS in transposable elements and other repeats has never been assessed. Results The investigation of BORIS and CTCF binding to DNA repeats in the K562 cancer cells dependent on BORIS for self-renewal by ChIP-chip and ChIP-seq revealed three classes of occupancy by these proteins: elements cohabited by BORIS and CTCF, CTCF-only bound, or BORIS-only bound. The CTCF-only enrichment is characteristic for evolutionary old and inactive repeat classes, while BORIS and CTCF co-binding predominately occurs at uncharacterized tandem repeats. These repeats form staggered cluster binding sites, which are a prerequisite for CTCF and BORIS co-binding. At the same time, BORIS preferentially occupies a specific subset of the evolutionary young, transcribed, and mobile genomic repeat family, SVA. Unlike CTCF, BORIS prominently binds to the VNTR region of the SVA repeats in vivo. This suggests a role of BORIS in SVA expression regulation. RNA-seq analysis indicates that BORIS largely serves as a repressor of SVA expression, alongside DNA and histone methylation, with the exception of promoter capture by SVA. Conclusions Thus, BORIS directly binds to, and regulates SVA repeats, which are essentially movable CpG islands, via clusters of BORIS binding sites. This finding uncovers a new function of the global germline-specific transcriptional regulator BORIS in regulating and repressing the newest class of transposable elements that are actively transposed in human genome when activated. This function of BORIS in cancer cells is likely a reflection of its roles in the germline. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0084-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Evgeny Teplyakov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Qiongfang Wu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Jingjing Li
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Cheng Chen
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Chengcheng Meng
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Jian Liu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Susan Robinson
- Laboratory of Immunogenetics, NIH, NIAID, Rockville, MD 20852 USA
| | - Dmitry Loukinov
- Laboratory of Immunogenetics, NIH, NIAID, Rockville, MD 20852 USA
| | - Abdelhalim Boukaba
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Andrew Paul Hutchins
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, 518055 Guangdong China
| | | | - Alexander Strunnikov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| |
Collapse
|
8
|
Baccarelli AA, Byun HM. Platelet mitochondrial DNA methylation: a potential new marker of cardiovascular disease. Clin Epigenetics 2015; 7:44. [PMID: 25901189 PMCID: PMC4404685 DOI: 10.1186/s13148-015-0078-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/01/2015] [Indexed: 01/29/2023] Open
Abstract
Background Platelets are critical in the etiology of cardiovascular disease (CVD), and the mitochondria in these cells serve as an energy source for platelet function. Epigenetic factors, especially DNA methylation, have been employed as markers of CVD. Unlike nuclear DNA methylation, mitochondrial DNA (mtDNA) methylation has not been widely studied, in part, due to debate about its existence and role. In this study, we examined platelet mtDNA methylation in relation to CVD. Results We measured mtDNA methylation in platelets by bisulfite-PCR pyrosequencing and examined associations of CVD with methylation in mitochondrial genes; cytochrome c oxidase (MT-CO1, MT-CO2, and MT-CO3); tRNA leucine 1 (MT-TL1); ATP synthase (MT-ATP6 and MT-ATP8); and NADH dehydrogenase (MT-MD5). We report that CVD patients have significantly higher mtDNA methylation than healthy controls in MT-CO1 (18.53%, P < 0.0001), MT-CO2 (3.33%, P = 0.0001), MT-CO3 (0.92%, P < 0.0001), and MT-TL1 (1.67%, P = 0.0001), which are involved in ATP synthesis. Platelet mtDNA methylation was not related with age, BMI, and race in this study. Conclusions Our results suggest that platelet mtDNA methylation, which could serve as non-invasive and easy-to-obtain markers, may be implicated in the etiology of CVD. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0078-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea A Baccarelli
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave., Boston, MA 02115 USA
| | - Hyang-Min Byun
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave., Boston, MA 02115 USA ; Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL UK
| |
Collapse
|
9
|
Guo L, Byun HM, Zhong J, Motta V, Barupal J, Zheng Y, Dou C, Zhang F, McCracken JP, Diaz A, Marco SG, Colicino S, Schwartz J, Wang S, Hou L, Baccarelli AA. Effects of short-term exposure to inhalable particulate matter on DNA methylation of tandem repeats. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:322-35. [PMID: 24436168 PMCID: PMC4426495 DOI: 10.1002/em.21838] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 01/06/2013] [Accepted: 01/06/2014] [Indexed: 05/21/2023]
Abstract
