1
|
Mostafa T. Could Oral Phosphodiesterase 5 Inhibitors Have a Potential Adjuvant Role in Combating COVID-19 Infection? Sex Med Rev 2021; 9:15-22. [PMID: 33077403 PMCID: PMC7833179 DOI: 10.1016/j.sxmr.2020.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The recent global outbreak of coronavirus disease 2019 (COVID-19) has become a pandemic with a lot of sufferers. Excessive inflammation, exaggerated immune response, with ultimate apoptosis contribute to COVID-19 pathology that progress to acute lung acute respiratory distress. OBJECTIVE To shed a light on the likely benefits of the oral phosphodiesterase 5 (PDE5) inhibitor adjuvant role in combating COVID-19 infection. METHODS A literature review was performed in the PubMed/Medline database, Scopus, Cochrane Library, EMBASE, Academic Search Complete, Google Scholar, and CINAHL databases using the keywords COVID-19; phosphodiesterase-5 inhibitors; cytokine storm; respiratory distress. RESULTS Despite the worsening trends of COVID-19, still no drugs are validated to have significant clinical efficacy in the treatment of patients with COVID-19 in large-scale studies. While the progress toward a curative agent and/or vaccine is certainly hopeful, the principal limiting factor in such public health emergencies is always the time. Therefore, a preexisting licensed therapeutic(s) might offer a reprieve to the healthcare systems operating at the edge of capacity. In this context, the innovation of oral PDE5 inhibitors with their valuable effects on erection have provided a breakthrough in the treatment of erectile dysfunction and opened new fields of clinical application for this class of drugs. Oral PDE5 inhibitors have been demonstrated to possess many beneficial useful additional implications with acknowledged anti-inflammatory, antioxidant, immune response regulation, and antiapoptotic properties. These properties have been elucidated through the nitric oxide/soluble guanylyl cyclase/cyclic guanylate monophosphate pathway in addition to the emerged hemeoxygenase-1 enzyme as well as hydrogen sulfide pathways. These properties could support repurposing oral PDE5 inhibitors' potential adjuvant use in targeting different aspects of COVID-19 infection. CONCLUSION Oral PDE5 inhibitors retain several acknowledged off-labeled useful implications with anti-inflammatory, antioxidant, immune response regulation, and antiapoptotic properties. These properties may support repurposing oral PDE5 inhibitors' potential adjuvant use in the protocols combating COVID-19 manifestations. Mostafa T. Could Oral Phosphodiesterase 5 Inhibitors Have a Potential Adjuvant Role in Combating Coronavirus Disease 2019 Infection? Sex Med Rev 2021;9:15-22.
Collapse
Affiliation(s)
- Taymour Mostafa
- Andrology, Sexology & STIs Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
2
|
Could Oral Phosphodiesterase 5 Inhibitors Have a Potential Adjuvant Role in Combating COVID-19 Infection? Sex Med Rev 2020. [PMID: 33077403 DOI: 10.1016/j.sxmr.2020.08.006.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The recent global outbreak of coronavirus disease 2019 (COVID-19) has become a pandemic with a lot of sufferers. Excessive inflammation, exaggerated immune response, with ultimate apoptosis contribute to COVID-19 pathology that progress to acute lung acute respiratory distress. OBJECTIVE To shed a light on the likely benefits of the oral phosphodiesterase 5 (PDE5) inhibitor adjuvant role in combating COVID-19 infection. METHODS A literature review was performed in the PubMed/Medline database, Scopus, Cochrane Library, EMBASE, Academic Search Complete, Google Scholar, and CINAHL databases using the keywords COVID-19; phosphodiesterase-5 inhibitors; cytokine storm; respiratory distress. RESULTS Despite the worsening trends of COVID-19, still no drugs are validated to have significant clinical efficacy in the treatment of patients with COVID-19 in large-scale studies. While the progress