1
|
Li L, Jiang L, Mao S, Ye J. TLR9 Knockdown Alleviates Sepsis via Disruption of MyD88/NF-κB Pathway Activation. Crit Rev Immunol 2024; 44:15-24. [PMID: 38305333 DOI: 10.1615/critrevimmunol.2023050273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Sepsis is a life-threatening organ dysfunction due to dysregulated host response to infection, accompanied by a high rate of mortality worldwide. During sepsis progression, toll-like receptors (TLRs) play essential roles in the aberrant inflammatory response that contributes to sepsis-related mortality. Here, we demonstrated a critical role of TLR9 in the progression of sepsis. A septic mouse model was established by cecal ligation and puncture (CLP), then administered with lentivirus encoding si-TLR9/LY294002. TLR9 protein expression and p65 nuclear translocation level/TLR9 protein positive expression/interaction between TLR9 and myeloid differentiation primary response protein 88 (MyD88) in the cecal tissues were examined by Western blot/immunohistochemistry/co-immunoprecipitation assays. Serum levels of pro-inflammatory factors [e.g., interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α)] as well as bacterial contents in the liver/spleen/mesenteric lymph nodes (MLN) were measured by ELISA and bacterial mobility assay. TLR9 expression was augmented in the cecal tissues, TLR9 and MyD88 interaction was enhanced, nuclear p65 protein level was increased, cytoplasmic p65 protein level was decreased, and the nuclear factor kappa B (NF-κB) pathway was activated in CLP-induced septic mice, while TLR9 knockout protected against CLP-induced sepsis via the MyD88/NF-κB pathway inactivation. Briefly, TLR9 inhibition-mediated protection against CLP-induced sepsis was associated with a reduction in pro-inflammatory cytokine release and a promotion of bacterial clearance via a mechanism involving the MyD88/NF-κB pathway inactivation.
Collapse
Affiliation(s)
- Lili Li
- Department of Clinical Laboratory, Fujian Provincial Geriatric Hospital, Fuzhou, Fujian, China
| | - Lili Jiang
- Department of Clinical Laboratory, Fujian Provincial Geriatric Hospital, Fuzhou, Fujian, China
| | - Shuzhu Mao
- Department of Clinical Laboratory, Fujian Provincial Geriatric Hospital, Fuzhou, Fujian, China
| | - Jiajian Ye
- Department of Clinical Laboratory, Fujian Provincial Geriatric Hospital, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Vucetic A, Lafleur A, Côté M, Kobasa D, Chan M, Alvarez F, Piccirillo C, Dong G, Olivier M. Extracellular vesicle storm during the course of Ebola virus infection in primates. Front Cell Infect Microbiol 2023; 13:1275277. [PMID: 38035334 PMCID: PMC10684970 DOI: 10.3389/fcimb.2023.1275277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Ebola virus (EBOV) is an RNA virus of the Filoviridae family that is responsible for outbreaks of hemorrhagic fevers in primates with a lethality rate as high as 90%. EBOV primarily targets host macrophages leading to cell activation and systemic cytokine storm, and fatal infection is associated with an inhibited interferon response, and lymphopenia. The EBOV surface glycoprotein (GP) has been shown to directly induce T cell depletion and can be secreted outside the virion via extracellular vesicles (EVs), though most studies are limited to epithelial cells and underlying mechanisms remain poorly elucidated. Methods To assess the role of GP on EBOV-induced dysregulation of host immunity, we first utilized EBOV virus-like particles (VLPs) expressing VP40 and NP either alone (Bald-VLP) or in conjunction with GP (VLP-GP) to investigate early inflammatory responses in THP-1 macrophages and in a murine model. We then sought to decipher the role of non-classical inflammatory mediators such as EVs over the course of EBOV infection in two EBOV-infected rhesus macaques by isolating and characterizing circulatory EVs throughout disease progression using size exclusion chromatography, nanoparticle tracking-analysis, and LC-MS/MS. Results While all VLPs could induce inflammatory mediators and recruit small peritoneal macrophages, pro-inflammatory cytokine and chemokine gene expression was exacerbated by the presence of GP. Further, quantification of EVs isolated from infected rhesus macaques revealed that the concentration of vesicles peaked in circulation at the terminal stage, at which time EBOV GP could be detected in host-derived exosomes. Moreover, comparative proteomics conducted across EV populations isolated from serum at various time points before and after infection revealed differences in host-derived protein content that were most significantly pronounced at the endpoint of infection, including significant expression of mediators of TLR4 signaling. Discussion These results suggest a dynamic role for EVs in the modification of disease states in the context of EBOV. Overall, our work highlights the importance of viral factors, such as the GP, and host derived EVs in the inflammatory cascade and pathogenesis of EBOV, which can be collectively further exploited for novel antiviral development.
