1
|
Radde N, Mortensen GA, Bhat D, Shah S, Clements JJ, Leonard SP, McGuffie MJ, Mishler DM, Barrick JE. Measuring the burden of hundreds of BioBricks defines an evolutionary limit on constructability in synthetic biology. Nat Commun 2024; 15:6242. [PMID: 39048554 PMCID: PMC11269670 DOI: 10.1038/s41467-024-50639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Engineered DNA will slow the growth of a host cell if it redirects limiting resources or otherwise interferes with homeostasis. Escape mutants that alleviate this burden can rapidly evolve and take over cell populations, making genetic engineering less reliable and predictable. Synthetic biologists often use genetic parts encoded on plasmids, but their burden is rarely characterized. We measured how 301 BioBrick plasmids affected Escherichia coli growth and found that 59 (19.6%) were burdensome, primarily because they depleted the limited gene expression resources of host cells. Overall, no BioBricks reduced the growth rate of E. coli by >45%, which agreed with a population genetic model that predicts such plasmids should be unclonable. We made this model available online for education ( https://barricklab.org/burden-model ) and added our burden measurements to the iGEM Registry. Our results establish a fundamental limit on what DNA constructs and genetic modifications can be successfully engineered into cells.
Collapse
Affiliation(s)
- Noor Radde
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Genevieve A Mortensen
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Diya Bhat
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Shireen Shah
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Joseph J Clements
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Sean P Leonard
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Matthew J McGuffie
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Dennis M Mishler
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
- The Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Lindh T, Collin M, Lood R, Carlquist M. Expression of the Bacterial Enzyme IdeS Using a GFP Fusion in the Yeast Saccharomyces cerevisiae. Methods Mol Biol 2023; 2674:131-146. [PMID: 37258965 DOI: 10.1007/978-1-0716-3243-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bacterial proteases are important enzymes used in several technical applications where controlled cleavage of proteins is needed. They are challenging enzymes to express recombinantly as parts of the proteome can be hydrolyzed by their activity. The eukaryotic model organism Saccharomyces cerevisiae is potentially a good expression host as it tolerates several stress conditions and is known to better express insoluble proteins compared to bacterial systems. In this chapter we describe how the protease IdeS from Streptococcus pyogenes can be expressed in S. cerevisiae. The expression of IdeS was followed by constructing a fused protein with GFP and measuring the fluorescence with flow cytometry. The protease presence was confirmed with a Western blot assay and activity was measured with an in vitro assay. To reduce potentially toxic effect on the host cell, the growth and production phases were separated by using the inducible promoter GAL1p to control recombinant gene expression. The protocol provided may be adopted for other bacterial proteases through minor modifications of the fused protein.
Collapse
Affiliation(s)
- Tova Lindh
- Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
- Genovis AB, Lund, Sweden
| | - Mattias Collin
- Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Rolf Lood
- Genovis AB, Lund, Sweden
- Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Magnus Carlquist
- Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
Cloning of Maize TED Transposon into Escherichia coli Reveals the Polychromatic Sequence Landscape of Refractorily Propagated Plasmids. Int J Mol Sci 2022; 23:ijms231911993. [PMID: 36233292 PMCID: PMC9569675 DOI: 10.3390/ijms231911993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
MuDR, the founder member of the Mutator superfamily and its MURA transcripts, has been identified as toxic sequences to Escherichia coli (E. coli), which heavily hindered the elucidation of the biochemical features of MURA transposase and confined the broader application of the Mutator system in other organisms. To harness less constrained systems as alternatives, we attempted to clone TED and Jittery, two recently isolated autonomous Mutator-like elements (MULEs) from maize, respectively. Their full-length transcripts and genomic copies are successfully cloned when the incubation time for bacteria to recover from heat shock is extended appropriately prior to plating. However, during their proliferation in E. coli, TED transformed plasmids are unstable, as evidenced by derivatives from which frameshift, deletion mutations, or IS transposon insertions are readily detected. Our results suggest that neither leaky expression of the transposase nor the presence of terminal inverse repeats (TIRs) are responsible for the cloning barriers, which were once ascribed to the presence of the Shine–Dalgarno-like sequence. Instead, the internal sequence of TED (from 1250 to 2845 bp), especially the exons in this region, was the most likely causer. The findings provide novel insights into the property and function of the Mutator superfamily and shed light on the dissection of toxic effects on cloning from MULEs.
