1
|
Xiao X, Ding Z, Shi Y, Zhang Q. Causal Role of Immune Cells in Chronic Obstructive Pulmonary Disease: A Two-Sample Mendelian Randomization Study. COPD 2024; 21:2327352. [PMID: 38573027 DOI: 10.1080/15412555.2024.2327352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Accumulating evidence has highlighted the importance of immune cells in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the understanding of the causal association between immunity and COPD remains incomplete due to the existence of confounding variables. In this study, we employed a two-sample Mendelian randomization (MR) analysis, utilizing the genome-wide association study database, to investigate the causal association between 731 immune-cell signatures and the susceptibility to COPD from a host genetics perspective. To validate the consistency of our findings, we utilized MR analysis results of lung function data to assess directional concordance. Furthermore, we employed MR-Egger intercept tests, Cochrane's Q test, MR-PRESSO global test, and "leave-one-out" sensitivity analyses to evaluate the presence of horizontal pleiotropy, heterogeneity, and stability, respectively. Inverse variance weighting results showed that seven immune phenotypes were associated with the risk of COPD. Analyses of heterogeneity and pleiotropy analysis confirmed the reliability of MR results. These results highlight the interactions between the immune system and the lungs. Further investigations into their mechanisms are necessary and will contribute to inform targeted prevention strategies for COPD.
Collapse
Affiliation(s)
- Xinru Xiao
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Ziqi Ding
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yujia Shi
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Qian Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
2
|
Katsoulis O, Toussaint M, Jackson MM, Mallia P, Footitt J, Mincham KT, Meyer GFM, Kebadze T, Gilmour A, Long M, Aswani AD, Snelgrove RJ, Johnston SL, Chalmers JD, Singanayagam A. Neutrophil extracellular traps promote immunopathogenesis of virus-induced COPD exacerbations. Nat Commun 2024; 15:5766. [PMID: 38982052 PMCID: PMC11233599 DOI: 10.1038/s41467-024-50197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Respiratory viruses are a major trigger of exacerbations in chronic obstructive pulmonary disease (COPD). Airway neutrophilia is a hallmark feature of stable and exacerbated COPD but roles played by neutrophil extracellular traps (NETS) in driving disease pathogenesis are unclear. Here, using human studies of experimentally-induced and naturally-occurring exacerbations we identify that rhinovirus infection induces airway NET formation which is amplified in COPD and correlates with magnitude of inflammation and clinical exacerbation severity. We show that inhibiting NETosis protects mice from immunopathology in a model of virus-exacerbated COPD. NETs drive inflammation during exacerbations through release of double stranded DNA (dsDNA) and administration of DNAse in mice has similar protective effects. Thus, NETosis, through release of dsDNA, has a functional role in the pathogenesis of COPD exacerbations. These studies open up the potential for therapeutic targeting of NETs or dsDNA as a strategy for treating virus-exacerbated COPD.
Collapse
Affiliation(s)
- Orestis Katsoulis
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Marie Toussaint
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Millie M Jackson
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Patrick Mallia
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Joseph Footitt
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kyle T Mincham
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Garance F M Meyer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Tata Kebadze
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Amy Gilmour
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Merete Long
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Andrew D Aswani
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | | | | | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Aran Singanayagam
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
3
|
Moniot A, Braux J, Siboni R, Guillaume C, Audonnet S, Allart-Simon I, Sapi J, Tirouvanziam R, Gérard S, Gangloff SC, Velard F. Inhibition of Recruitment and Activation of Neutrophils by Pyridazinone-Scaffold-Based Compounds. Int J Mol Sci 2022; 23:ijms23137226. [PMID: 35806233 PMCID: PMC9266889 DOI: 10.3390/ijms23137226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/07/2022] Open
Abstract
In inflammatory diseases, polymorphonuclear neutrophils (PMNs) are known to produce elevated levels of pro-inflammatory cytokines and proteases. To limit ensuing exacerbated cell responses and tissue damage, novel therapeutic agents are sought. 4aa and 4ba, two pyridazinone-scaffold-based phosphodiesterase-IV inhibitors are compared in vitro to zardaverine for their ability to: (1) modulate production of pro-inflammatory mediators, reactive oxygen species (ROS), and phagocytosis; (2) modulate degranulation by PMNs after transepithelial lung migration. Compound 4ba and zardaverine were tested in vivo for their ability to limit tissue recruitment of PMNs in a murine air pouch model. In vitro treatment of lipopolysaccharide-stimulated PMNs with compounds 4aa and 4ba inhibited the release of interleukin-8, tumor necrosis factor-α, and matrix metalloproteinase-9. PMNs phagocytic ability, but not ROS production, was reduced following treatment. Using a lung inflammation model, we proved that PMNs transmigration led to reduced expression of the CD16 phagocytic receptor, which was significantly blunted after treatment with compound 4ba or zardaverine. Using the murine air pouch model, LPS-induced PMNs recruitment was significantly decreased upon addition of compound 4ba or zardaverine. Our data suggest that new pyridazinone derivatives have therapeutic potential in inflammatory diseases by limiting tissue recruitment and activation of PMNs.