Collapse
Affiliation(s)
- Andrea Vucetic
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Andrea Lafleur
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology and Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Darwyn Kobasa
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Mable Chan
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Ciriaco Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - George Dong
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
3
|
He C, Hao E, Du C, Wei W, Wang X, Liu T, Deng J. Investigating the Underlying Mechanisms of Ardisia japonica Extract's Anti-Blood-Stasis Effect via Metabolomics and Network Pharmacology. Molecules 2023; 28:7301. [PMID: 37959722 PMCID: PMC10649676 DOI: 10.3390/molecules28217301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
OBJECTIVE Our study aims to assess Ardisia japonica (AJ)'s anti-blood-stasis effect and its underlying action mechanisms. METHODS The primary components of AJ were determined using liquid chromatography-mass spectrometry (LC-MS). The blood stasis model was used to investigate the anti-blood-stasis effect of AJ extract. The underlying mechanisms of AJ against blood stasis were investigated via network pharmacology, molecular docking, and plasma non-targeted metabolomics. RESULTS In total, 94 compounds were identified from an aqueous extract of AJ, including terpenoids, phenylpropanoids, alkaloids, and fatty acyl compounds. In rats with blood stasis, AJ reduced the area of stasis, decreased the inflammatory reaction in the liver and lungs of rats, lowered the plasma viscosity, increased the index of erythrocyte deformability, and decreased the index of erythrocyte aggregation, suggesting that AJ has an anti-blood-stasis effect. Different metabolites were identified via plasma untargeted metabolomics, and it was found that AJ exerts its anti-blood-stasis effect by reducing inflammatory responses through the cysteine and methionine metabolism, linolenic acid metabolism, and sphingolipid metabolism. For the effect of AJ on blood stasis syndrome, the main active ingredients predicted via network pharmacology include sinensetin, galanin, isorhamnetin, kaempferol, wogonin, quercetin, and bergenin, and their targets were TP53, HSP90AA1, VEGFA, AKT1, EGFR, and PIK3CA that were mainly enriched in the PI3K/AKT and MAPK signaling pathways, which modulate the inflammatory response. Molecular docking was also performed, and the binding energies of these seven compounds to six proteins were less than -5, indicating that the chemical components bind to the target proteins. CONCLUSIONS This study suggests AJ effectively prevents blood stasis by reducing inflammation.
Collapse
Affiliation(s)
- Cuiwei He
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Chengzhi Du
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Wei Wei
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaodong Wang
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Tongxiang Liu
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
4
|
Lee EP, Lin MJ, Wu HP. Time-serial expression of toll-like receptor 4 signaling during polymicrobial sepsis in rats. Int J Immunopathol Pharmacol 2022; 36:3946320221090021. [PMID: 35603454 PMCID: PMC9127845 DOI: 10.1177/03946320221090021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sepsis caused by aggressive infection is a severe clinical problem with an increasing incidence worldwide. Toll-like receptors and their common adapter myeloid differentiation factor 88 (MyD88) can activate immune responses by recognizing a foreign microbe’s product. This study aimed to identify the different time expression of TLR four signaling pathway in an experimental rodent model of polymicrobial sepsis. A randomized animal study was investigated in rats with septic peritonitis induced by cecal ligation and puncture (CLP). The expressions of MyD88-dependent pathway biomarkers, including MyD88, nuclear factor-κB (NF-κB), and serum tumor necrosis factor-α (TNF-α), were analyzed and compared to the sham controls at the different time points after CLP surgery. CLP-induced sepsis increased liver MyD88 mRNA expression and protein expression compared to the control groups at 2 h after surgery. The MyD88 mRNA and protein expressions in rats with CLP-induced sepsis marked increased at 4 and 6 h, and their NF-κB activities and serum TNF-α levels also increased at 4 h after CLP surgery (both p < .05). The different serial expression of MyD88-ependent pathway during sepsis may be used as biomarkers during sepsis. These results may provide further helpful information for using pro-inflammatory biomarkers of innate immunity such as MyD88 and TNF-α in clinical sepsis or related abdominal surgical emergency in the future.
