1
|
Yaron JR, Ambadapadi S, Zhang L, Chavan RN, Tibbetts SA, Keinan S, Varsani A, Maldonado J, Kraberger S, Tafoya AM, Bullard WL, Kilbourne J, Stern-Harbutte A, Krajmalnik-Brown R, Munk BH, Koppang EO, Lim ES, Lucas AR. Immune protection is dependent on the gut microbiome in a lethal mouse gammaherpesviral infection. Sci Rep 2020; 10:2371. [PMID: 32047224 PMCID: PMC7012916 DOI: 10.1038/s41598-020-59269-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Immunopathogenesis in systemic viral infections can induce a septic state with leaky capillary syndrome, disseminated coagulopathy, and high mortality with limited treatment options. Murine gammaherpesvirus-68 (MHV-68) intraperitoneal infection is a gammaherpesvirus model for producing severe vasculitis, colitis and lethal hemorrhagic pneumonia in interferon gamma receptor-deficient (IFNγR-/-) mice. In prior work, treatment with myxomavirus-derived Serp-1 or a derivative peptide S-7 (G305TTASSDTAITLIPR319) induced immune protection, reduced disease severity and improved survival after MHV-68 infection. Here, we investigate the gut bacterial microbiome in MHV-68 infection. Antibiotic suppression markedly accelerated MHV-68 pathology causing pulmonary consolidation and hemorrhage, increased mortality and specific modification of gut microbiota. Serp-1 and S-7 reduced pulmonary pathology and detectable MHV-68 with increased CD3 and CD8 cells. Treatment efficacy was lost after antibiotic treatments with associated specific changes in the gut bacterial microbiota. In summary, transkingdom host-virus-microbiome interactions in gammaherpesvirus infection influences gammaherpesviral infection severity and reduces immune modulating therapeutic efficacy.
Collapse
Affiliation(s)
- Jordan R Yaron
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Sriram Ambadapadi
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Liqiang Zhang
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ramani N Chavan
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Shahar Keinan
- Cloud Pharmaceuticals, Research Triangle Park (RTP), North Carolina, USA
| | - Arvind Varsani
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center of Evolution and Medicine Arizona State University, Tempe, Arizona, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Juan Maldonado
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- KED Genomics Core, Arizona State University, Tempe, Arizona, USA
| | - Simona Kraberger
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Amanda M Tafoya
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Whitney L Bullard
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jacquelyn Kilbourne
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Alison Stern-Harbutte
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Rosa Krajmalnik-Brown
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Swette Center for Environmental Biotechnology, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
| | - Barbara H Munk
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Erling O Koppang
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Efrem S Lim
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
| | - Alexandra R Lucas
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
2
|
Chen W, Lu C, Hirota C, Iacucci M, Ghosh S, Gui X. Smooth Muscle Hyperplasia/Hypertrophy is the Most Prominent Histological Change in Crohn's Fibrostenosing Bowel Strictures: A Semiquantitative Analysis by Using a Novel Histological Grading Scheme. J Crohns Colitis 2017; 11:92-104. [PMID: 27364949 DOI: 10.1093/ecco-jcc/jjw126] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The simplistically and ambiguously termed 'fibrostenosis' of bowel is a hallmark of severe Crohn's disease [CD] and a major contributor to medical treatment failure. Non-invasive imaging assessment and novel medical therapy targeting this condition are under investigation, which particularly requires a better understanding of the underlying histological basis. METHODS We analysed 48 patients with stricturing Crohn's ileitis or/and colitis that required surgical resection. The most representative sections of the fibrostenotic, non-stenotic and uninvolved regions were reviewed for histological analysis. For each layer of bowel wall (mucosa including muscularis mucosae [MU], submucosa [SM], muscularis propria [MP], subserosal adventitia [SS]), histological abnormalities were evaluated individually, including active and chronic inflammation, fibrosis, smooth muscle hyperplasia or hypertrophy, neuronal hypertrophy and adipocyte proliferation. A novel semiquantitative histological grading scheme was created. RESULTS The most significant histopathological features characterizing the stricturing intestines were smooth muscle hyperplasia of SM, hypertrophy of MP and chronic inflammation. The muscular alteration was predominant in all layers. The overall muscular hyperplasia/hypertrophy was positively correlated with chronic inflammation and negatively correlated with fibrosis, whereas SM muscular hyperplasia was also associated with MU active inflammation. Similar changes, to a lesser extent, occurred in the adjacent non-stenotic inflamed bowel as well. CONCLUSIONS In CD-associated 'fibrostenosis', it is the smooth muscle hyperplasia/hypertrophy that contributes most to the stricturing phenotype, whereas fibrosis is less significant. The 'inflammation-smooth muscle hyperplasia axis' may be the most important in the pathogenesis of Crohn's strictures.