Collapse
Affiliation(s)
- Aurélie Moniot
- Université de Reims Champagne-Ardenne, EA 4691 BIOS, 51 Rue Cognacq Jay, 51100 Reims, France; (A.M.); (J.B.); (R.S.); (C.G.); (S.C.G.)
| | - Julien Braux
- Université de Reims Champagne-Ardenne, EA 4691 BIOS, 51 Rue Cognacq Jay, 51100 Reims, France; (A.M.); (J.B.); (R.S.); (C.G.); (S.C.G.)
| | - Renaud Siboni
- Université de Reims Champagne-Ardenne, EA 4691 BIOS, 51 Rue Cognacq Jay, 51100 Reims, France; (A.M.); (J.B.); (R.S.); (C.G.); (S.C.G.)
| | - Christine Guillaume
- Université de Reims Champagne-Ardenne, EA 4691 BIOS, 51 Rue Cognacq Jay, 51100 Reims, France; (A.M.); (J.B.); (R.S.); (C.G.); (S.C.G.)
| | - Sandra Audonnet
- Université de Reims Champagne-Ardenne, URCACyt, 51 Rue Cognacq Jay, 51100 Reims, France;
| | - Ingrid Allart-Simon
- Université de Reims Champagne-Ardenne, UMR CNRS 7312 ICMR, 51 Rue Cognacq Jay, 51100 Reims, France; (I.A.-S.); (J.S.); (S.G.)
| | - Janos Sapi
- Université de Reims Champagne-Ardenne, UMR CNRS 7312 ICMR, 51 Rue Cognacq Jay, 51100 Reims, France; (I.A.-S.); (J.S.); (S.G.)
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Center for CF and Airways Disease Research, Children’s Healthcare of Atlanta, 2015 Uppergate Road, Atlanta, GA 30322, USA
| | - Stéphane Gérard
- Université de Reims Champagne-Ardenne, UMR CNRS 7312 ICMR, 51 Rue Cognacq Jay, 51100 Reims, France; (I.A.-S.); (J.S.); (S.G.)
| | - Sophie C. Gangloff
- Université de Reims Champagne-Ardenne, EA 4691 BIOS, 51 Rue Cognacq Jay, 51100 Reims, France; (A.M.); (J.B.); (R.S.); (C.G.); (S.C.G.)
| | - Frédéric Velard
- Université de Reims Champagne-Ardenne, EA 4691 BIOS, 51 Rue Cognacq Jay, 51100 Reims, France; (A.M.); (J.B.); (R.S.); (C.G.); (S.C.G.)
- Correspondence: ; Tel.: +33-3-26-91-80-10
| |
Collapse
|
4
|
D’Anna SE, Maniscalco M, Cappello F, Carone M, Motta A, Balbi B, Ricciardolo FLM, Caramori G, Di Stefano A. Bacterial and viral infections and related inflammatory responses in chronic obstructive pulmonary disease. Ann Med 2021; 53:135-150. [PMID: 32997525 PMCID: PMC7877965 DOI: 10.1080/07853890.2020.1831050] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/25/2020] [Indexed: 12/24/2022] Open
Abstract
In chronic obstructive pulmonary disease (COPD) patients, bacterial and viral infections play a relevant role in worsening lung function and, therefore, favour disease progression. The inflammatory response to lung infections may become a specific indication of the bacterial and viral infections. We here review data on the bacterial-viral infections and related airways and lung parenchyma inflammation in stable and exacerbated COPD, focussing our attention on the prevalent molecular pathways in these different clinical conditions. The roles of macrophages, autophagy and NETosis are also briefly discussed in the context of lung infections in COPD. Controlling their combined response may restore a balanced lung homeostasis, reducing the risk of lung function decline. KEY MESSAGE Bacteria and viruses can influence the responses of the innate and adaptive immune system in the lung of chronic obstructive pulmonary disease (COPD) patients. The relationship between viruses and bacterial colonization, and the consequences of the imbalance of these components can modulate the inflammatory state of the COPD lung. The complex actions involving immune trigger cells, which activate innate and cell-mediated inflammatory responses, could be responsible for the clinical consequences of irreversible airflow limitation, lung remodelling and emphysema in COPD patients.
Collapse
Affiliation(s)
| | - Mauro Maniscalco
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, IRCCS, Telese, Italy
| | - Francesco Cappello
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), Istituto di Anatomia Umana e Istologia Università degli Studi di Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Mauro Carone
- UOC Pulmonology and Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS di Bari, Bari, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Bruno Balbi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell’Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Italy
| | - Fabio L. M. Ricciardolo
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, AOU San Luigi Gonzaga, Torino, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini morfologiche e funzionali (BIOMORF), Università degli studi di Messina, Italy
| | - Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell’Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Italy
| |
Collapse
|
5
|
Mincham KT, Bruno N, Singanayagam A, Snelgrove RJ. Our evolving view of neutrophils in defining the pathology of chronic lung disease. Immunology 2021; 164:701-721. [PMID: 34547115 PMCID: PMC8561104 DOI: 10.1111/imm.13419] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are critical components of the body's immune response to infection, being loaded with a potent arsenal of toxic mediators and displaying immense destructive capacity. Given the potential of neutrophils to impart extensive tissue damage, it is perhaps not surprising that when augmented these cells are also implicated in the pathology of inflammatory diseases. Prominent neutrophilic inflammation is a hallmark feature of patients with chronic lung diseases such as chronic obstructive pulmonary disease, severe asthma, bronchiectasis and cystic fibrosis, with their numbers frequently associating with worse prognosis. Accordingly, it is anticipated that neutrophils are central to the pathology of these diseases and represent an attractive therapeutic target. However, in many instances, evidence directly linking neutrophils to the pathology of disease has remained somewhat circumstantial and strategies that have looked to reduce neutrophilic inflammation in the clinic have proved largely disappointing. We have classically viewed neutrophils as somewhat crude, terminally differentiated, insular and homogeneous protagonists of pathology. However, it is now clear that this does not do the neutrophil justice, and we now recognize that these cells exhibit heterogeneity, a pronounced awareness of the localized environment and a remarkable capacity to interact with and modulate the behaviour of a multitude of cells, even exhibiting anti-inflammatory, pro-resolving and pro-repair functions. In this review, we discuss evidence for the role of neutrophils in chronic lung disease and how our evolving view of these cells may impact upon our perceived assessment of their contribution to disease pathology and efforts to target them therapeutically.