Collapse
Affiliation(s)
- En-Pei Lee
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Chang Gung Memorial Hospital at Linko, Taiwan
- College of Medicine, Chang Gung University, Taiwan
| | - Mao-Jen Lin
- Division of Cardiology, Department of Medicine, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taiwan
- Department of Medicine, School of Medicine, Tzu Chi University, Taiwan
| | - Han-Ping Wu
- Department of Pediatric Emergency Medicine, Children Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Research, Children’s Hospital, China Medical University, Taichung, Taiwan
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Trauma-induced lung injury is associated with infiltration of activated TLR expressing myeloid cells. Cytokine 2021; 141:155457. [PMID: 33581471 DOI: 10.1016/j.cyto.2021.155457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Traumatic injury with hemorrhage (TH) induces an inflammatory response in the lung resulting in lung injury involving activation of immune cells including myeloid cells (i.e., monocytes, granulocytes and macrophages), in part through TLRs. TLRs, via the recognition of damage associated molecular patterns (DAMPs), are a key link between tissue injury and inflammation. Nonetheless, the role of TLRs in myeloid cell activation and TH-induced lung injury remains ill defined. METHODS C57BL/6 male mice were subjected to TH or sham treatment (n = 4-6 /group). Lung tissues were collected two hrs. after injury. Single cells were isolated from the lungs by enzymatic digestion and myeloid cell TLR expression and activation (i.e., cytokine production) were assessed using flow cytometry techniques. RESULTS The injury was associated with a profound change in the lung myeloid cell population. TH markedly increased lung CD11b+ monocyte numbers and Gr1+ granulocyte numbers as compared to sham mice. The number of cells expressing TLR2, TLR4, and TLR9 were increased 4-7 fold in the TH mice. Activation for elevated cytokine (TNFα, IL-10) production was observed in the lung monocyte population of the TH mice. CONCLUSIONS Trauma-induced lung injury is associated with infiltration of the lungs with TLR expressing myeloid cells that are activated for elevated cytokine responses. This elevation in TLR expression may contribute to DAMP-mediated pulmonary complications of an inflammatory nature and warrants further investigation.
Collapse
|
6
|
Chen CW, Kuo YC, How CK, Juan CC. Long-term aerobic exercise training-induced anti-inflammatory response and mechanisms: Focusing on the toll-like receptor 4 signaling pathway. CHINESE J PHYSIOL 2021; 63:250-255. [PMID: 33380609 DOI: 10.4103/cjp.cjp_78_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Toll-like receptor 4 (TLR-4), which regulate inflammatory reactions, has become a popular research topic in recent years. This article reviews the latest scientific evidence on the regulation of TLR-4 by regular aerobic exercise training. The literature shows that long-term regular aerobic exercise training can effectively attenuate the expression of TLR-4 in immune cells and regulate its downstream intracellular cascade, including the p38 and PI3K/Akt signaling pathways. This further reduces cytokines secretion by inflammatory cells, which enhances immune system. We consider that the scientific evidence that long-term aerobic exercise training improves the inflammatory response provides a reasonable basis for using aerobic exercise training as a treatment for patients.