There is compelling evidence that particulate matter (PM) increases lung cancer risk by triggering systemic inflammation, and leukocyte DNA hypomethylation. However, previous investigations focused on repeated element sequences from LINE-1 and Alu families. Tandem repeats, which display a greater propensity to mutate, and are often hypomethylated in cancer patients, have never been investigated in individuals exposed to PM. We measured methylation of three tandem repeats (SATα, NBL2, and D4Z4) by polymerase chain reaction-pyrosequencing on blood samples from truck drivers and office workers (60 per group) in Beijing, China. We used lightweight monitors to measure personal PM2.5 (PM with aerodynamic diameter ≤2.5 µm) and elemental carbon (a tracer of PM from vehicular traffic). Ambient PM10 data were obtained from air quality measuring stations. Overall, an interquartile increase in personal PM2.5 and ambient PM10 levels was associated with a significant covariate-adjusted decrease in SATα methylation (-1.35% 5-methyl cytosine [5mC], P = 0.01; and -1.33%5mC; P = 0.01, respectively). Effects from personal PM2.5 and ambient PM10 on SATα methylation were stronger in truck drivers (-2.34%5mC, P = 0.02; -1.44%5mC, P = 0.06) than office workers (-0.95%5mC, P = 0.26; -1.25%5mC, P = 0.12, respectively). Ambient PM10 was negatively correlated with NBL2 methylation in truck drivers (-1.38%5mC, P = 0.03) but not in office workers (1.04%5mC, P = 0.13). Our result suggests that PM exposure is associated with hypomethylation of selected tandem repeats. Measuring tandem-repeat hypomethylation in easy-to-obtain blood specimens might identify individuals with biological effects and potential cancer risk from PM exposure.
Collapse
Affiliation(s)
- Liqiong Guo
- Laboratory of Environmental Epigenetics, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Sciences and Engineering, Nankai University, Tianjin, China
- Correspondence to: Liqiong Guo, Nankai University, College of Environmental Sciences and Engineering, Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin 300071, Tel. +86(186)-9804-6908,
| | - Hyang-Min Byun
- Laboratory of Environmental Epigenetics, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Jia Zhong
- Laboratory of Environmental Epigenetics, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Valeria Motta
- Laboratory of Environmental Epigenetics, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
- Center for Molecular and Genetic Epidemiology, Department of Environmental and Occupational Health, Ca’Granda Ospedale Maggiore Policlinico IRCCS Foundation, Universita degli Studi di Milano, Milan, Italy
| | - Jitendra Barupal
- Laboratory of Environmental Epigenetics, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Yinan Zheng
- Driskill Graduate Program (DGP) in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Chang Dou
- Department of Safety Engineering, China Institute of Industrial Health, Beijing, China
| | - Feiruo Zhang
- Department of Occupational and Environmental Health, Peking University Health Science Center, Beijing, China
| | - John P. McCracken
- Laboratory of Environmental Epigenetics, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Anaité Diaz
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Sanchez-Guerra Marco
- Laboratory of Environmental Epigenetics, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Silvia Colicino
- Center for Molecular and Genetic Epidemiology, Department of Environmental and Occupational Health, Ca’Granda Ospedale Maggiore Policlinico IRCCS Foundation, Universita degli Studi di Milano, Milan, Italy
| | - Joel Schwartz
- Laboratory of Environmental Epigenetics, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Sheng Wang
- Department of Occupational and Environmental Health, Peking University Health Science Center, Beijing, China
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- The Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrea A. Baccarelli
- Laboratory of Environmental Epigenetics, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
10
|
Jung KH, Gho HJ, Giong HK, Chandran AKN, Nguyen QN, Choi H, Zhang T, Wang W, Kim JH, Choi HK, An G. Genome-wide identification and analysis of Japonica and Indica cultivar-preferred transcripts in rice using 983 Affymetrix array data. RICE (NEW YORK, N.Y.) 2013; 6:19. [PMID: 24280533 PMCID: PMC4883688 DOI: 10.1186/1939-8433-6-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/07/2013] [Indexed: 05/07/2023]
Abstract