Collapse
|
4
|
Deepika G, Subbarayadu S, Chaudhary A, Sarma PVGK. Dibenzyl (benzo [d] thiazol-2-yl (hydroxy) methyl) phosphonate (DBTMP) showing anti-S. aureus and anti-biofilm properties by elevating activities of serine protease (SspA) and cysteine protease staphopain B (SspB). Arch Microbiol 2022; 204:397. [PMID: 35708833 DOI: 10.1007/s00203-022-02974-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Staphylococcus aureus biofilms are the pathogenic factor in the spread of infection and are more pronounced in multidrug-resistant strains of S. aureus, where high expression of proteases is observed. Among various proteases, Serine protease (SspA) and cysteine protease Staphopain B (SspB) are known to play a key role in the biofilm formation and removal of biofilms. In earlier studies, we have reported Dibenzyl (benzo [d] thiazol-2-yl (hydroxy) methyl) phosphonate (DBTMP) exhibits anti-S. aureus and anti-biofilm properties by elevating the expression of the protease. In this study, the effect of DBTMP on the activities of SspA, and SspB of S. aureus was evaluated. The SspA and SspB genes of S. aureus ATCC12600 were sequenced (Genbank accession numbers: MZ456982 and MW574006). In S. aureus active SspA is formed by proteolytic cleavage of immature SspA, to get this mature SspA (mSspA), we have PCR amplified the mSspA sequence from the SspA gene. The mSspA and SspB genes were cloned, expressed, and characterized. The pure recombinant proteins rSspB and rmSspA exhibited a single band in SDS-PAGE with a molecular weight of 40 and 30 KD, respectively. The activities of rmSspA and rSspB are 32.33 and 35.45 Units/mL correspondingly. DBTMP elevated the activities of rmSspA and rSspB by docking with respective enzymes. This compound disrupted the biofilms formed by the multidrug-resistant strains of S. aureus and further prevented biofilm formation. These findings explain that DBTMP possesses anti-S. aureus and anti-biofilm features.
Collapse
Affiliation(s)
- G Deepika
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India
| | - S Subbarayadu
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India
| | - Abhijit Chaudhary
- Department of Microbiology, Sri Padmavati Medical College (Women), SVIMS, Tirupati, Andhra Pradesh, 517507, India
| | - P V G K Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
5
|
Ali MQ, Kohler TP, Schulig L, Burchhardt G, Hammerschmidt S. Pneumococcal Extracellular Serine Proteases: Molecular Analysis and Impact on Colonization and Disease. Front Cell Infect Microbiol 2021; 11:763152. [PMID: 34790590 PMCID: PMC8592123 DOI: 10.3389/fcimb.2021.763152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
The pathobiont Streptococcus pneumoniae causes life-threatening diseases, including pneumonia, sepsis, meningitis, or non-invasive infections such as otitis media. Serine proteases are enzymes that have been emerged during evolution as one of the most abundant and functionally diverse group of proteins in eukaryotic and prokaryotic organisms. S. pneumoniae expresses up to four extracellular serine proteases belonging to the category of trypsin-like or subtilisin-like family proteins: HtrA, SFP, PrtA, and CbpG. These serine proteases have recently received increasing attention because of their immunogenicity and pivotal role in the interaction with host proteins. This review is summarizing and focusing on the molecular and functional analysis of pneumococcal serine proteases, thereby discussing their contribution to pathogenesis.