Collapse
Affiliation(s)
- Wenqian Chen
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Cathy Lu
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Christina Hirota
- Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marietta Iacucci
- Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Subrata Ghosh
- Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xianyong Gui
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada .,Calgary Laboratory Services, Calgary, AB, Canada
| |
Collapse
|
3
|
Nakamura H, Aoshiba K. Pathogenesis of COPD (Persistence of Airway Inflammation): Why Does Airway Inflammation Persist After Cessation of Smoking? CHRONIC OBSTRUCTIVE PULMONARY DISEASE 2016. [PMCID: PMC7123312 DOI: 10.1007/978-981-10-0839-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The structural features of airways in patients with COPD are airway wall inflammation, fibrosis, muscle hypertrophy, and goblet cell metaplasia. These structural cellular changes contribute to mucus hypersecretion and destruction of the alveolar walls and a decline in forced expiratory volume in one second (FEV1). At the cellular level, macrophages, T lymphocytes, and neutrophils, driven by cytokines including interleukin-8 (IL-8), gather on the airways. The main cause of COPD inflammation is cigarette smoke. Smoke causes an increase in the secretion of matrix metalloproteinase (MMPs) and neutrophilic elastase from epithelial cells and neutrophils, which are responsible for mucin production and destruction of the lung. Initially, cigarette smoke influences the expression of pattern recognition receptors (PRRs) including Toll-like receptors (TLRs), the intracellularly located nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), and receptors for advanced glycation end products (RAGE) on lung epithelial cells, endothelial cells, and leukocytes in the lung. These actions bring about the production of cytokines and activation of inflammatory cells, leading to production of MMPs and neutrophilic elastase. The inflammatory changes persist for several months and years after smoking cessation and are sometimes irreversible. Damage-associated molecular patterns (DAMPs) released from dying cells after cigarette smoking increase the number of apoptotic cells, suppress efferocytosis, induce hypoxia and oxidative stress, and prolong the inflammatory changes, even after smoking cessation. Viral and bacterial infections of the respiratory tract then fortify these inflammatory responses. Exacerbations of COPD then worsen the deterioration of COPD.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| |
Collapse
|
4
|
Khan MA. Inflammation signals airway smooth muscle cell proliferation in asthma pathogenesis. Multidiscip Respir Med 2013; 8:11. [PMID: 23388501 PMCID: PMC3568740 DOI: 10.1186/2049-6958-8-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/03/2013] [Indexed: 01/07/2023] Open
Abstract
Background Airway inflammation stimulates proliferation of airway smooth muscle cell, which contributes to the development of hyperplasia and hypertrophy of smooth muscle cell. The increase in airway smooth muscle cell mass is believed to be due to an up-regulation of inflammatory mediators in the airway. It is now well recognized that chronic inflammation as well as airway hyper-responsiveness and remodeling of airway during inflammation, are crucial to asthma. Airway hyper-responsiveness is caused by increased cell proliferation or by hypertrophy of airway smooth muscle cell depending on the nature of the inflammatory stimulation. Airway smooth muscle cell proliferation in asthma is regulated by the proinflammatory cytokines including IL-1β and TNF-α. These proinflammatory cytokines have been shown to influence human airway smooth muscle cell proliferation in vitro, which is due to cyclooxygenase-2 expression, production of prostaglandin E2, and increased cAMP levels. Conclusions This review highlights the role of different proinflammatory cytokines in regulating airway smooth muscle cell growth and also focuses on regulation of differential gene expression in airway smooth muscle cell by growth factors and cytokines, also to bestow unique insight into the effects of conventional asthma therapies on airway smooth muscle cell proliferation and development of new therapeutic strategies to control asthma.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Department of Medicine, Stanford University, VAPAHCS, 3801 Miranda Avenue, Building 101, Room B4-105, Palo Alto, California, 94304, USA.
| |
Collapse
|