Collapse
Affiliation(s)
- Kyle T. Mincham
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Nicoletta Bruno
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Aran Singanayagam
- National Heart and Lung InstituteImperial College LondonLondonUK
- Department of Infectious DiseaseImperial College LondonLondonUK
| | | |
Collapse
|
6
|
Karawajczyk M, Douhan Håkansson L, Lipcsey M, Hultström M, Pauksens K, Frithiof R, Larsson A. High expression of neutrophil and monocyte CD64 with simultaneous lack of upregulation of adhesion receptors CD11b, CD162, CD15, CD65 on neutrophils in severe COVID-19. Ther Adv Infect Dis 2021; 8:20499361211034065. [PMID: 34377464 PMCID: PMC8326822 DOI: 10.1177/20499361211034065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/02/2021] [Indexed: 01/19/2023] Open
Abstract
Background and Aims The pronounced neutrophilia observed in patients with coronavirus disease 2019 (COVID-19) infections suggests a role for these leukocytes in the pathology of the disease. Monocyte and neutrophil expression of CD64 and CD11b have been reported as early biomarkers to detect infections. The aim of this study was to study the expression of receptors for IgG (CD64) and adhesion molecules (CD11b, CD15s, CD65, CD162, CD66b) on neutrophils and monocytes in patients with severe COVID-19 after admission to an intensive care unit (ICU). Methods The expression of receptors was analyzed using flow cytometry. EDTA blood from 23 patients with confirmed COVID-19 infection was sampled within 48 h of admission to the ICU. Leukocytes were labeled with antibodies to CD11b, CD15s, CD65s, CD162, CD64, and CD66b. Expression of receptors was reported as mean fluorescence intensity (MFI) or the percentage of cells expressing receptors. Results Results are presented as comparison of COVID-19 patients with the healthy group and the receptor expression as MFI. Neutrophil receptors CD64 (2.5 versus 0.5) and CD66b (44.5 versus 34) were increased and CD15 decreased (21.6 versus 28.3) when CD65 (6.6 versus 4.4), CD162 (21.3 versus 21.1) and CD11b (10.5 versus 12) were in the same range. Monocytes receptors CD64 (30.5 versus 16.6), CD11b (18.7 versus 9.8), and CD162 (38.6 versus 36.5) were increased and CD15 decreased (10.3 versus 17.9); CD65 were in the same range (2.3 versus 1.96). Conclusion Monocytes and neutrophils are activated during severe COVID-19 infection as shown by strong upregulation of CD64. High monocyte and neutrophil CD64 can be an indicator of a severe form of COVID19. The adhesion molecules (CD11b, CD162, CD65, and CD15) are not upregulated on otherwise activated neutrophils, which might lead to relative impairment of tissue migration. Low adhesion profile of neutrophils suggests immune dysfunction of neutrophils. Monocytes maintain upregulation of some adhesion molecules (CD11b, CD162) suggesting the persistence of an increased ability to migrate into tissues, even during a severe stage of COVID-19. Future research should focus on CD64 and CD11b kinetics in the context of prognosis.
Collapse
Affiliation(s)
- Malgorzata Karawajczyk
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Sjukhusvägen, entr 61, Uppsala, 751 05, Sweden
| | - Lena Douhan Håkansson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Miklos Lipcsey
- Department of Surgical Sciences, Hedenstierna Laboratory, CIRRUS, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Michael Hultström
- Department of Surgical Sciences, Anesthesia and Intensive Care Medicine, Uppsala University, Uppsala, Sweden
| | - Karlis Pauksens
- Department of Medical Science, Section of Infectious Diseases, University Hospital, Uppsala, Sweden
| | - Robert Frithiof
- Department of Surgical Sciences, Anesthesia and Intensive Care Medicine, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Johansson C, Kirsebom FCM. Neutrophils in respiratory viral infections. Mucosal Immunol 2021; 14:815-827. [PMID: 33758367 PMCID: PMC7985581 DOI: 10.1038/s41385-021-00397-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/04/2023]
Abstract
Viral respiratory infections are a common cause of severe disease, especially in infants, people who are immunocompromised, and in the elderly. Neutrophils, an important innate immune cell, infiltrate the lungs rapidly after an inflammatory insult. The most well-characterized effector mechanisms by which neutrophils contribute to host defense are largely extracellular and the involvement of neutrophils in protection from numerous bacterial and fungal infections is well established. However, the role of neutrophils in responses to viruses, which replicate intracellularly, has been less studied. It remains unclear whether and, by which underlying immunological mechanisms, neutrophils contribute to viral control or confer protection against an intracellular pathogen. Furthermore, neutrophils need to be tightly regulated to avoid bystander damage to host tissues. This is especially relevant in the lung where damage to delicate alveolar structures can compromise gas exchange with life-threatening consequences. It is inherently less clear how neutrophils can contribute to host immunity to viruses without causing immunopathology and/or exacerbating disease severity. In this review, we summarize and discuss the current understanding of how neutrophils in the lung direct immune responses to viruses, control viral replication and spread, and cause pathology during respiratory viral infections.