Collapse
Affiliation(s)
- Murtadha Q Ali
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Gerhard Burchhardt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Slater SL, Mavridou DAI. Harnessing the potential of bacterial oxidative folding to aid protein production. Mol Microbiol 2021; 116:16-28. [PMID: 33576091 DOI: 10.1111/mmi.14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/09/2021] [Indexed: 11/30/2022]
Abstract
Protein folding is central to both biological function and recombinant protein production. In bacterial expression systems, which are easy to use and offer high protein yields, production of the protein of interest in its native fold can be hampered by the limitations of endogenous posttranslational modification systems. Disulfide bond formation, entailing the covalent linkage of proximal cysteine amino acids, is a fundamental posttranslational modification reaction that often underpins protein stability, especially in extracytoplasmic environments. When these bonds are not formed correctly, the yield and activity of the resultant protein are dramatically decreased. Although the mechanism of oxidative protein folding is well understood, unwanted or incorrect disulfide bond formation often presents a stumbling block for the expression of cysteine-containing proteins in bacteria. It is therefore important to consider the biochemistry of prokaryotic disulfide bond formation systems in the context of protein production, in order to take advantage of the full potential of such pathways in biotechnology applications. Here, we provide a critical overview of the use of bacterial oxidative folding in protein production so far, and propose a practical decision-making workflow for exploiting disulfide bond formation for the expression of any given protein of interest.
Collapse
Affiliation(s)
- Sabrina L Slater
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
7
|
Abstract
Bacterial proteases and peptidases are integral to cell physiology and stability, and their necessity in Streptococcus pneumoniae is no exception. Protein cleavage and processing mechanisms within the bacterial cell serve to ensure that the cell lives and functions in its commensal habitat and can respond to new environments presenting stressful conditions. For S. pneumoniae, the human nasopharynx is its natural habitat. In the context of virulence, movement of S. pneumoniae to the lungs, blood, or other sites can instigate responses by the bacteria that result in their proteases serving dual roles of self-protein processors and virulence factors of host protein targets.
Collapse
Affiliation(s)
- Mary E Marquart
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi USA
| |
Collapse
|
8
|
Castillo-Alfonso F, Rojas MM, Salgado-Bernal I, Carballo ME, Olivares-Hernández R, González-Bacerio J, Guisán JM, Del Monte-Martínez A. Optimization of theoretical maximal quantity of cells to immobilize on solid supports in the rational design of immobilized derivatives strategy. World J Microbiol Biotechnol 2021; 37:9. [PMID: 33392828 DOI: 10.1007/s11274-020-02972-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/29/2020] [Indexed: 11/24/2022]
Abstract
Current worldwide challenges are to increase the food production and decrease the environmental contamination by industrial emissions. For this, bacteria can produce plant growth promoter phytohormones and mediate the bioremediation of sewage by heavy metals removal. We developed a Rational Design of Immobilized Derivatives (RDID) strategy, applicable for protein, spore and cell immobilization and implemented in the RDID1.0 software. In this work, we propose new algorithms to optimize the theoretical maximal quantity of cells to immobilize (tMQCell) on solid supports, implemented in the RDIDCell software. The main modifications to the preexisting algorithms are related to the sphere packing theory and exclusive immobilization on the support surface. We experimentally validated the new tMQCell parameter by electrostatic immobilization of ten microbial strains on AMBERJET® 4200 Cl- porous solid support. All predicted tMQCell match the practical maximal quantity of cells to immobilize with a 10% confidence. The values predicted by the RDIDCell software are more accurate than the values predicted by the RDID1.0 software. 3-indolacetic acid (IAA) production by one bacterial immobilized derivative was higher (~ 2.6 μg IAA-like indoles/108 cells) than that of the cell suspension (1.5 μg IAA-like indoles/108 cells), and higher than the tryptophan amount added as indole precursor. Another bacterial immobilized derivative was more active (22 μg Cr(III)/108 cells) than the resuspended cells (14.5 μg Cr(III)/108 cells) in bioconversion of Cr(VI) to Cr(III). Optimized RDID strategy can be used to synthesize bacterial immobilized derivatives with useful biotechnological applications.