toward a curative agent and/or vaccine is certainly hopeful, the principal limiting factor in such public health emergencies is always the time. Therefore, a preexisting licensed therapeutic(s) might offer a reprieve to the healthcare systems operating at the edge of capacity. In this context, the innovation of oral PDE5 inhibitors with their valuable effects on erection have provided a breakthrough in the treatment of erectile dysfunction and opened new fields of clinical application for this class of drugs. Oral PDE5 inhibitors have been demonstrated to possess many beneficial useful additional implications with acknowledged anti-inflammatory, antioxidant, immune response regulation, and antiapoptotic properties. These properties have been elucidated through the nitric oxide/soluble guanylyl cyclase/cyclic guanylate monophosphate pathway in addition to the emerged hemeoxygenase-1 enzyme as well as hydrogen sulfide pathways. These properties could support repurposing oral PDE5 inhibitors' potential adjuvant use in targeting different aspects of COVID-19 infection. CONCLUSION Oral PDE5 inhibitors retain several acknowledged off-labeled useful implications with anti-inflammatory, antioxidant, immune response regulation, and antiapoptotic properties. These properties may support repurposing oral PDE5 inhibitors' potential adjuvant use in the protocols combating COVID-19 manifestations. Mostafa T. Could Oral Phosphodiesterase 5 Inhibitors Have a Potential Adjuvant Role in Combating Coronavirus Disease 2019 Infection? Sex Med Rev 2021;9:15-22.
Collapse
|
3
|
Zhou Y, Zhang CY, Duan JX, Li Q, Yang HH, Sun CC, Zhang J, Luo XQ, Liu SK. Vasoactive intestinal peptide suppresses the NLRP3 inflammasome activation in lipopolysaccharide-induced acute lung injury mice and macrophages. Biomed Pharmacother 2020; 121:109596. [DOI: 10.1016/j.biopha.2019.109596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/17/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
|
4
|
Malaspinas I, Petak F, Baudat A, Doras C, Eigenmann PA, Habre W. Blockade of the cholinergic system during sensitization enhances lung responsiveness to allergen in rats. Clin Exp Pharmacol Physiol 2018; 45:1293-1301. [PMID: 29992592 DOI: 10.1111/1440-1681.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 11/27/2022]
Abstract
Although acute prophylactic administration of atropine modulates airway responsiveness, the role of the parasympathetic nervous system in the pathogenesis of sensitization and in antigen-induced bronchoconstriction remains unclear. The aim of the present study is to determine whether blocking muscarinic receptors during chronic allergen exposure modulates lung responsiveness to the specific allergen. Forty rats were randomly assigned to one of the following five treatment groups: sensitization with saline vehicle, intraperitoneal injection of ovalbumin (1 mg) with or without atropine treatment (10 mg/kg per day) and repeated ovalbumin aerosol (1.25 mg/mL for 20 minutes) either alone or combined with atropine. Lung responsiveness to methacholine (4-16 μg/kg per minute) and intravenous ovalbumin (2 mg) was established before and 21 days after treatment with forced oscillations following bilateral vagotomy. Lung cellularity was determined by analysis of bronchoalveolar lavage fluid (BALF). A lung inflammatory response in all sensitized animals was defined as an increase in the number of inflammatory cells in the BALF. Baseline respiratory mechanics and methacholine responsiveness on Days 0 and 21 were comparable in all groups. However, increases in airway resistance following intravenous allergen challenge were significantly exacerbated in rats that received atropine. Inhibition of the cholinergic nervous system during allergic sensitization potentiates bronchoconstriction following exposure to the specific allergen. These findings highlight the role of the cholinergic neuronal pathway in airway sensitization to a specific allergen.