Collapse
Affiliation(s)
- Chien-Wei Chen
- College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Yu-Chi Kuo
- College of Human Development and Health; Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Chorng-Kuang How
- Department of Emergency, Taipei Veterans General Hospital; Department of Emergency Medicine, School of Medicine, National Yang-Ming University, Taipei; Kinmen Hospital, Ministry of Health and Welfare, Kinmen, Taiwan
| | - Chi-Chang Juan
- Department of Physiology, School of Medicine, National Yang-Ming University; Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Wang F, Lei X, Zhao Y, Yu Q, Li Q, Zhao H, Pei Z. Protective role of thymoquinone in sepsis-induced liver injury in BALB/c mice. Exp Ther Med 2019; 18:1985-1992. [PMID: 31410159 PMCID: PMC6676142 DOI: 10.3892/etm.2019.7779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Sepsis increases the risk of developing liver injury. Previous studies have demonstrated that thymoquinone (TQ) exhibits hepatoprotective properties in vivo as well as in vitro. The present study aimed to investigate the underlying mechanisms of the protective effects of TQ against liver injury in septic BALB/c mice. Male BALB/c mice (age, 8 weeks) were randomly divided into four groups, namely, the control, TQ (50 mg/kg/day) treatment, cecal ligation and puncture (CLP), and TQ + CLP groups. CLP was performed following gavage of TQ for 2 weeks. At 48 h post-CLP, the histopathological alterations in the liver tissue (LT) and plasma levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) were assessed. The present study evaluated microtubule-associated protein light chain 3 (LC3), sequestosome-1 (p62) and beclin 1 protein expression by western blotting and immunostaining, as well as interleukin (IL)-6, IL-1β, IL-10, monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) mRNA expression by RT-qPCR. The results of the present study indicated that administration of TQ to mice reduced the histological alterations caused by CLP in LT. TQ inhibited the plasma levels of ALT, AST and ALP in the CLP group. TQ significantly inhibited the elevation of p62, IL-1β, IL-6, MCP-1 and TNF-α levels as well as increased the LC3, beclin 1 and IL-10 levels in LT. PI3K expression in the TQ + CLP group was significantly decreased compared with that in the CLP group. TQ treatment effectively modulated the expression levels of p62, LC3, beclin 1, PI3K and proinflammatory cytokines, and may be an important agent for the treatment of sepsis-induced liver injury.
Collapse
Affiliation(s)
- Fei Wang
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Xiong Lei
- Graduate School of Dalian Medical University, The First Clinical College, Dalian, Liaoning 116044, P.R. China
| | - Yue Zhao
- Graduate School of Dalian Medical University, The First Clinical College, Dalian, Liaoning 116044, P.R. China
| | - Qinggong Yu
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Qianwei Li
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Hui Zhao
- Department of Vascular Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Zuowei Pei
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
8
|
Suppression of Akt-mTOR pathway rescued the social behavior in Cntnap2-deficient mice. Sci Rep 2019; 9:3041. [PMID: 30816216 PMCID: PMC6395585 DOI: 10.1038/s41598-019-39434-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/22/2019] [Indexed: 01/08/2023] Open
Abstract
Autism spectrum disorders (ASD) form a heterogeneous, neurodevelopmental syndrome characterized by deficits in social interactions and repetitive behavior/restricted interests. Dysregulation of mTOR signaling has been implicated in the pathogenesis of certain types of ASD, and inhibition of mTOR by rapamycin has been demonstrated to be an effective therapeutics for impaired social interaction in Tsc1+/−, Tsc2+/−, Pten−/− mice and valproic acid-induced ASD animal models. However, it is still unknown if dysregulation of mTOR signaling is responsible for the ASD-related deficit caused by other genes mutations. Contactin associated protein-like 2 (CNTNAP2) is the first widely replicated autism-predisposition gene. Mice deficient in Cntnap2 (Cntnap2−/− mice) show core ASD-like phenotypes, and have been demonstrated as a validated model for ASD-relevant drug discovery. In this study, we found hyperactive Akt-mTOR signaling in the hippocampus of Cntnap2−/− mice with RNA sequencing followed with biochemical analysis. Treatment with Akt inhibitor LY294002 or mTOR inhibitor rapamycin rescued the social deficit, but had no effect on hyperactivity and repetitive behavior/restricted behavior in Cntnap2−/− mice. We further showed that the effect of LY294002 and rapamycin on social behaviors is reversible. Our results thus identified hyperactive Akt-mTOR signaling pathway as a therapeutic target for abnormal social behavior in patients with dysfunction of CNTNAP2.