Collapse
Affiliation(s)
- Cecilia Johansson
- National Heart and Lung Institute, Imperial College London, London, UK.
| | | |
Collapse
|
8
|
Ritchie AI, Wedzicha JA. Definition, Causes, Pathogenesis, and Consequences of Chronic Obstructive Pulmonary Disease Exacerbations. Clin Chest Med 2020; 41:421-438. [PMID: 32800196 PMCID: PMC7423341 DOI: 10.1016/j.ccm.2020.06.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Andrew I Ritchie
- National Heart and Lung Institute, Guy Scadding Building, Imperial College London, Dovehouse Street, London SW3 6JY, United Kingdom
| | - Jadwiga A Wedzicha
- National Heart and Lung Institute, Guy Scadding Building, Imperial College London, Dovehouse Street, London SW3 6JY, United Kingdom.
| |
Collapse
|
9
|
Xu W, Zhao T, Xiao H. The Implication of Oxidative Stress and AMPK-Nrf2 Antioxidative Signaling in Pneumonia Pathogenesis. Front Endocrinol (Lausanne) 2020; 11:400. [PMID: 32625169 PMCID: PMC7311749 DOI: 10.3389/fendo.2020.00400] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 05/18/2020] [Indexed: 02/05/2023] Open
Abstract
It is widely recognized that chemical, physical, and biological factors can singly or synergistically evoke the excessive production of oxidative stress in pulmonary tissue that followed by pulmonary lesions and pneumonia. In addition, metabolic and endocrine disorder-induced diseases such as diabetes and obesity often expressed higher susceptibility to pulmonary infections, and presented severe symptoms which increasing the mortality rate. Therefore, the connection between the lesion of the lungs and the metabolic/endocrine disorders is an interesting and essential issue to be addressed. Studies have noticed a similar pathological feature in both infectious pneumonia and metabolic disease-intercurrent pulmonary lesions, that is, from the view of molecular pathology, the accumulation of excessive reactive oxygen species (ROS) in pulmonary tissue accompanying with activated pro-inflammatory signals. Meanwhile, Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and nuclear factor erythroid-2-related factor 2 (Nrf2) signaling plays important role in metabolic/endocrine homeostasis and infection response, and it's closely associated with the anti-oxidative capacity of the body. For this reason, this review will start from the summary upon the implication of ROS accumulation, and to discuss how AMPK-Nrf2 signaling contributes to maintaining the metabolic/endocrine homeostasis and attenuates the susceptibility of pulmonary infections.
Collapse
Affiliation(s)
| | | | - Hengyi Xiao
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Lokwani R, Wark PA, Baines KJ, Fricker M, Barker D, Simpson JL. Blood Neutrophils In COPD But Not Asthma Exhibit A Primed Phenotype With Downregulated CD62L Expression. Int J Chron Obstruct Pulmon Dis 2019; 14:2517-2525. [PMID: 31814717 PMCID: PMC6863133 DOI: 10.2147/copd.s222486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/23/2019] [Indexed: 11/25/2022] Open
Abstract
Purpose To characterize neutrophils in obstructive airway disease by measuring their surface adhesion molecules and oxidative burst along with characterizing them into different subsets as per their adhesion molecule expression. Patients and methods Peripheral blood from adults with COPD (n=17), asthma (n=20), and healthy participants (n=19) was examined for expression of CD16, CD62L, CD11b, CD11c, and CD54, and analyzed by flow cytometry. For oxidative burst and CD62L shedding analysis, CD16 and CD62L stained leukocytes were loaded with Dihydrorhodamine-123 (DHR-123) and stimulated with N-Formylmethionine-leucyl-phenylalanine (fMLF). Neutrophil subsets were characterized based on CD16 and CD62L expression. Marker surface expression was recorded on CD16+ neutrophils as median fluorescence intensity (MFI). Results Neutrophil surface expression of CD62L was significantly reduced in COPD (median (IQR) MFI: 1156 (904, 1365)) compared with asthma (1865 (1157, 2408)) and healthy controls (2079 (1054, 2960)); p=0.028. COPD neutrophils also demonstrated a significant reduction in CD62L expression with and without fMLF stimulation. Asthma participants had a significantly increased proportion and number of CD62Lbright/CD16dim neutrophils (median: 5.4% and 0.14 × 109/L, respectively), in comparison with healthy (3.54% and 0.12 × 109/L, respectively); p<0.017. Conclusion Reduced CD62L expression suggests blood neutrophils have undergone priming in COPD but not in asthma, which may be the result of systemic inflammation. The increased shedding of CD62L receptor by COPD blood neutrophils suggests a high sensitivity for activation.
Collapse
Affiliation(s)
- Ravi Lokwani
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia.,School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Peter Ab Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia.,School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.,School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.,School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Daniel Barker
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia.,School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
11
|
Abstract
Mechanisms to elicit antiviral immunity, a natural host response to viral pathogen challenge, are of eminent relevance to cancer immunotherapy. "Oncolytic" viruses, naturally existing or genetically engineered viral agents with cell type-specific propagation in malignant cells, were ostensibly conceived for their tumor cytotoxic properties. Yet, their true therapeutic value may rest in their ability to provoke antiviral signals that engage antitumor immune responses within the immunosuppressive tumor microenvironment. Coopting oncolytic viral agents to instigate antitumor immunity is not an easy feat. In the course of coevolution with their hosts, viruses have acquired sophisticated strategies to block inflammatory signals, intercept innate antiviral interferon responses, and prevent antiviral effector responses, e.g., by interfering with antigen presentation and T cell costimulation. The resulting struggle of host innate inflammatory and antiviral responses versus viral immune evasion and suppression determines the potential for antitumor immunity to occur. Moreover, paradigms of early host:virus interaction established in normal immunocompetent organisms may not hold in the profoundly immunosuppressive tumor microenvironment. In this review, we explain the mechanisms of recombinant nonpathogenic poliovirus, PVSRIPO, which is currently in phase I clinical trials against recurrent glioblastoma. We focus on an unusual host:virus relationship defined by the simple and cytotoxic replication strategy of poliovirus, which generates inflammatory perturbations conducive to tumor antigen-specific immune priming.