Collapse
Affiliation(s)
- Freddy Castillo-Alfonso
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25, #455, e/J e I, Vedado, 10400, Havana, Cuba.,Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana, Unidad Cuajimalpa. Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Delegación Cuajimalpa, 05348, Mexico, Mexico
| | - Marcia M Rojas
- Departamento de Microbiología y Virología, Universidad de La Habana, Calle 25, #455, e/J e I, Vedado, 10400, Havana, Cuba
| | - Irina Salgado-Bernal
- Departamento de Microbiología y Virología, Universidad de La Habana, Calle 25, #455, e/J e I, Vedado, 10400, Havana, Cuba
| | - María E Carballo
- Departamento de Microbiología y Virología, Universidad de La Habana, Calle 25, #455, e/J e I, Vedado, 10400, Havana, Cuba
| | - Roberto Olivares-Hernández
- Universidad Autónoma Metropolitana, Unidad Cuajimalpa. Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Delegación Cuajimalpa, 05348, Mexico, Mexico
| | - Jorge González-Bacerio
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25, #455, e/J e I, Vedado, 10400, Havana, Cuba. .,Departamento de Bioquímica, Facultad de Biología, Universidad de La Habana, Calle 25, #455, e/J e I, Vedado, 10400, Havana, Cuba.
| | - José M Guisán
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas (CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - Alberto Del Monte-Martínez
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25, #455, e/J e I, Vedado, 10400, Havana, Cuba.
| |
Collapse
|
9
|
Srivastava V, Mishra S, Chaudhuri TK. Enhanced production of recombinant serratiopeptidase in Escherichia coli and its characterization as a potential biosimilar to native biotherapeutic counterpart. Microb Cell Fact 2019; 18:215. [PMID: 31847856 PMCID: PMC6918600 DOI: 10.1186/s12934-019-1267-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Serratia marcescens, a Gram-negative nosocomial pathogen secretes a 50 kDa multi-domain zinc metalloprotease called serratiopeptidase. Broad substrate specificity of serratiopeptidase makes it suitable for detergent and food processing industries The protein shows potent anti-inflammatory, anti-edemic, analgesic, antibiofilm activity and sold as an individual or fixed-dose enteric-coated tablets combined with other drugs. Although controversial, serratiopeptidase as drug is used in the treatment of chronic sinusitis, carpal tunnel syndrome, sprains, torn ligaments, and postoperative inflammation. Since the native producer of serratiopeptidase is a pathogenic microorganism, the current production methods need to be replaced by alternative approaches. Heterologous expression of serratiopeptidase in E. coli was tried before but not found suitable due to the limited yield, and other expression related issues due to its inherent proteolytic activity such as cytotoxicity, cell death, no expression, minimal expression, or inactive protein accumulation. RESULTS Recombinant expression of mature form serratiopeptidase in E. coli seems toxic and resulted in the failure of transformation and other expression related issues. Although E. coli C43(DE3) cells, express protein correctly, the yield was compromised severely. Optimization of protein expression process parameters such as nutrient composition, induction point, inducer concentration, post-induction duration, etc., caused significant enhancement in serratiopeptidase production (57.9 ± 0.73% of total cellular protein). Expressed protein formed insoluble, enzymatically inactive inclusion bodies, and gave 40-45 mg/l homogenous (> 98% purity) biologically active and conformationally similar serratiopeptidase to the commercial counterpart upon refolding and purification. CONCLUSION Expression of mature serratiopeptidase in E. coli C43(DE3) cells eliminated the protein expression associated with toxicity issues. Further optimization of process parameters significantly enhanced the overexpression of protein resulting in the higher yield of pure and functionally active recombinant serratiopeptidase. The biological activity and conformational features of recombinant serratiopeptidase were very similar to the commercially available counterpart suggesting it-a potential biosimilar of therapeutic and industrial relevance.
