1
|
Liu R, Yao J, Zhou S, Yang J, Zhang Y, Yang X, Li L, Zhang Y, Zhuang Y, Yang Y, Chen X. Spatiotemporal control of RNA metabolism and CRISPR-Cas functions using engineered photoswitchable RNA-binding proteins. Nat Protoc 2024; 19:374-405. [PMID: 38036926 DOI: 10.1038/s41596-023-00920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 09/19/2023] [Indexed: 12/02/2023]
Abstract
RNA molecules perform various crucial roles in diverse cellular processes, from translating genetic information to decoding the genome, regulating gene expression and catalyzing chemical reactions. RNA-binding proteins (RBPs) play an essential role in regulating the diverse behaviors and functions of RNA in live cells, but techniques for the spatiotemporal control of RBP activities and RNA functions are rarely reported yet highly desirable. We recently reported the development of LicV, a synthetic photoswitchable RBP that can bind to a specific RNA sequence in response to blue light irradiation. LicV has been used successfully for the optogenetic control of RNA localization, splicing, translation and stability, as well as for the photoswitchable regulation of transcription and genomic locus labeling. Compared to classical genetic or pharmacologic perturbations, LicV-based light-switchable effectors have the advantages of large dynamic range between dark and light conditions and submicron and millisecond spatiotemporal resolutions. In this protocol, we provide an easy, efficient and generalizable strategy for engineering photoswitchable RBPs for the spatiotemporal control of RNA metabolism. We also provide a detailed protocol for the conversion of a CRISPR-Cas system to optogenetic control. The protocols typically take 2-3 d, including transfection and results analysis. Most of this protocol is applicable to the development of novel LicV-based photoswitchable effectors for the optogenetic control of other RNA metabolisms and CRISPR-Cas functions.
Collapse
Affiliation(s)
- Renmei Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Jing Yao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Siyu Zhou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jing Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yaqiang Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaoyan Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Leshi Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yunbin Zhang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingping Zhuang
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
2
|
Zhu Y, Saribas AS, Liu J, Lin Y, Bodnar B, Zhao R, Guo Q, Ting J, Wei Z, Ellis A, Li F, Wang X, Yang X, Wang H, Ho WZ, Yang L, Hu W. Protein expression/secretion boost by a novel unique 21-mer cis-regulatory motif (Exin21) via mRNA stabilization. Mol Ther 2023; 31:1136-1158. [PMID: 36793212 PMCID: PMC9927791 DOI: 10.1016/j.ymthe.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/24/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Boosting protein production is invaluable in both industrial and academic applications. We discovered a novel expression-increasing 21-mer cis-regulatory motif (Exin21) that inserts between SARS-CoV-2 envelope (E) protein-encoding sequence and luciferase reporter gene. This unique Exin21 (CAACCGCGGTTCGCGGCCGCT), encoding a heptapeptide (QPRFAAA, designated as Qα), significantly (34-fold on average) boosted E production. Both synonymous and nonsynonymous mutations within Exin21 diminished its boosting capability, indicating the exclusive composition and order of 21 nucleotides. Further investigations demonstrated that Exin21/Qα addition could boost the production of multiple SARS-CoV-2 structural proteins (S, M, and N) and accessory proteins (NSP2, NSP16, and ORF3), and host cellular gene products such as IL-2, IFN-γ, ACE2, and NIBP. Exin21/Qα enhanced the packaging yield of S-containing pseudoviruses and standard lentivirus. Exin21/Qα addition on the heavy and light chains of human anti-SARS-CoV monoclonal antibody robustly increased antibody production. The extent of such boosting varied with protein types, cellular density/function, transfection efficiency, reporter dosage, secretion signaling, and 2A-mediated auto-cleaving efficiency. Mechanistically, Exin21/Qα increased mRNA synthesis/stability, and facilitated protein expression and secretion. These findings indicate that Exin21/Qα has the potential to be used as a universal booster for protein production, which is of importance for biomedicine research and development of bioproducts, drugs, and vaccines.