Collapse
Affiliation(s)
- Matthias Gromeier
- Department of Neurosurgery.,Department of Molecular Genetics and Microbiology
| | - Smita K Nair
- Department of Surgery.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
12
|
Abstract
Respiratory viral infections including human rhinovirus (RV) infection have been identified as the most important environmental trigger of exacerbations of chronic lung diseases. While well established as the most common viral infections associated with exacerbations of asthma and chronic obstructive pulmonary disease, RVs and other respiratory viruses are also now thought to be important in triggering exacerbations of cystic fibrosis and the interstitial lung diseases. Here, we summarize the epidemiological evidence the supports respiratory viruses including RV as triggers of exacerbations of chronic lung diseases. We propose that certain characteristics of RVs may explain why they are the most common trigger of exacerbations of chronic lung diseases. We further highlight the latest mechanistic evidence supporting how and why common respiratory viral infections may enhance and promote disease triggering exacerbation events, through their interactions with the host immune system, and may be affected by ongoing treatments. We also provide a commentary on how new treatments may better manage the disease burden associated with respiratory viral infections and the exacerbation events that they trigger.
Collapse
|
13
|
Girkin J, Maltby S, Singanayagam A, Bartlett N, Mallia P. In vivo experimental models of infection and disease. RHINOVIRUS INFECTIONS 2019. [PMCID: PMC7149593 DOI: 10.1016/b978-0-12-816417-4.00008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human and animal models continue to play a crucial role in research to understand host immunity to rhinovirus (RV) and identify disease mechanisms. Human models have provided direct evidence that RV infection is capable of exacerbating chronic respiratory diseases and identified immunological processes that correlate with clinical disease outcomes. Mice are the most commonly used nonhuman experimental RV infection model. Although semipermissive, under defined experimental conditions sufficient replication occurs to induce host immune responses that recapitulate immunity and disease during human infection. The capacity to use genetically modified mouse strains and drug interventions has shown the mouse model to be an invaluable research tool defining causal relationships between host immunity and disease and supporting development of new treatments. Used in combination the insights achieved from human and animal experimental infection models provide complementary insights into RV biology and yield novel therapeutic options to reduce the burden of RV-induced disease.
Collapse
|
14
|
Puyo CA, Earhart A, Staten N, Prince OA, Haug C, Kollef M, Awad M. Endotracheal intubation results in acute tracheal damage induced by mtDNA/TLR9/NF-κB activity. J Leukoc Biol 2018; 105:577-587. [PMID: 30548974 PMCID: PMC7379990 DOI: 10.1002/jlb.5a0718-254rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/19/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022] Open
Abstract
Tracheitis secondary to placement of an endotracheal tube (ETT) is characterized by neutrophil accumulation in the tracheal lumen, which is generally associated with epithelial damage. Mitochondrial DNA (mtDNA), has been implicated in systemic inflammation and organ dysfunction following trauma; however, less is known about the effects of a foreign body on local trauma and tissue damage. We hypothesized that tracheal damage secondary to the ETT will result in local release of mtDNA at sufficient levels to induce TLR9 and NF‐κB activation. In a swine model we compared the differences between uncoated, and chloroquine (CQ) and N‐acetylcysteine (NAC) coated ETTs as measured by tracheal lavage fluids (TLF) over a period of 6 h. The swine model allowed us to recreate human conditions. ETT presence was characterized by neutrophil activation, necrosis, and release of proinflammatory cytokines mediated by TLR9/NF‐κB induction. Amelioration of the tracheal damage was observed in the CQ and NAC coated ETT group as shown in tracheal tissue specimens and TLF. The role of TLR9/NF‐κB dependent activity was confirmed by HEK‐Blue hTLR9 reporter cell line analysis after coincubation with TLF specimens with predetermined concentrations of NAC or CQ alone or TLR9 inhibitory oligodeoxynucleotide (iODN). These findings indicate that therapeutic interventions aimed at preventing mtDNA/TLR9/NF‐κB activity may have benefits in prevention of acute tracheal damage.
Collapse
Affiliation(s)
- Carlos A Puyo
- Departments of Anesthesiology and Critical Care, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, USA
| | - Alexander Earhart
- Departments of Anesthesiology and Critical Care, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, USA
| | - Nicholas Staten
- Departments of Anesthesiology and Critical Care, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, USA
| | - Oliver A Prince
- Departments of Anesthesiology and Critical Care, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, USA
| | - Colleen Haug
- Departments of Anesthesiology and Critical Care, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, USA
| | - Marin Kollef
- Internal Medicine, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, USA
| | - Michael Awad
- Surgery, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Fullen DJ, Murray B, Mori J, Catchpole A, Borley DW, Murray EJ, Balaratnam G, Gilbert A, Mann A, Hughes F, Lambkin-Williams R. A Tool for Investigating Asthma and COPD Exacerbations: A Newly Manufactured and Well Characterised GMP Wild-Type Human Rhinovirus for Use in the Human Viral Challenge Model. PLoS One 2016; 11:e0166113. [PMID: 27936016 PMCID: PMC5147828 DOI: 10.1371/journal.pone.0166113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/14/2016] [Indexed: 11/18/2022] Open
Abstract