Collapse
Affiliation(s)
- Vishal Srivastava
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016 India
| | - Shivam Mishra
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016 India
| | - Tapan K. Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016 India
| |
Collapse
|
10
|
Gutiérrez-González M, Farías C, Tello S, Pérez-Etcheverry D, Romero A, Zúñiga R, Ribeiro CH, Lorenzo-Ferreiro C, Molina MC. Optimization of culture conditions for the expression of three different insoluble proteins in Escherichia coli. Sci Rep 2019; 9:16850. [PMID: 31727948 PMCID: PMC6856375 DOI: 10.1038/s41598-019-53200-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
Recombinant protein expression for structural and therapeutic applications requires the use of systems with high expression yields. Escherichia coli is considered the workhorse for this purpose, given its fast growth rate and feasible manipulation. However, bacterial inclusion body formation remains a challenge for further protein purification. We analyzed and optimized the expression conditions for three different proteins: an anti-MICA scFv, MICA, and p19 subunit of IL-23. We used a response surface methodology based on a three-level Box-Behnken design, which included three factors: post-induction temperature, post-induction time and IPTG concentration. Comparing this information with soluble protein data in a principal component analysis revealed that insoluble and soluble proteins have different optimal conditions for post-induction temperature, post-induction time, IPTG concentration and in amino acid sequence features. Finally, we optimized the refolding conditions of the least expressed protein, anti-MICA scFv, using a fast dilution protocol with different additives, obtaining soluble and active scFv for binding assays. These results allowed us to obtain higher yields of proteins expressed in inclusion bodies. Further studies using the system proposed in this study may lead to the identification of optimal environmental factors for a given protein sequence, favoring the acceleration of bioprocess development and structural studies.
Collapse
Affiliation(s)
- Matías Gutiérrez-González
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Programa de Doctorado en Farmacología, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Camila Farías
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Samantha Tello
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diana Pérez-Etcheverry
- Área de Biotecnología, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Alfonso Romero
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Roberto Zúñiga
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carolina H Ribeiro
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carmen Lorenzo-Ferreiro
- Área de Biotecnología, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - María Carmen Molina
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
11
|
Kofoed C, Riesenberg S, Šmolíková J, Meldal M, Schoffelen S. Semisynthesis of an Active Enzyme by Quantitative Click Ligation. Bioconjug Chem 2019; 30:1169-1174. [PMID: 30883092 DOI: 10.1021/acs.bioconjchem.9b00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The incorporation of clickable noncanonical amino acids (ncAAs) has proven to an invaluable tool in chemical biology and protein science research. Nevertheless, the number of examples in which the method is used for preparative purposes is extremely limited. We report the synthesis of an active enzyme by quantitative, Cu(I)-catalyzed ligation of two inactive protein halves, expressed and equipped with an azide and alkyne moiety, respectively, through ncAA incorporation. The reported quantitative conversion is exceptional given the large size of the protein fragments and the fact that no linker or excess of either of the polypeptides was used. The triazole bridge formed between the ncAA side chains was shown to effectively mimic a natural protein loop, providing an enzyme with the same activity as its natural counterpart. We envision that this strategy, termed split-click protein chemistry, can be used for the production of proteins that are difficult to express as full-length entities. It also paves the way for the design of new proteins with tailor-made functionalities.