Collapse
Affiliation(s)
- Yuanjun Zhu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - A. Sami Saribas
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Jinbiao Liu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yuan Lin
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Brittany Bodnar
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ruotong Zhao
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Qian Guo
- Department of Medical Genetics & Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Julia Ting
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Zhengyu Wei
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Aidan Ellis
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Fang Li
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ling Yang
- Department of Medical Genetics & Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
3
|
Petrucci S, Ramón Codina Garcia-Andrade J, Moutsiopoulou A, Broyles DB, Dikici E, Daunert S, Deo SK. A Bioluminescent Protein-Graphene Oxide Donor-Quencher Pair in DNA Hybridization Assays. Chempluschem 2022; 87:e202200372. [PMID: 36457160 DOI: 10.1002/cplu.202200372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/02/2022] [Indexed: 11/12/2022]
Abstract
Despite fluorescent quenching with graphene oxide (GO) having shown great success in various applications - bioluminescent quenching has not yet been demonstrated using GO as a quencher. To explore the ability of GO to quench bioluminescence, we used Gaussia luciferase (Gluc) as a donor and GO as a quencher and demonstrated its application in sensing of two target analytes, HIV-1 DNA and IFN-γ. We demonstrated that the incubation of Gluc conjugated HIV-1 and IFN-γ oligonucleotide probes with GO provided for monitoring of probe-target interactions based on bioluminescence measurement in a solution phase sensing system. The limits of detection obtained for IFN-γ and HIV-1 DNA detection were 17 nM and 7.59 nM, respectively. Both sensing systems showed selectivity toward the target analyte. The detection of IFN-γ in saliva matrix was demonstrated. The use of GO as a quencher provides for high sensitivity while maintaining the selectivity of designed probes to their respective targets. The use of GO as a quencher provides for an easy assay design and low cost, environmentally friendly reporter.
Collapse
Affiliation(s)
- Sabrina Petrucci
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Josep Ramón Codina Garcia-Andrade
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Angeliki Moutsiopoulou
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - David B Broyles
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Clinical and Translational Science Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
4
|
Frank JA, Singh M, Cullen HB, Kirou RA, Benkaddour-Boumzaouad M, Cortes JL, Garcia-Perez J, Coyne CB, Feschotte C. Evolution and antiviral activity of a human protein of retroviral origin. Science 2022; 378:422-428. [PMID: 36302021 PMCID: PMC10542854 DOI: 10.1126/science.abq7871] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endogenous retroviruses are abundant components of mammalian genomes descended from ancient germline infections. In several mammals, the envelope proteins encoded by these elements protect against exogenous viruses, but this activity has not been documented with endogenously expressed envelopes in humans. We report that the human genome harbors a large pool of envelope-derived sequences with the potential to restrict retroviral infection. To test this, we characterized an envelope-derived protein, Suppressyn. We found that Suppressyn is expressed in human preimplantation embryos and developing placenta using its ancestral retroviral promoter. Cell culture assays showed that Suppressyn, and its hominoid orthologs, could restrict infection by extant mammalian type D retroviruses. Our data support a generalizable model of retroviral envelope co-option for host immunity and genome defense.
Collapse
Affiliation(s)
- John A. Frank
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, NY, USA
| | - Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, NY, USA
| | - Harrison B. Cullen
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, NY, USA
| | - Raphael A. Kirou
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, NY, USA
| | - Meriem Benkaddour-Boumzaouad
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government; PTS Granada, Spain
| | - Jose L. Cortes
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government; PTS Granada, Spain
- Eppendorf; Iberica, Spain
| | - Jose Garcia-Perez
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government; PTS Granada, Spain
- MRC-Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital; Edinburgh, UK
| | - Carolyn B. Coyne
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine; Durham, NC, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, NY, USA
| |
Collapse
|
5
|
Kropp KA, Srivaratharajan S, Ritter B, Yu P, Krooss S, Polten F, Pich A, Alcami A, Viejo-Borbolla A. Identification of the Cleavage Domain within Glycoprotein G of Herpes Simplex Virus Type 2. Viruses 2020; 12:v12121428. [PMID: 33322659 PMCID: PMC7763493 DOI: 10.3390/v12121428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Glycoprotein G (gG) from herpes simplex virus type 1 and 2 (HSV-1 and HSV-2, respectively) functions as a viral chemokine binding protein (vCKBP). Soluble recombinant forms of gG of HSV-1 and HSV-2 (SgG1 and SgG2, respectively) enhance chemokine-mediated leukocyte migration, in contrast to most known vCKBPs, including those from animal alpha-herpesviruses. Furthermore, both proteins bind to nerve growth factor (NGF), but only SgG2 enhances NGF-dependent neurite outgrowth. The basis and implications of this functional difference between the two proteins are still unknown. While gG1 and gG2 are positional homologues in the genome, they share very limited sequence homology. In fact, US4, the open reading frame encoding gG is the most divergent genetic locus between these viruses. Full-length gG1 and gG2 are type I transmembrane proteins located on the plasma membrane of infected cells and at the viral envelope. However, gG2 is larger than gG1 and is cleaved during protein maturation, secreting the N-terminal domain to the supernatant of infected cells, whereas gG1 is not. The enzyme involved in gG2 cleavage and the functional relevance of gG2 cleavage and secretion are unknown. We aim to identify the gG2 sequence required for cleavage to determine its functional role in future experiments. Our results prove the existence of at least two cleavage motifs in gG2 within the amino acid region 314-343. Transfer of this sequence to a fusion protein results in cleavage. Finally, we show that propeptide convertases like furin are responsible for gG2 cleavage.