Background Human Rhinovirus infection is an important precursor to asthma and chronic obstructive pulmonary disease exacerbations and the Human Viral Challenge model may provide a powerful tool in studying these and other chronic respiratory diseases. In this study we have reported the production and human characterisation of a new Wild-Type HRV-16 challenge virus produced specifically for this purpose. Methods and Stock Development A HRV-16 isolate from an 18 year old experimentally infected healthy female volunteer (University of Virginia Children’s Hospital, USA) was obtained with appropriate medical history and consent. We manufactured a new HRV-16 stock by minimal passage in a WI-38 cell line under Good Manufacturing Practice conditions. Having first subjected the stock to rigorous adventitious agent testing and determining the virus suitability for human use, we conducted an initial safety and pathogenicity clinical study in adult volunteers in our dedicated clinical quarantine facility in London. Human Challenge and Conclusions In this study we have demonstrated the new Wild-Type HRV-16 Challenge Virus to be both safe and pathogenic, causing an appropriate level of disease in experimentally inoculated healthy adult volunteers. Furthermore, by inoculating volunteers with a range of different inoculum titres, we have established the minimum inoculum titre required to achieve reproducible disease. We have demonstrated that although inoculation titres as low as 1 TCID50 can produce relatively high infection rates, the optimal titre for progression with future HRV challenge model development with this virus stock was 10 TCID50. Studies currently underway are evaluating the use of this virus as a challenge agent in asthmatics. Trial Registration ClinicalTrials.gov NCT02522832
Collapse
Affiliation(s)
- Daniel J Fullen
- hVIVO Group PLC, Queen Mary BioEnterprises Innovation Centre, London, England, United Kingdom
| | - Bryan Murray
- hVIVO Group PLC, Queen Mary BioEnterprises Innovation Centre, London, England, United Kingdom
| | - Julie Mori
- hVIVO Group PLC, Queen Mary BioEnterprises Innovation Centre, London, England, United Kingdom
| | - Andrew Catchpole
- hVIVO Group PLC, Queen Mary BioEnterprises Innovation Centre, London, England, United Kingdom
| | - Daryl W Borley
- hVIVO Group PLC, Queen Mary BioEnterprises Innovation Centre, London, England, United Kingdom
| | - Edward J Murray
- hVIVO Group PLC, Queen Mary BioEnterprises Innovation Centre, London, England, United Kingdom
| | - Ganesh Balaratnam
- hVIVO Group PLC, Queen Mary BioEnterprises Innovation Centre, London, England, United Kingdom
| | - Anthony Gilbert
- hVIVO Group PLC, Queen Mary BioEnterprises Innovation Centre, London, England, United Kingdom
| | - Alex Mann
- hVIVO Group PLC, Queen Mary BioEnterprises Innovation Centre, London, England, United Kingdom
| | - Fiona Hughes
- hVIVO Group PLC, Queen Mary BioEnterprises Innovation Centre, London, England, United Kingdom
| | - Rob Lambkin-Williams
- hVIVO Group PLC, Queen Mary BioEnterprises Innovation Centre, London, England, United Kingdom
| |
Collapse
|
16
|
Abstract
Chronic airway diseases are a significant cause of morbidity and mortality worldwide, and their prevalence is predicted to increase in the future. Respiratory viruses are the most common cause of acute pulmonary infection, and there is clear evidence of their role in acute exacerbations of inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease. Studies have reported impaired host responses to virus infection in these diseases, and a better understanding of the mechanisms of these abnormal immune responses has the potential to lead to the development of novel therapeutic targets for virus-induced exacerbations. The aim of this article is to review the current knowledge regarding the role of viruses and immune modulation in acute exacerbations of chronic pulmonary diseases and to discuss exciting areas for future research and novel treatments.
Collapse
|
17
|
Footitt J, Mallia P, Durham AL, Ho WE, Trujillo-Torralbo MB, Telcian AG, Del Rosario A, Chang C, Peh HY, Kebadze T, Aniscenko J, Stanciu L, Essilfie-Quaye S, Ito K, Barnes PJ, Elkin SL, Kon OM, Wong WSF, Adcock IM, Johnston SL. Oxidative and Nitrosative Stress and Histone Deacetylase-2 Activity in Exacerbations of COPD. Chest 2016; 149:62-73. [PMID: 25790167 PMCID: PMC4700054 DOI: 10.1378/chest.14-2637] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Respiratory virus infections are commonly associated with COPD exacerbations, but little is known about the mechanisms linking virus infection to exacerbations. Pathogenic mechanisms in stable COPD include oxidative and nitrosative stress and reduced activity of histone deacetylase-2 (HDAC2), but their roles in COPD exacerbations is unknown. We investigated oxidative and nitrosative stress (O&NS) and HDAC2 in COPD exacerbations using experimental rhinovirus infection. METHODS Nine subjects with COPD (Global Initiative for Chronic Obstructive Lung Disease stage II), 10 smokers, and 11 nonsmokers were successfully infected with rhinovirus. Markers of O&NS-associated cellular damage, and inflammatory mediators and proteases were measured in sputum, and HDAC2 activity was measured in sputum and bronchoalveolar macrophages. In an in vitro model, monocyte-derived THP-1 cells were infected with rhinovirus and nitrosylation and activity of HDAC2 was measured. RESULTS Rhinovirus infection induced significant increases in airways inflammation and markers of O&NS in subjects with COPD. O&NS markers correlated with virus load and inflammatory markers. Macrophage HDAC2 activity was reduced during exacerbation and correlated inversely with virus load, inflammatory markers, and nitrosative stress. Sputum macrophage HDAC2 activity pre-infection was inversely associated with sputum virus load and inflammatory markers during exacerbation. Rhinovirus infection of monocytes induced nitrosylation of HDAC2 and reduced HDAC2 activity; inhibition of O&NS inhibited rhinovirus-induced inflammatory cytokines. CONCLUSIONS O&NS, airways inflammation, and impaired HDAC2 may be important mechanisms of virus-induced COPD exacerbations. Therapies targeting these mechanisms offer potential new treatments for COPD exacerbations.