Collapse
Affiliation(s)
- Christian Kofoed
- Center for Evolutionary Chemical Biology, Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| | - Stephan Riesenberg
- Center for Evolutionary Chemical Biology, Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| | - Jaroslava Šmolíková
- Center for Evolutionary Chemical Biology, Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| | - Morten Meldal
- Center for Evolutionary Chemical Biology, Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| | - Sanne Schoffelen
- Center for Evolutionary Chemical Biology, Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| |
Collapse
|
12
|
A novel method for cloning of coding sequences of highly toxic proteins. Biochim Biophys Acta Gen Subj 2018; 1863:521-527. [PMID: 30578833 DOI: 10.1016/j.bbagen.2018.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND During standard gene cloning, the recombinant protein appearing in bacteria as the result of expression leakage very often inhibits cell proliferation leading to blocking of the cloning procedure. Although different approaches can reduce transgene basal expression, the recombinant proteins, which even in trace amounts inhibit bacterial growth, can completely prevent the cloning process. METHODS Working to solve the problem of DNase II-like cDNA cloning, we developed a novel cloning approach. The method is based on separate cloning of the 5' and 3' fragments of target cDNA into a vector in such a way that the short Multiple Cloning Site insertion remaining between both fragments changes the reading frame and prevents translation of mRNA arising as a result of promoter leakage. Subsequently, to get the vector with full, uninterrupted Open Reading Frame, the Multiple Cloning Site insertion is removed by in vitro restriction/ligation reactions, utilizing the unique restriction site present in native cDNA. RESULTS Using this designed method, we cloned a coding sequence of AcDNase II that is extremely toxic for bacteria cells. Then, we demonstrated the usefulness of the construct prepared in this way for overexpression of AcDNase II in eukaryotic cells. CONCLUSIONS The designed method allows cloning of toxic protein coding sequences that cannot be cloned by standard methods. GENERAL SIGNIFICANCE Cloning of cDNAs encoding toxic proteins is still a troublesome problem that hinders the progress of numerous studies. The method described here is a convenient solution to cloning problems that are common in research on toxic proteins.
Collapse
|
13
|
Development of Versatile Vectors for Heterologous Expression in Bacillus. Microorganisms 2018; 6:microorganisms6020051. [PMID: 29875331 PMCID: PMC6027494 DOI: 10.3390/microorganisms6020051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023] Open
Abstract
The discovery of new enzymes for industrial application relies on a robust discovery pipeline. Such a pipeline should facilitate efficient molecular cloning, recombinant expression and functional screening procedures. Previously, we have developed a vector set for heterologous expression in Escherichia coli. Here, we supplement the catalogue with vectors for expression in Bacillus. The vectors are made compatible with a versatile cloning procedure based on type IIS restriction enzymes and T4 DNA ligase, and encompass an effective counter-selection procedure and complement the set of vectors with options for secreted expression. We validate the system with expression of recombinant subtilisins, which are generally challenging to express in a heterologous system. The complementarity of the E. coli and Bacillus systems allows rapid switching between the two commonly used hosts without comprehensive intermediate cloning steps. The vectors described are not limited to the expression of certain enzymes, but could also be applied for the expression of other enzymes for more generalized enzyme discovery or development.
Collapse
|
14
|
Salwan R, Sharma V, Pal M, Kasana RC, Yadav SK, Gulati A. Heterologous expression and structure-function relationship of low-temperature and alkaline active protease from Acinetobacter sp. IHB B 5011(MN12). Int J Biol Macromol 2017; 107:567-574. [PMID: 28916383 DOI: 10.1016/j.ijbiomac.2017.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
The gene encoding protease from Acinetobacter sp. IHB B 5011(MN12) was cloned and expressed in Escherichia coli BL21(DE3). The nucleotide sequence revealed 1323bp ORF encoding 441 amino acids protein with molecular weight 47.2kDa. The phylogenetic analysis showed clustering of Alp protease with subtilisin-like serine proteases of S8 family. The amino acid sequence was comprised of N-terminal signal peptide 1-21 amino acids, pre-peptide 22-143 amino acids, peptidase S8 domain 144-434 amino acids, and pro-peptide 435-441 amino acids at C-terminus. Three constructs with signal peptide pET-Alp, without signal peptide pET-Alp1 and peptidase S8 domain pET-Alp2 were prepared for expression in E. coli BL21(DE3). The recombinant proteins Alp1 and Alp2 expressed as inclusion bodies showed ∼50kDa and ∼40kDa bands, respectively. The pre-propeptide ∼11kDa removed from Alp1 resulted in mature protein of ∼35kDa with 1738Umg-1 specific activity. The recombinant protease was optimally active at 40°C and pH 9, and stable over 10-70°C and 6-12pH. The activity at low-temperature and alkaline pH was supported by high R/(R+K) ratio, more glycine, less proline, negatively charged amino acids, less salt bridges and longer loops. These properties suggested the suitability of Alp as additive in the laundry.