Collapse
Affiliation(s)
- Iliona Malaspinas
- Anaesthesiological Investigation Unit, University of Geneva, Geneva, Switzerland
| | - Ferenc Petak
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Aurélie Baudat
- Anaesthesiological Investigation Unit, University of Geneva, Geneva, Switzerland
| | - Camille Doras
- Anaesthesiological Investigation Unit, University of Geneva, Geneva, Switzerland
| | - Philippe A Eigenmann
- Department of Paediatrics, Geneva Children's Hospital, University Hospital of Geneva, Geneva, Switzerland
| | - Walid Habre
- Anaesthesiological Investigation Unit, University of Geneva, Geneva, Switzerland.,Pediatric Anaesthesia Unit, Geneva Children's Hospital, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Blockade of glutamate receptor ameliorates lipopolysaccharide-induced sepsis through regulation of neuropeptides. Biosci Rep 2018; 38:BSR20171629. [PMID: 29440461 PMCID: PMC5938426 DOI: 10.1042/bsr20171629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/25/2018] [Accepted: 02/12/2018] [Indexed: 11/23/2022] Open
Abstract
Glutamate receptors (N-methyl-d-aspartate receptor (NMDAR)) are expressed mainly in the central nervous system (CNS), but several potentially important exceptions are worth mentioning. Recently, NMDAR, a glutamate receptor, has been reported to be found in the lungs. NMDAR is activated in acute lung injury (ALI). Here, the present experiment was designed to examine whether NMDAR blockade (MK-801) ameliorates ALI through affecting neuropeptides in LPS-induced sepsis animal models. Male Kunming mice were divided into control group, LPS group, control + MK-801 group, and LPS + MK-801 group. Bronchoalveolar lavage fluid (BALF) was collected and evaluated. The lung histological pathology was assayed by immunocytochemistry staining. Western blot was used to measure PGP9.5, substance P (SP), and vasoactive intestinal polypeptide (VIP). Results showed that LPS-induced mice animal models were ameliorated by co-treatment with the MK-801, an uncompetitive NMDAR antagonist. Moreover, the protective effects of MK-801 attributed to the increased secretion of VIP and decreased secretion of SP. The results of the present study indicated that the blockade of NMDAR may represent a promising therapeutic strategy for the treatment of sepsis-associated ALI through regulation of neuropeptides.
Collapse
|
6
|
Kipfmueller F, Schroeder L, Berg C, Heindel K, Bartmann P, Mueller A. Continuous intravenous sildenafil as an early treatment in neonates with congenital diaphragmatic hernia. Pediatr Pulmonol 2018; 53:452-460. [PMID: 29316358 DOI: 10.1002/ppul.23935] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 12/02/2017] [Indexed: 11/05/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is an important contributor of morbidity and mortality in infants with congenital diaphragmatic hernia (CDH). Treatment options are limited, but sildenafil might improve oxygenation and PH in neonates with CDH. OBJECTIVE Aim of this study is to assess effects of intravenous sildenafil on oxygenation and PH in neonates with CDH. METHODS A retrospective chart review was performed in all neonates with CDH born in our institution between September 2012 and December 2014. Indication for sildenafil was an OI > 15, PH > 2/3 systemic pressure, or a difference in pre- and postductal oxygen saturation (≥8%). A sildenafil bolus was administered followed by a maintenance infusion of 1.6 mg/kg/d. Primary outcome was improved oxygenation after starting sildenafil. Patients were compared according to improvement in oxygenation (responder vs non-responder). RESULTS A total of 26 of 44 neonates were treated with intravenous sildenafil and in all sildenafil were initiated within the first 24 h of life (median age 3.1 h). Improved oxygenation was observed in 11 infants (42.3%). Among the 15 non-responders (57.6%) ECMO was started in 13 and two infants died without ECMO. Vasopressor support increased significantly during the first hours after commencing sildenafil in responders and non-responders. Echocardiographic indices demonstrated an effect on pulmonary arterial pressure within the first 24 h after starting sildenafil. CONCLUSIONS Treatment of neonates with intravenous sildenafil during the first day of life was associated with acute improvement in oxygenation in more than 40% of patients. However, a significant increase in vasopressor support was observed.