Collapse
Affiliation(s)
- Joseph Footitt
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, England; Imperial College Healthcare NHS Trust, London, England; Centre for Respiratory Infection, Imperial College, London, England
| | - Patrick Mallia
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, England; Imperial College Healthcare NHS Trust, London, England; Centre for Respiratory Infection, Imperial College, London, England
| | - Andrew L Durham
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, England
| | - W Eugene Ho
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Maria-Belen Trujillo-Torralbo
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, England; Imperial College Healthcare NHS Trust, London, England
| | - Aurica G Telcian
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, England
| | - Ajerico Del Rosario
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, England; Imperial College Healthcare NHS Trust, London, England
| | - Cheng Chang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Hong-Yong Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Tatiana Kebadze
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, England
| | - Julia Aniscenko
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, England
| | - Luminita Stanciu
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, England
| | - Sarah Essilfie-Quaye
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, England
| | - Kazuhiro Ito
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, England
| | - Peter J Barnes
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, England
| | - Sarah L Elkin
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, England; Imperial College Healthcare NHS Trust, London, England
| | - Onn M Kon
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, England; Imperial College Healthcare NHS Trust, London, England; Centre for Respiratory Infection, Imperial College, London, England
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, England
| | - Sebastian L Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, England; Imperial College Healthcare NHS Trust, London, England; Centre for Respiratory Infection, Imperial College, London, England.
| |
Collapse
|
18
|
Tak T, Hilvering B, Tesselaar K, Koenderman L. Similar activation state of neutrophils in sputum of asthma patients irrespective of sputum eosinophilia. Clin Exp Immunol 2015; 182:204-12. [PMID: 26148992 DOI: 10.1111/cei.12676] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2015] [Indexed: 01/13/2023] Open
Abstract
Inflammatory phenotypes of asthma are associated with differences in disease characteristics. It is unknown whether these inflammatory phenotypes are reflected by the activation status of neutrophils in blood and sputum. We obtained peripheral blood and induced sputum from 21 asthma patients and stratified our samples based on sputum eosinophilia resulting in two groups (>3% eosinophils: n = 13, <3%: n = 8). Eosinophils and neutrophils from blood and sputum were analysed for expression of activation and degranulation markers by flow cytometry. Data were analysed by both classical, non-parametric statistics and a multi-dimensional approach, using principal component analysis (PCA). Patients with sputum eosinophilia were characterized by increased asthma control questionnaire (ACQ) scores and blood eosinophil counts. Both sputum neutrophils and eosinophils displayed an activated and degranulated phenotype compared to cells obtained from blood. Specifically, degranulation of all granule types was detected in sputum cells, combined with an increased expression of the activation markers (activated) Mac-1 (CD11b), programmed death ligand 1 (PD-L1) (CD274) and a decreased expression of CD62L. CD69 expression was only increased on sputum eosinophils. Surface marker expression of neutrophils was similar in the presence or absence of eosinophilia, either by single or multi-dimensional analysis. Sputum neutrophils were highly activated and degranulated irrespective of sputum eosinophilia. Therefore, we conclude that differences in granulocyte activation in sputum and/or blood are not associated with clinical differences in the two groups of asthma patients. The finding of PD-L1 expression on sputum granulocytes suggests an immunomodulatory role of these cells in the tissue.
Collapse
Affiliation(s)
- T Tak
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - B Hilvering
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - K Tesselaar
- Department of Immunology, Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - L Koenderman
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| |
Collapse
|
19
|
A short-term mouse model that reproduces the immunopathological features of rhinovirus-induced exacerbation of COPD. Clin Sci (Lond) 2015; 129:245-58. [PMID: 25783022 PMCID: PMC4557402 DOI: 10.1042/cs20140654] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Viral exacerbations of chronic obstructive pulmonary disease (COPD), commonly caused by rhinovirus (RV) infections, are poorly controlled by current therapies. This is due to a lack of understanding of the underlying immunopathological mechanisms. Human studies have identified a number of key immune responses that are associated with RV-induced exacerbations including neutrophilic inflammation, expression of inflammatory cytokines and deficiencies in innate anti-viral interferon. Animal models of COPD exacerbation are required to determine the contribution of these responses to disease pathogenesis. We aimed to develop a short-term mouse model that reproduced the hallmark features of RV-induced exacerbation of COPD. Evaluation of complex protocols involving multiple dose elastase and lipopolysaccharide (LPS) administration combined with RV1B infection showed suppression rather than enhancement of inflammatory parameters compared with control mice infected with RV1B alone. Therefore, these approaches did not accurately model the enhanced inflammation associated with RV infection in patients with COPD compared with healthy subjects. In contrast, a single elastase treatment followed by RV infection led to heightened airway neutrophilic and lymphocytic inflammation, increased expression of tumour necrosis factor (TNF)-α, C-X-C motif chemokine 10 (CXCL10)/IP-10 (interferon γ-induced protein 10) and CCL5 [chemokine (C-C motif) ligand 5]/RANTES (regulated on activation, normal T-cell expressed and secreted), mucus hypersecretion and preliminary evidence for increased airway hyper-responsiveness compared with mice treated with elastase or RV infection alone. In summary, we have developed a new mouse model of RV-induced COPD exacerbation that mimics many of the inflammatory features of human disease. This model, in conjunction with human models of disease, will provide an essential tool for studying disease mechanisms and allow testing of novel therapies with potential to be translated into clinical practice.
Collapse
|
20
|
Del Vecchio AM, Branigan PJ, Barnathan ES, Flavin SK, Silkoff PE, Turner RB. Utility of animal and in vivo experimental infection of humans with rhinoviruses in the development of therapeutic agents for viral exacerbations of asthma and chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2015; 30:32-43. [PMID: 25445932 PMCID: PMC7110859 DOI: 10.1016/j.pupt.2014.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 12/16/2022]
Abstract
There is an association with acute viral infection of the respiratory tract and exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Although these exacerbations are associated with several types of viruses, human rhinoviruses (HRVs) are associated with the vast majority of disease exacerbations. Due to the lack of an animal species that is naturally permissive for HRVs to use as a facile model system, and the limitations associated with animal models of asthma and COPD, studies of controlled experimental infection of humans with HRVs have been used and conducted safely for decades. This review discusses how these experimental infection studies with HRVs have provided a means of understanding the pathophysiology underlying virus-induced exacerbations of asthma and COPD with the goal of developing agents for their prevention and treatment.