Collapse
Affiliation(s)
- Richa Salwan
- Academy of Scientific and Innovative Research, New Delhi, India; CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Vivek Sharma
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Mohinder Pal
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | | | - Sudesh Kumar Yadav
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Arvind Gulati
- Academy of Scientific and Innovative Research, New Delhi, India; CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.
| |
Collapse
|
15
|
Wani AH, Sharma M, Salwan R, Singh G, Chahota R, Verma S. Cloning, Expression, and Functional Characterization of Serine Protease Aprv2 from Virulent Isolate Dichelobacter nodosus of Indian Origin. Appl Biochem Biotechnol 2016; 180:576-587. [PMID: 27168406 DOI: 10.1007/s12010-016-2117-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
Abstract
A gene encoding an extracellular protease from Dichelobacter nodosus was characterized and expressed in E. coli rosetta-gami (DE3). The nucleotide sequence analysis revealed an ORF of 1427 bp ecoding 475 amino acids long protein of calculated molecular weight 50.6 kDa and pI value 6.09. The phylogenetic analysis showed relatedness to subtilisin-like serine proteases of peptidase S8 family. The amino acid sequence analysis showed presence of N-terminal pre-peptide (1-23 aa), pro-peptide (24-160 aa), peptidase S8 domain (161-457 aa), and a C-terminal extension (458-475 aa). The gene harboring native signal peptide was expressed in pET-22b(+) for production of AprV2 recombinant protein. SDS-PAGE revealed the highest production of IPTG induced recombinant protein ∼37 kDa at 16 °C after 16 h. The purified protein after Ni-NTA affinity chromatography showed single protein band of ∼37 kDa which was also confirmed by the detection of blue coloured band of same size in Western blotting. The recombinant protein showed activity over broad temperature and pH range with optimum at 35 °C and pH 7.0. Similarly, the enzyme was stable over broad range 15-65 °C and 4-10 pH with maximum stability at 25 °C and pH 6. The activity of purified enzyme was also stimulated in the presence of Ca2+. The purified enzyme showed highest activity towards casein as compared to gelatin and BSA. These findings suggest AprV2 as an important candidate for industrial applications such as pharmaceuticals.
Collapse
Affiliation(s)
- Aasim Habib Wani
- Department of Veterinary Microbiology, Dr. G.C. Negi-College of Veterinary and Animal Sciences, CSK-Himachal Pradesh Agricultural University, Palampur, 176062, India
| | - Mandeep Sharma
- Department of Veterinary Microbiology, Dr. G.C. Negi-College of Veterinary and Animal Sciences, CSK-Himachal Pradesh Agricultural University, Palampur, 176062, India
| | - Richa Salwan
- Department of Veterinary Microbiology, Dr. G.C. Negi-College of Veterinary and Animal Sciences, CSK-Himachal Pradesh Agricultural University, Palampur, 176062, India
| | - Geetanjali Singh
- Department of Veterinary Physiology and Biochemistry, Dr. G.C. Negi-College of Veterinary and Animal Sciences, CSK-Himachal Pradesh Agricultural University, Palampur, 176062, India
| | - Rajesh Chahota
- Department of Veterinary Microbiology, Dr. G.C. Negi-College of Veterinary and Animal Sciences, CSK-Himachal Pradesh Agricultural University, Palampur, 176062, India
| | - Subhash Verma
- Department of Veterinary Microbiology, Dr. G.C. Negi-College of Veterinary and Animal Sciences, CSK-Himachal Pradesh Agricultural University, Palampur, 176062, India.
| |
Collapse
|
16
|
Bjerga GEK, Arsın H, Larsen Ø, Puntervoll P, Kleivdal HT. A rapid solubility-optimized screening procedure for recombinant subtilisins in E. coli. J Biotechnol 2016; 222:38-46. [DOI: 10.1016/j.jbiotec.2016.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 02/08/2023]
|
17
|
Abstract
The expression and screening of the solubility of recombinant proteins is an important step in the high-throughput (HT) production of target proteins. For many applications, E. coli remains the most widely used expression system due to the relative ease of adapting it to HT pipelines. Herein is described a platform using a 96-well format for efficient expression and solubility screening of target proteins.