Collapse
Affiliation(s)
- Kai A. Kropp
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (K.A.K.); (S.S.); (B.R.); (P.Y.); (S.K.)
| | - Sangar Srivaratharajan
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (K.A.K.); (S.S.); (B.R.); (P.Y.); (S.K.)
| | - Birgit Ritter
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (K.A.K.); (S.S.); (B.R.); (P.Y.); (S.K.)
| | - Pengfei Yu
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (K.A.K.); (S.S.); (B.R.); (P.Y.); (S.K.)
| | - Simon Krooss
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (K.A.K.); (S.S.); (B.R.); (P.Y.); (S.K.)
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Felix Polten
- Core Facility Proteomics, Hannover Medical School, 30625 Hannover, Germany; (F.P.); (A.P.)
| | - Andreas Pich
- Core Facility Proteomics, Hannover Medical School, 30625 Hannover, Germany; (F.P.); (A.P.)
- Institute for Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (K.A.K.); (S.S.); (B.R.); (P.Y.); (S.K.)
- Correspondence:
| |
Collapse
|
6
|
Rodríguez-Rodríguez I, Kalafut J, Czerwonka A, Rivero-Müller A. A novel bioassay for quantification of surface Cannabinoid receptor 1 expression. Sci Rep 2020; 10:18191. [PMID: 33097803 PMCID: PMC7584592 DOI: 10.1038/s41598-020-75331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/14/2020] [Indexed: 12/04/2022] Open
Abstract
The cannabinoid receptor type 1 (CB1) plays critical roles in multiple physiological processes such as pain perception, brain development and body temperature regulation. Mutations on this gene (CNR1), results in altered functionality and/or biosynthesis such as reduced membrane expression, changes in mRNA stability or changes in downstream signaling that act as triggers for diseases such as obesity, Parkinson’s, Huntington’s, among others; thus, it is considered as a potential pharmacological target. To date, multiple quantification methods have been employed to determine how these mutations affect receptor expression and localization; however, they present serious disadvantages that may arise quantifying errors. Here, we describe a sensitive bioassay to quantify receptor surface expression; in this bioassay the Gaussia Luciferase (GLuc) was fused to the extracellular portion of the CB1. The GLuc activity was assessed by coelenterazine addition to the medium followed by immediate readout. Based on GLuc activity assay, we show that the GLuc signals corelate with CB1 localization, besides, we showed the assay’s functionality and reliability by comparing its results with those generated by previously reported mutations on the CNR1 gene and by using flow cytometry to determine the cell surface receptor expression. Detection of membrane-bound CB1, and potentially other GPCRs, is able to quickly screen for receptor levels and help to understand the effect of clinically relevant mutations or polymorphisms.
Collapse
Affiliation(s)
| | - Joanna Kalafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.,Department of Virology and Immunology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
7
|
Agrotis A, Ketteler R. On ATG4B as Drug Target for Treatment of Solid Tumours-The Knowns and the Unknowns. Cells 2019; 9:cells9010053. [PMID: 31878323 PMCID: PMC7016753 DOI: 10.3390/cells9010053] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an evolutionary conserved stress survival pathway that has been shown to play an important role in the initiation, progression, and metastasis of multiple cancers; however, little progress has been made to date in translation of basic research to clinical application. This is partially due to an incomplete understanding of the role of autophagy in the different stages of cancer, and also to an incomplete assessment of potential drug targets in the autophagy pathway. While drug discovery efforts are on-going to target enzymes involved in the initiation phase of the autophagosome, e.g., unc51-like autophagy activating kinase (ULK)1/2, vacuolar protein sorting 34 (Vps34), and autophagy-related (ATG)7, we propose that the cysteine protease ATG4B is a bona fide drug target for the development of anti-cancer treatments. In this review, we highlight some of the recent advances in our understanding of the role of ATG4B in autophagy and its relevance to cancer, and perform a critical evaluation of ATG4B as a druggable cancer target.