Collapse
Affiliation(s)
- Florian Kipfmueller
- Department of Neonatology and Pediatric Critical Care Medicine, University Children's Hospital Bonn, Bonn, Germany
| | - Lukas Schroeder
- Department of Neonatology and Pediatric Critical Care Medicine, University Children's Hospital Bonn, Bonn, Germany
| | - Christoph Berg
- Department of Obstetrics and Prenatal Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Katrin Heindel
- Department of Neonatology and Pediatric Critical Care Medicine, University Children's Hospital Bonn, Bonn, Germany
| | - Peter Bartmann
- Department of Neonatology and Pediatric Critical Care Medicine, University Children's Hospital Bonn, Bonn, Germany
| | - Andreas Mueller
- Department of Neonatology and Pediatric Critical Care Medicine, University Children's Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
|
8
|
Abstract
Hyperoxic acute lung injury (HALI) refers to the damage to the lungs secondary to exposure to elevated oxygen partial pressure. HALI has been a concern in clinical practice with the development of deep diving and the use of normobaric as well as hyperbaric oxygen in clinical practice. Although the pathogenesis of HALI has been extensively studied, the findings are still controversial. Nitric oxide (NO) is an intercellular messenger and has been considered as a signaling molecule involved in many physiological and pathological processes. Although the role of NO in the occurrence and development of pulmonary diseases including HALI has been extensively studied, the findings on the role of NO in HALI are conflicting. Moreover, inhalation of NO has been approved as a therapeutic strategy for several diseases. In this paper, we briefly summarize the role of NO in the pathogenesis of HALI and the therapeutic potential of inhaled NO in HALI.
Collapse
Affiliation(s)
- Wen-Wu Liu
- Department of Diving and Hyperbaric Medicine, Secondary Military Medical University, Shanghai, China
| | - Cui-Hong Han
- Department of Pathology, the First Hospital of Jining City, Jining, Shandong Province, China
| | - Pei-Xi Zhang
- Department of Cardiothoracic Surgery, the First Hospital of Jining City, Jining, Shandong Province, China
| | - Juan Zheng
- Department of Diving and Hyperbaric Medicine, Secondary Military Medical University, Shanghai, China
| | - Kan Liu
- Department of Diving and Hyperbaric Medicine, Secondary Military Medical University, Shanghai, China
| | - Xue-Jun Sun
- Department of Diving and Hyperbaric Medicine, Secondary Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Silva DMG, Nardiello C, Pozarska A, Morty RE. Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1239-72. [PMID: 26361876 DOI: 10.1152/ajplung.00268.2015] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/09/2015] [Indexed: 02/08/2023] Open
Abstract
Alveolarization is the process by which the alveoli, the principal gas exchange units of the lung, are formed. Along with the maturation of the pulmonary vasculature, alveolarization is the objective of late lung development. The terminal airspaces that were formed during early lung development are divided by the process of secondary septation, progressively generating an increasing number of alveoli that are of smaller size, which substantially increases the surface area over which gas exchange can take place. Disturbances to alveolarization occur in bronchopulmonary dysplasia (BPD), which can be complicated by perturbations to the pulmonary vasculature that are associated with the development of pulmonary hypertension. Disturbances to lung development may also occur in persistent pulmonary hypertension of the newborn in term newborn infants, as well as in patients with congenital diaphragmatic hernia. These disturbances can lead to the formation of lungs with fewer and larger alveoli and a dysmorphic pulmonary vasculature. Consequently, affected lungs exhibit a reduced capacity for gas exchange, with important implications for morbidity and mortality in the immediate postnatal period and respiratory health consequences that may persist into adulthood. It is the objective of this Perspectives article to update the reader about recent developments in our understanding of the molecular mechanisms of alveolarization and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Diogo M G Silva
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Claudio Nardiello
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Pozarska
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|