Collapse
Affiliation(s)
- Keehwan Kwon
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, 20850, USA,
| | | |
Collapse
|
18
|
Wang LL, Wei XM, Ye XD, Xu HX, Zhou XP, Liu SS, Wang XW. Expression and functional characterisation of a soluble form of Tomato yellow leaf curl virus coat protein. PEST MANAGEMENT SCIENCE 2014; 70:1624-31. [PMID: 24488592 DOI: 10.1002/ps.3750] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/28/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus within the family Geminiviridae, is an important pathogen of tomato in many tropical, subtropical and temperate regions. TYLCV is exclusively transmitted by the whitefly Bemisia tabaci in a circulative manner. The viral coat protein (CP) has been assumed to play important roles in the entry of TYLCV into the insect midgut cells. RESULTS Testing the hypothesis that CP plays an important role in TYLCV acquisition by B. tabaci, a soluble form of the CP was expressed and purified. The purified recombinant CP made it possible to examine the function of TYLCV CP without other viral proteins. In an in vivo binding assay, specific binding of TYLCV CP to B. tabaci midguts was detected when purified CP was fed to B. tabaci. In addition, real-time polymerase chain reaction analysis of virus titre revealed that B. tabaci fed with purified CP had reduced the level of virus in their midgut compared with those fed with bovine serum albumin or maltose-binding protein. These results suggest that binding of TYLCV CP to the B. tabaci midgut specifically inhibits virus acquisition. CONCLUSIONS The findings that TYLCV CP binds to B. tabaci midguts and decreases virus acquisition provide direct evidence that CP mediates the attachment of TYLCV to receptors on the epithelial cells of the B. tabaci midgut.
Collapse
Affiliation(s)
- Lan-Lan Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
19
|
N Peterson S, Kwon K. The HaloTag: Improving Soluble Expression and Applications in Protein Functional Analysis. CURRENT CHEMICAL GENOMICS 2012; 6:8-17. [PMID: 23115610 PMCID: PMC3480702 DOI: 10.2174/1875397301206010008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/13/2012] [Accepted: 07/18/2012] [Indexed: 12/22/2022]
Abstract
Technological and methodological advances have been critical for the rapidly evolving field of proteomics. The development of fusion tag systems is essential for purification and analysis of recombinant proteins. The HaloTag is a 34 KDa monomeric protein derived from a bacterial haloalkane dehalogenase. The majority of fusion tags in use today utilize a reversible binding interaction with a specific ligand. The HaloTag system is unique in that it forms a covalent linkage to its chloroalkane ligand. This linkage permits attachment of the HaloTag to a variety of functional reporters, which can be used to label and immobilize recombinant proteins. The success rate for HaloTag expression of soluble proteins is very high and comparable to maltose binding protein (MBP) tag. Furthermore, cleavage of the HaloTag does not result in protein insolubility that often is observed with the MBP tag. In the present report, we describe applications of the HaloTag system in our ongoing investigation of protein-protein interactions of the Y. pestis Type 3 secretion system on a custom protein microarray. We also describe the utilization of affinity purification/mass spectroscopy (AP/MS) to evaluate the utility of the Halo Tag system to characterize DNA binding activity and protein specificity.
Collapse
Affiliation(s)
- Scott N Peterson
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, USA
| | | |
Collapse
|
20
|
Retallack DM, Jin H, Chew L. Reliable protein production in a Pseudomonas fluorescens expression system. Protein Expr Purif 2012; 81:157-65. [DOI: 10.1016/j.pep.2011.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 09/20/2011] [Accepted: 09/20/2011] [Indexed: 10/17/2022]
|