Collapse
|
8
|
Pengo N, Prak K, Costa JR, Luft C, Agrotis A, Freeman J, Gewinner CA, Chan AWE, Selwood DL, Kriston-Vizi J, Ketteler R. Identification of Kinases and Phosphatases That Regulate ATG4B Activity by siRNA and Small Molecule Screening in Cells. Front Cell Dev Biol 2018; 6:148. [PMID: 30443548 PMCID: PMC6221980 DOI: 10.3389/fcell.2018.00148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022] Open
Abstract
Autophagy protease ATG4B is a key regulator of the LC3/GABARAP conjugation system required for autophagosome formation, maturation and closure. Members of the ATG4 and the LC3/GABARAP family have been implicated in various diseases including cancer, and targeting the ATG4B protease has been suggested as a potential therapeutic anti-cancer strategy. Recently, it has been demonstrated that ATG4B is regulated by multiple post-translational modifications, including phosphorylation and de-phosphorylation. In order to identify regulators of ATG4B activity, we optimized a cell-based luciferase assay based on ATG4B-dependent release of Gaussia luciferase. We applied this assay in a proof-of-concept small molecule compound screen and identified activating compounds that increase cellular ATG4B activity. Next, we performed a high-throughput screen to identify kinases and phosphatases that regulate cellular ATG4B activity using siRNA mediated knockdown and cDNA overexpression. Of these, we provide preliminary evidence that the kinase AKT2 enhances ATG4B activity in cells. We provide all raw and processed data from the screens as a resource for further analysis. Overall, our findings provide novel insights into the regulation of ATG4B and highlight the importance of post-translational modifications of ATG4B.
Collapse
Affiliation(s)
- Niccolo Pengo
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Krisna Prak
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Joana R. Costa
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Christin Luft
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Alexander Agrotis
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Jamie Freeman
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | | | - A. W. Edith Chan
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - David L. Selwood
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
9
|
Wong MY, Doan ND, DiChiara AS, Papa LJ, Cheah JH, Soule CK, Watson N, Hulleman JD, Shoulders MD. A High-Throughput Assay for Collagen Secretion Suggests an Unanticipated Role for Hsp90 in Collagen Production. Biochemistry 2018; 57:2814-2827. [PMID: 29676157 PMCID: PMC6231715 DOI: 10.1021/acs.biochem.8b00378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Collagen overproduction is a feature of fibrosis and cancer, while insufficient deposition of functional collagen molecules and/or the secretion of malformed collagen is common in genetic disorders like osteogenesis imperfecta. Collagen secretion is an appealing therapeutic target in these and other diseases, as secretion directly connects intracellular biosynthesis to collagen deposition and biological function in the extracellular matrix. However, small molecule and biological methods to tune collagen secretion are severely lacking. Their discovery could prove useful not only in the treatment of disease, but also in providing tools for better elucidating mechanisms of collagen biosynthesis. We developed a cell-based, high-throughput luminescent assay of collagen type I secretion and used it to screen for small molecules that selectively enhance or inhibit that process. Among several validated hits, the Hsp90 inhibitor 17-allylaminogeldanamycin (17-AAG) robustly decreases the secretion of collagen-I by our model cell line and by human primary cells. In these systems, 17-AAG and other pan-isoform Hsp90 inhibitors reduce collagen-I secretion post-translationally and are not global inhibitors of protein secretion. Surprisingly, the consequences of Hsp90 inhibitors cannot be attributed to inhibition of the endoplasmic reticulum's Hsp90 isoform, Grp94. Instead, collagen-I secretion likely depends on the activity of cytosolic Hsp90 chaperones, even though such chaperones cannot directly engage nascent collagen molecules. Our results highlight the value of a cell-based high-throughput screen for selective modulators of collagen secretion and suggest an unanticipated role for cytosolic Hsp90 in collagen secretion.