Collapse
|
9
|
Feng J, Niu P, Chen K, Wu L, Liu T, Xu S, Li J, Li S, Wang W, Lu X, Yu Q, Liu N, Xu L, Wang F, Dai W, Xia Y, Fan X, Guo C. Salidroside mediates apoptosis and autophagy inhibition in concanavalin A-induced liver injury. Exp Ther Med 2018; 15:4599-4614. [PMID: 29805476 PMCID: PMC5958679 DOI: 10.3892/etm.2018.6053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/22/2018] [Indexed: 02/07/2023] Open
Abstract
Salidroside (Sal) is a glycoside extract from Rhodiola rosea L. with anti-inflammatory, antioxidant, anticancer and cardioprotective properties. The present study explored the protective effects and the possible mechanisms of Sal on concanavalin A (ConA)-induced liver injury in mice. Balb/C mice were divided into five groups: Normal control (injected with normal saline), ConA (25 mg/kg), Sal (10 mg/kg) +ConA, Sal (20 mg/kg) + ConA (Sal injected 2 h prior to ConA injection) and Sal (20 mg/kg) only. The serum levels of liver enzymes, pro-inflammatory cytokines, and apoptosis- and autophagy-associated marker proteins were determined at 2, 8 and 24 h after ConA injection. LY294002 was further used to verify whether the phosphoinositide 3-kinase (PI3K)/Akt pathway was activated. Primary hepatocytes were isolated to verify the effect of Sal in vitro. The results indicated that Sal was a safe agent to reduce pathological damage and serum liver enzymes in ConA-induced liver injury. Sal suppressed inflammatory reactions in serum and liver tissues, and activated the PI3K/Akt signaling pathway to inhibit apoptosis and autophagy in vivo and in vitro, which could be reversed by LY294002. In conclusion, Sal attenuated ConA-induced liver injury by modulating PI3K/Akt pathway-mediated apoptosis and autophagy in mice.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Peiqin Niu
- Department of Gastroenterology, Shanghai Tenth People's Hospital Chongming Branch, Tongji University School of Medicine, Shanghai 202157, P.R. China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Shizan Xu
- School of Clinical Medicine of Nanjing Medical University, Shanghai Tenth People's Hospital, Shanghai 200072, P.R. China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Wenwen Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiya Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Qiang Yu
- School of Clinical Medicine of Nanjing Medical University, Shanghai Tenth People's Hospital, Shanghai 200072, P.R. China
| | - Ning Liu
- School of Clinical Medicine of Nanjing Medical University, Shanghai Tenth People's Hospital, Shanghai 200072, P.R. China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, P.R. China
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Weiqi Dai
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China.,Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
10
|
Cao C, Chai Y, Shou S, Wang J, Huang Y, Ma T. Toll-like receptor 4 deficiency increases resistance in sepsis-induced immune dysfunction. Int Immunopharmacol 2017; 54:169-176. [PMID: 29149705 DOI: 10.1016/j.intimp.2017.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/04/2017] [Accepted: 11/05/2017] [Indexed: 12/31/2022]
Abstract
Sepsis constitutes a serious life-threatening syndrome associated with complications of deregulated inflammatory response against endotoxin/lipopolysaccharide (LPS)-mediated severe infection. Toll-like receptor 4 (TLR4) plays a critical role in the activation of innate immunity through recognition of LPS. However, the impact of TLR4 signaling on the development of sepsis-induced immune dysfunction remains unclear. The aim of this study was to investigate the effect of TLR4 on regulatory T cells (Tregs) and its potential mechanism. To simulate sepsis, male C57BL/6 (wild-type) and C57BL/10ScNJNJU (TLR4-/-) mice were subjected to cecal ligation and puncture (CLP). After 24h, pro- and anti-inflammatory cytokine secretion, neutrophil and macrophage lung and liver infiltration were assessed to evaluate the sepsis-induced inflammatory response. The quantity and apoptotic rate of Tregs were measured. The expression of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and forkhead/winged helix transcription factor p3 (Foxp3) were analyzed. Cytokine (i.e., TNF-α, IL-2, IL-10, and IL-4) secretion by Tregs in the cell suspensions and the suppressive activity on CD4+CD25- T cell proliferation were also determined in vitro. At 24h after the CLP procedure, the wild-type mice exhibited increased Treg levels and expression, and secreted inflammatory factors in the serum were markedly overproduced. However, the TLR4-/- mice attenuated the increased Treg expression and inflammatory factor overproduction. These results indicate that in a model of post-septic mice, TLR4 deficiency improves immune paralysis by attenuating Treg activity and restoring a pro-inflammatory cytokine balance. Thus, modulation of the TLR4 activity may be useful in preventing immune dysfunction in sepsis.