Collapse
Affiliation(s)
- Alfred M Del Vecchio
- Janssen Research and Development, Immunology Clinical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Patrick J Branigan
- Janssen Research and Development, Immunology Clinical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Elliot S Barnathan
- Janssen Research and Development, Immunology Clinical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Susan K Flavin
- Janssen Research and Development, Immunology Clinical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Philip E Silkoff
- Janssen Research and Development, Immunology Clinical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA.
| | - Ronald B Turner
- University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
21
|
Wang X, Li W, Huang K, Kang X, Li Z, Yang C, Wu X, Chen L. Genetic variants in ADAM33 are associated with airway inflammation and lung function in COPD. BMC Pulm Med 2014; 14:173. [PMID: 25369941 PMCID: PMC4228268 DOI: 10.1186/1471-2466-14-173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 10/20/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Genetic factors play a role in the development and severity of chronic obstructive pulmonary disease (COPD). The pathogenesis of COPD is a multifactorial process including an inflammatory cell profile. Recent studies revealed that single nucleotide polymorphisms (SNPs) within ADAM33 increased the susceptibility to COPD through changing the airway inflammatory process and lung function. METHODS In this paper, we investigated associations of four polymorphisms (T1, T2, S2 and Q-1) of ADAM33 as well as their haplotypes with pulmonary function and airway inflammatory process in an East Asian population of patients with COPD. RESULTS We found that T1, T2 and Q-1 were significantly associated with the changes of pulmonary function and components of cells in sputum of COPD, and T1 and Q-1 were significantly associated with cytokines and mediators of inflammation in airway of COPD in recessive models. 10 haplotypes were significantly associated with transfer factor of the lung for carbon monoxide in the disease state, 4 haplotypes were significantly associated with forced expiratory volume in one second, and other haplotypes were associated with airway inflammation. CONCLUSIONS We confirmed for the first time that ADAM33 was involved in the pathogenesis of COPD by affecting airway inflammation and immune response in an East Asian population. Our results made the genetic background of COPD, a common and disabling disease, more apparent, which would supply genetic support for the study of the mechanism, classification and treatment for this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaomei Wu
- Department of Respiratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| | | |
Collapse
|
22
|
Immunotherapy reduces allergen-mediated CD66b expression and myeloperoxidase levels on human neutrophils from allergic patients. PLoS One 2014; 9:e94558. [PMID: 24740105 PMCID: PMC3989194 DOI: 10.1371/journal.pone.0094558] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/18/2014] [Indexed: 02/03/2023] Open
Abstract
CD66b is a member of the carcinoembryonic antigen family, which mediates the adhesion between neutrophils and to endothelial cells. Allergen-specific immunotherapy is widely used to treat allergic diseases, and the molecular mechanisms underlying this therapy are poorly understood. The present work was undertaken to analyze A) the in vitro effect of allergens and immunotherapy on cell-surface CD66b expression of neutrophils from patients with allergic asthma and rhinitis and B) the in vivo effect of immunotherapy on cell-surface CD66b expression of neutrophils from nasal lavage fluid during the spring season. Myeloperoxidase expression and activity was also analyzed in nasal lavage fluid as a general marker of neutrophil activation. Results CD66b cell-surface expression is upregulated in vitro in response to allergens, and significantly reduced by immunotherapy (p<0.001). Myeloperoxidase activity in nasal lavage fluid was also significantly reduced by immunotherapy, as were the neutrophil cell-surface expression of CD66b and myeloperoxidase (p<0.001). Interestingly, CD66b expression was higher in neutrophils from nasal lavage fluid than those from peripheral blood, and immunotherapy reduced the number of CD66+MPO+ cells in nasal lavage fluid. Thus, immunotherapy positive effects might, at least in part, be mediated by the negative regulation of the CD66b and myeloperoxidase activity in human neutrophils.
Collapse
|
23
|
Gunawardana N, Finney L, Johnston SL, Mallia P. Experimental rhinovirus infection in COPD: implications for antiviral therapies. Antiviral Res 2013; 102:95-105. [PMID: 24370732 PMCID: PMC7172491 DOI: 10.1016/j.antiviral.2013.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/28/2013] [Accepted: 12/14/2013] [Indexed: 02/05/2023]
Abstract
COPD exacerbations are a major cause of morbidity and mortality; new treatments are urgently needed. Respiratory viruses, particularly rhinoviruses, are a major cause of exacerbations. Experimental rhinovirus infection is a valid model of virus-induced COPD exacerbations. This model could be used to evaluate new antiviral treatments in COPD.
Chronic obstructive pulmonary disease (COPD) is a major public health problem and will be one of the leading global causes of mortality over the coming decades. Much of the morbidity, mortality and health care costs of COPD are attributable to acute exacerbations, the commonest causes of which are respiratory infections. Respiratory viruses are frequently detected in COPD exacerbations but direct proof of a causative relationship has been lacking. We have developed a model of COPD exacerbation using experimental rhinovirus infection in COPD patients and this has established a causative relationship between virus infection and exacerbations. In addition it has determined some of the molecular mechanisms linking virus infections to COPD exacerbations and identified potential new therapeutic targets. This new data should stimulate research into the role of antiviral agents as potential treatments for COPD exacerbations. Testing of antiviral agents has been hampered by the lack of a small animal model for rhinovirus infection and experimental rhinovirus infection in healthy volunteers has been used to test treatments for the common cold. Experimental rhinovirus infection in COPD subjects offers the prospect of a model that can be used to evaluate the effects of new treatments for virus-induced COPD exacerbations, and provide essential data that can be used in making decisions regarding large scale clinical trials.
Collapse
Affiliation(s)
- Natasha Gunawardana
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Lydia Finney
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Sebastian L Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Patrick Mallia
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom.
| |
Collapse
|