BACKGROUND Accumulation of genome-wide transcriptome data provides new insight on a genomic scale which cannot be gained by analyses of individual data. The majority of rice (O. sativa) species are japonica and indica cultivars. Genome-wide identification of genes differentially expressed between japonica and indica cultivars will be very useful in understanding the domestication and evolution of rice species. RESULTS In this study, we analyzed 983 of the 1866 entries in the Affymetrix array data in the public database: 595 generated from indica and 388 from japonica rice cultivars. To discover differentially expressed genes in each cultivar, we performed significance analysis of microarrays for normalized data, and identified 490 genes preferentially expressed in japonica and 104 genes in indica. Gene Ontology analyses revealed that defense response-related genes are significantly enriched in both cultivars, indicating that japonica and indica might be under strong selection pressure for these traits during domestication. In addition, 36 (34.6%) of 104 genes preferentially expressed in indica and 256 (52.2%) of 490 genes preferentially expressed in japonica were annotated as genes of unknown function. Biotic stress overview in the MapMan toolkit revealed key elements of the signaling pathway for defense response in japonica or indica eQTLs. CONCLUSIONS The percentage of screened genes preferentially expressed in indica was 4-fold higher (34.6%) and that in japonica was 5-fold (52.2%) higher than expected (11.1%), suggesting that genes of unknown function are responsible for the novel traits that distinguish japonica and indica cultivars. The identification of 10 functionally characterized genes expressed preferentially in either japonica or indica highlights the significance of our candidate genes during the domestication of rice species. Functional analysis of the roles of individual components of stress-mediated signaling pathways will shed light on potential molecular mechanisms to improve disease resistance in rice.
Collapse
Affiliation(s)
- Ki-Hong Jung
- />Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 446-701 Republic of Korea
| | - Hyun-Jung Gho
- />Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 446-701 Republic of Korea
| | - Hoi-Khoanh Giong
- />Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 446-701 Republic of Korea
| | - Anil Kumar Nalini Chandran
- />Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 446-701 Republic of Korea
| | - Quynh-Nga Nguyen
- />Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 446-701 Republic of Korea
| | - HeeBak Choi
- />Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 446-701 Republic of Korea
| | - Tian Zhang
- />CAS-Max Planck Junior Research Group on Evolutionary Genomics, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, China
| | - Wen Wang
- />CAS-Max Planck Junior Research Group on Evolutionary Genomics, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, China
| | - Jin-Hyun Kim
- />Department of Medical Bioscience, Dong-A University, Busan, Republic of Korea
| | - Hong-Kyu Choi
- />Department of Medical Bioscience, Dong-A University, Busan, Republic of Korea
| | - Gynheung An
- />Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 446-701 Republic of Korea
| |
Collapse
|
11
|
Byun HM, Motta V, Panni T, Bertazzi PA, Apostoli P, Hou L, Baccarelli AA. Evolutionary age of repetitive element subfamilies and sensitivity of DNA methylation to airborne pollutants. Part Fibre Toxicol 2013; 10:28. [PMID: 23855992 PMCID: PMC3717285 DOI: 10.1186/1743-8977-10-28] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 07/05/2013] [Indexed: 02/07/2023] Open
Abstract
Background Repetitive elements take up >40% of the human genome and can change distribution through transposition, thus generating subfamilies. Repetitive element DNA methylation has associated with several diseases and environmental exposures, including exposure to airborne pollutants. No systematic analysis has yet been conducted to examine the effects of exposures across different repetitive element subfamilies. The purpose of the study is to evaluate sensitivity of DNA methylation in differentially‒evolved LINE, Alu, and HERV subfamilies to different types of airborne pollutants. Methods We sampled a total of 120 male participants from three studies (20 high-, 20 low-exposure in each study) of steel workers exposed to metal-rich particulate matter (measured as PM10) (Study 1); gas-station attendants exposed to air benzene (Study 2); and truck drivers exposed to traffic-derived elemental carbon (Study 3). We measured methylation by bisulfite-PCR-pyrosequencing in 10 differentially‒evolved repetitive element subfamilies. Results High-exposure groups exhibited subfamily-specific methylation differences compared to low-exposure groups: L1PA2 showed lower DNA methylation in steel workers (P=0.04) and gas station attendants (P=0.03); L1Ta showed lower DNA methylation in steel workers (P=0.02); AluYb8 showed higher DNA methylation in truck drivers (P=0.05). Within each study, dose–response analyses showed subfamily-specific correlations of methylation with exposure levels. Interaction models showed that the effects of the exposures on DNA methylation were dependent on the subfamily evolutionary age, with stronger effects on older LINEs from PM10 (p‒interaction=0.003) and benzene (p‒interaction=0.04), and on younger Alus from PM10 (p-interaction=0.02). Conclusions The evolutionary age of repetitive element subfamilies determines differential susceptibility of DNA methylation to airborne pollutants.