Collapse
Affiliation(s)
- Chao Cao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Huang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
11
|
Ta A, Thakur BK, Dutta P, Sinha R, Koley H, Das S. Double-stranded RNA induces cathelicidin expression in the intestinal epithelial cells through phosphatidylinositol 3-kinase-protein kinase Cζ-Sp1 pathway and ameliorates shigellosis in mice. Cell Signal 2017; 35:140-153. [DOI: 10.1016/j.cellsig.2017.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/21/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
|
12
|
Genetic and Pharmacologic Manipulation of TLR4 Has Minimal Impact on Ethanol Consumption in Rodents. J Neurosci 2016; 37:1139-1155. [PMID: 27986929 DOI: 10.1523/jneurosci.2002-16.2016] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/07/2016] [Accepted: 12/01/2016] [Indexed: 11/21/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is a critical component of innate immune signaling and has been implicated in alcohol responses in preclinical and clinical models. Members of the Integrative Neuroscience Initiative on Alcoholism (INIA-Neuroimmune) consortium tested the hypothesis that TLR4 mediates excessive ethanol drinking using the following models: (1) Tlr4 knock-out (KO) rats, (2) selective knockdown of Tlr4 mRNA in mouse nucleus accumbens (NAc), and (3) injection of the TLR4 antagonist (+)-naloxone in mice. Lipopolysaccharide (LPS) decreased food/water intake and body weight in ethanol-naive and ethanol-trained wild-type (WT), but not Tlr4 KO rats. There were no consistent genotypic differences in two-bottle choice chronic ethanol intake or operant self-administration in rats before or after dependence. In mice, (+)-naloxone did not decrease drinking-in-the-dark and only modestly inhibited dependence-driven consumption at the highest dose. Tlr4 knockdown in mouse NAc did not decrease drinking in the two-bottle choice continuous or intermittent access tests. However, the latency to ethanol-induced loss of righting reflex increased and the duration decreased in KO versus WT rats. In rat central amygdala neurons, deletion of Tlr4 altered GABAA receptor function, but not GABA release. Although there were no genotype differences in acute ethanol effects before or after chronic intermittent ethanol exposure, genotype differences were observed after LPS exposure. Using different species and sexes, different methods to inhibit TLR4 signaling, and different ethanol consumption tests, our comprehensive studies indicate that TLR4 may play a role in ethanol-induced sedation and GABAA receptor function, but does not regulate excessive drinking directly and would not be an effective therapeutic target. SIGNIFICANCE STATEMENT Toll-like receptor 4 (TLR4) is a key mediator of innate immune signaling and has been implicated in alcohol responses in animal models and human alcoholics. Members of the Integrative Neuroscience Initiative on Alcoholism (INIA-Neuroimmune) consortium participated in the first comprehensive study across multiple laboratories to test the hypothesis that TLR4 regulates excessive alcohol consumption in different species and different models of chronic, dependence-driven, and binge-like drinking. Although TLR4 was not a critical determinant of excessive drinking, it was important in the acute sedative effects of alcohol. Current research efforts are directed at determining which neuroimmune pathways mediate excessive alcohol drinking and these findings will help to prioritize relevant pathways and potential therapeutic targets.
Collapse
|
13
|
Xu C, Chen G, Yang W, Xu Y, Xu Y, Huang X, Liu J, Feng Y, Xu Y, Liu B. Hyaluronan ameliorates LPS-induced acute lung injury in mice via Toll-like receptor (TLR) 4-dependent signaling pathways. Int Immunopharmacol 2015; 28:1050-8. [PMID: 26321117 DOI: 10.1016/j.intimp.2015.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 08/02/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
Toll-like receptor-4 (TLR4) signaling has been implicated in innate immunity and acute inflammation following acute lung injury (ALI). As such, modulating inflammatory response through TLR4 represents an attractive therapeutic approach to treat ALI. Increasing evidence demonstrates that hyaluronan (HA) can modulate TLR4 activation and has shown early promise as a therapeutic agent in ALI. However, the mechanism associated with HA has not been fully elucidated. In the current study, we sought to determine the effects of HA on lipopolysaccharide (LPS)-induced inflammatory response and gain insights into the mechanism of action in mice with intratracheal instillation of LPS. Our results demonstrate that in contrast to mice challenged with LPS, pretreatment with HA significantly inhibited inflammatory cell recruitment, attenuated lung injury and suppressed the level of cytokine/chemokine