Collapse
Affiliation(s)
- Madeline Y. Wong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Ngoc Duc Doan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Andrew S. DiChiara
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Louis J. Papa
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jaime H. Cheah
- High-Throughput Sciences Facility, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Christian K. Soule
- High-Throughput Sciences Facility, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Nicki Watson
- W.M. Keck Microscopy Facility, The Whitehead Institute, Cambridge, Massachusetts, United States of America
| | - John D. Hulleman
- Departments of Ophthalmology and Pharmacology, University of Texas–Southwestern Medical Center, Dallas, Texas 75390
| | - Matthew D. Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
10
|
Autophagy gene expression profiling identifies a defective microtubule-associated protein light chain 3A mutant in cancer. Oncotarget 2018; 7:41203-41216. [PMID: 27256984 PMCID: PMC5173052 DOI: 10.18632/oncotarget.9754] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/23/2016] [Indexed: 12/01/2022] Open
Abstract
The cellular stress response autophagy has been implicated in various diseases including neuro-degeneration and cancer. The role of autophagy in cancer is not clearly understood and both tumour promoting and tumour suppressive effects of autophagy have been reported, which complicates the design of therapeutic strategies based on targeting the autophagy pathway. Here, we have systematically analyzed gene expression data for 47 autophagy genes for deletions, amplifications and mutations in various cancers. We found that several cancer types have frequent autophagy gene amplifications, whereas deletions are more frequent in prostate adenocarcinomas. Other cancer types such as glioblastoma and thyroid carcinoma show very few alterations in any of the 47 autophagy genes. Overall, individual autophagy core genes are altered at low frequency in cancer, suggesting that cancer cells require functional autophagy. Some autophagy genes show frequent single base mutations, such as members of the ULK family of protein kinases. Furthermore, we found hotspot mutations in the arginine-rich stretch in MAP1LC3A resulting in reduced cleavage of MAP1LC3A by ATG4B both in vitro and in vivo, suggesting a functional implication of this gene mutation in cancer development.
Collapse
|
11
|
Gaur S, Bhargava-Shah A, Hori S, Afjei R, Sekar TV, Gambhir SS, Massoud TF, Paulmurugan R. Engineering Intracellularly Retained Gaussia Luciferase Reporters for Improved Biosensing and Molecular Imaging Applications. ACS Chem Biol 2017; 12:2345-2353. [PMID: 28767220 DOI: 10.1021/acschembio.7b00454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gaussia luciferase (GLUC) is a bioluminescent reporter protein of increasing importance. As a secretory protein, it has increased sensitivity in vitro and in vivo (∼20 000-fold, and ∼1000-fold, respectively) over its competitor, secreted alkaline phosphatase. Unfortunately, this same advantageous secretory nature of GLUC limits its usefulness for many other possible intracellular applications, e.g., imaging signaling pathways in intact cells, in vivo imaging, and in developing molecular imaging biosensors to study protein-protein interactions and protein folding. Hence, to widen the research applications of GLUC, we developed engineered variants that increase its intracellular retention both by modifying the N-terminal secretory signal peptide and by tagging additional sequences to its C-terminal region. We found that when GLUC was expressed in mammalian cells, its N-terminal secretory signal peptide comprising amino acids 1-16 was essential for GLUC folding and functional activity in addition to its inherent secretory property. Modification of the C-terminus of GLUC by tagging a four amino acid (KDEL) endoplasmic reticulum targeting peptide in multiple repeats significantly improved its intracellular retention, with little impact on its folding and enzymatic activity. We used stable cells expressing this engineered GLUC with KDEL repeats to monitor chemically induced endoplasmic reticulum stress on cells. Additionally, we engineered an apoptotic sensor using modified variants of GLUC containing a four amino acid caspase substrate peptide (DEVD) between the GLUC protein and the KDEL repeats. Its use in cell culture resulted in increased GLUC secretion in the growth medium when cells were treated with the chemotherapeutic drugs doxorubicin, paclitaxel, and carboplatin. We thus successfully engineered a new variant GLUC protein that is retained inside cells rather than secreted extracellularly. We validated this novel reporter by incorporating it in biosensors for detection of cellular endoplasmic reticulum stress and caspase activation. This new molecularly engineered enzymatic reporter has the potential for widespread applications in biological research.