Collapse
Affiliation(s)
- Hyang-Min Byun
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard School of Public Health, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Mustafina OE. The possible roles of human Alu elements in aging. Front Genet 2013; 4:96. [PMID: 23755069 PMCID: PMC3664780 DOI: 10.3389/fgene.2013.00096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/13/2013] [Indexed: 01/18/2023] Open
Affiliation(s)
- O E Mustafina
- Institute of Biochemistry and Genetics, Ufa Research Center, Russian Academy of Sciences Ufa, Russia
| |
Collapse
|
13
|
Byun HM, Panni T, Motta V, Hou L, Nordio F, Apostoli P, Bertazzi PA, Baccarelli AA. Effects of airborne pollutants on mitochondrial DNA methylation. Part Fibre Toxicol 2013; 10:18. [PMID: 23656717 PMCID: PMC3660297 DOI: 10.1186/1743-8977-10-18] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 05/01/2013] [Indexed: 11/23/2022] Open
Abstract
Background Mitochondria have small mitochondrial DNA (mtDNA) molecules independent from the nuclear DNA, a separate epigenetic machinery that generates mtDNA methylation, and are primary sources of oxidative-stress generation in response to exogenous environments. However, no study has yet investigated whether mitochondrial DNA methylation is sensitive to pro-oxidant environmental exposures. Methods We sampled 40 male participants (20 high-, 20 low-exposure) from each of three studies on airborne pollutants, including investigations of steel workers exposed to metal-rich particulate matter (measured as PM1) in Brescia, Italy (Study 1); gas-station attendants exposed to air benzene in Milan, Italy (Study 2); and truck drivers exposed to traffic-derived Elemental Carbon (EC) in Beijing, China (Study 3). We have measured DNA methylation from buffy coats of the participants. We measured methylation by bisulfite-Pyrosequencing in three mtDNA regions, i.e., the transfer RNA phenylalanine (MT-TF), 12S ribosomal RNA (MT-RNR1) gene and “D-loop” control region. All analyses were adjusted for age and smoking. Results In Study 1, participants with high metal-rich PM1 exposure showed higher MT-TF and MT-RNR1 methylation than low-exposed controls (difference = 1.41, P = 0.002); MT-TF and MT-RNR1 methylation was significantly associated with PM1 exposure (beta = 1.35, P = 0.025); and MT-RNR1 methylation was positively correlated with mtDNA copy number (r = 0.36; P = 0.02). D-loop methylation was not associated with PM1 exposure. We found no effects on mtDNA methylation from air benzene (Study 2) and traffic-derived EC exposure (Study 3). Conclusions Mitochondrial MT-TF and MT-RNR1 DNA methylation was associated with metal-rich PM1 exposure and mtDNA copy number. Our results suggest that locus-specific mtDNA methylation is correlated to selected exposures and mtDNA damage. Larger studies are needed to validate our observations.
Collapse
Affiliation(s)
- Hyang-Min Byun
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|