in bronchial alveolar lavage fluid (BALF). Investigation of the mechanism responsible for inhibition of LPS activation showed HA treatment significantly inhibited the nuclear translocation of NF-κB p65 and protein expression of myeloid differentiation primary response protein (MyD88) and TIR-domain-containing adapter-inducing interferon-β (TRIF) and p38 MAPK, JNK and ERK activation in lung tissue. Furthermore, we compared the protection effect of HA in TLR4-deficient mice with those of genetically matched wild type (WT) mice in an acute model of lung injury. However, in TLR4-deficient mice, HA pretreatment before LPS instillation fail to affect the LPS response. Therefore, our findings suggest that HA pretreatment attenuated LPS-induced ALI and the anti-inflammatory function of HA was partial dependent on TLR4, which shed new light on potential elements that regulate the lung injury response.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Respiration, Affiliated Hospital, School of Medicine, Hangzhou Normal University, 16 Wen Zhou Road, Hangzhou 311121, China
| | - Gang Chen
- Department of Respiration, Affiliated Hospital, School of Medicine, Hangzhou Normal University, 16 Wen Zhou Road, Hangzhou 311121, China
| | - Weiwei Yang
- Department of Respiration, Affiliated Hospital, School of Medicine, Hangzhou Normal University, 16 Wen Zhou Road, Hangzhou 311121, China
| | - Yizhe Xu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Yongfang Xu
- Department of Respiration, Affiliated Hospital, School of Medicine, Hangzhou Normal University, 16 Wen Zhou Road, Hangzhou 311121, China
| | - Xuqing Huang
- Department of Respiration, Affiliated Hospital, School of Medicine, Hangzhou Normal University, 16 Wen Zhou Road, Hangzhou 311121, China
| | - Jiangang Liu
- Maternal and Child Health Hospital Affiliated to Zhejiang University, Hangzhou 311121, China
| | - Yuejuan Feng
- Department of Respiration, Affiliated Hospital, School of Medicine, Hangzhou Normal University, 16 Wen Zhou Road, Hangzhou 311121, China
| | - Yanchun Xu
- Department of Physiology and Pharmacology, West Virginia University, WV 26506, USA
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| |
Collapse
|
14
|
Zhang K, Jiao XF, Li JX, Wang XW. Rhein inhibits lipopolysaccharide-induced intestinal injury during sepsis by blocking the toll-like receptor 4 nuclear factor-κB pathway. Mol Med Rep 2015; 12:4415-4421. [PMID: 26081522 DOI: 10.3892/mmr.2015.3925] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 04/30/2015] [Indexed: 11/05/2022] Open
Abstract
Sepsis is one of the leading causes of mortality in severe systemic inflammatory syndrome. The endotoxin-induced inflammatory response has been linked to the development of sepsis. Rhein is a lipophilic anthraquinone isolated from Rheum rhabarbarum (rhubarb), which has a protective effect on intestinal damage in vivo. However, the underlying mechanism responsible for the protective effects of rhein remains to be elucidated. In the present study, mice were exposed to 20 mg/kg lipopolysaccharide (LPS), prior to being treated with either 100 mg/kg rhein or 0.3 mg/kg toll‑like receptor 4 (TLR4) signaling inhibitor TAK‑242. In the rhein‑treated mice, the colon length (cm) was extended and colon injury was attenuated. In addition, treatment with rhein significantly decreased the expression levels of the LPS‑induced inflammatory cytokines interleukin (IL)‑1β, IL‑6, IL‑8, and tumor necrosis factor‑α, in both the plasma and colon tissue. However, mice treated with TAK‑242 exhibited increased expression levels of IL‑10, as determined by ELISA and western blot analysis. In addition, immunohistochemistry and western blot analyses demonstrated that treatment with rhein was able to reduce TLR4 expression and inhibit nuclear factor‑κB (NF‑κB) phosphorylation in colon tissue. Furthermore, LPS induction was blocked by TAK‑242. These results demonstrate that the observed rhein‑attenuated inflammatory response during sepsis may be achieved via the TLR4 NF‑κB signaling pathway. In conclusion, the results of the present study provide a novel insight into the protective effects of rhein on LPS‑induced intestinal inflammation, and demonstrate that rhein may act as a beneficial therapeutic agent in the treatment of sepsis-induced intestinal damage.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Critical Care Medicine, Zhengzhou People's Hospital, Zhengzhou, Henan 450053, P.R. China
| | - Xian Fa Jiao
- Department of Critical Care Medicine, Zhengzhou People's Hospital, Zhengzhou, Henan 450053, P.R. China
| | - Jin Xiu Li
- Department of Critical Care Medicine, Zhengzhou People's Hospital, Zhengzhou, Henan 450053, P.R. China
| | - Xiao Wen Wang
- Department of Critical Care Medicine, Zhengzhou People's Hospital, Zhengzhou, Henan 450053, P.R. China
| |
Collapse
|