Collapse
Affiliation(s)
- Shuchi Gaur
- Departments of Radiology,
and Bioengineering, the Bio-X Program, Molecular Imaging Program at
Stanford (MIPS), Stanford University School of Medicine, 3155 Porter
Drive, Palo Alto, California 94304-1110, United States
| | - Aarohi Bhargava-Shah
- Departments of Radiology,
and Bioengineering, the Bio-X Program, Molecular Imaging Program at
Stanford (MIPS), Stanford University School of Medicine, 3155 Porter
Drive, Palo Alto, California 94304-1110, United States
| | - Sharon Hori
- Departments of Radiology,
and Bioengineering, the Bio-X Program, Molecular Imaging Program at
Stanford (MIPS), Stanford University School of Medicine, 3155 Porter
Drive, Palo Alto, California 94304-1110, United States
| | - Rayhaneh Afjei
- Departments of Radiology,
and Bioengineering, the Bio-X Program, Molecular Imaging Program at
Stanford (MIPS), Stanford University School of Medicine, 3155 Porter
Drive, Palo Alto, California 94304-1110, United States
| | - Thillai V. Sekar
- Departments of Radiology,
and Bioengineering, the Bio-X Program, Molecular Imaging Program at
Stanford (MIPS), Stanford University School of Medicine, 3155 Porter
Drive, Palo Alto, California 94304-1110, United States
| | - Sanjiv S. Gambhir
- Departments of Radiology,
and Bioengineering, the Bio-X Program, Molecular Imaging Program at
Stanford (MIPS), Stanford University School of Medicine, 3155 Porter
Drive, Palo Alto, California 94304-1110, United States
| | - Tarik F. Massoud
- Departments of Radiology,
and Bioengineering, the Bio-X Program, Molecular Imaging Program at
Stanford (MIPS), Stanford University School of Medicine, 3155 Porter
Drive, Palo Alto, California 94304-1110, United States
| | - Ramasamy Paulmurugan
- Departments of Radiology,
and Bioengineering, the Bio-X Program, Molecular Imaging Program at
Stanford (MIPS), Stanford University School of Medicine, 3155 Porter
Drive, Palo Alto, California 94304-1110, United States
| |
Collapse
|
12
|
Pengo N, Agrotis A, Prak K, Jones J, Ketteler R. A reversible phospho-switch mediated by ULK1 regulates the activity of autophagy protease ATG4B. Nat Commun 2017; 8:294. [PMID: 28821708 PMCID: PMC5562857 DOI: 10.1038/s41467-017-00303-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 06/20/2017] [Indexed: 12/26/2022] Open
Abstract
Upon induction of autophagy, the ubiquitin-like protein LC3 is conjugated to phosphatidylethanolamine (PE) on the inner and outer membrane of autophagosomes to allow cargo selection and autophagosome formation. LC3 undergoes two processing steps, the proteolytic cleavage of pro-LC3 and the de-lipidation of LC3-PE from autophagosomes, both executed by the same cysteine protease ATG4. How ATG4 activity is regulated to co-ordinate these events is currently unknown. Here we find that ULK1, a protein kinase activated at the autophagosome formation site, phosphorylates human ATG4B on serine 316. Phosphorylation at this residue results in inhibition of its catalytic activity in vitro and in vivo. On the other hand, phosphatase PP2A-PP2R3B can remove this inhibitory phosphorylation. We propose that the opposing activities of ULK1-mediated phosphorylation and PP2A-mediated dephosphorylation provide a phospho-switch that regulates the cellular activity of ATG4B to control LC3 processing.Upon autophagy induction, LC3 is cleaved by the protease ATG4 and conjugated to the autophagosomal membrane; however, its removal is mediated by the same protease. Here the authors show that ULK1-mediated phosphorylation and PP2A-mediated dephosphorylation of ATG4 regulates its cellular activity to control LC3 processing.
Collapse
Affiliation(s)
- N Pengo
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - A Agrotis
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - K Prak
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - J Jones
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - R Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
13
|
Fu YH, Liu YR, Zheng YP, Jiang N, Yue-Ying-Jiao, Li W, Peng XL, He JS. An RNA polymerase I-driven human respiratory syncytial virus minigenome as a tool for quantifying virus titers and screening antiviral drug. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Ribose 5-phosphate isomerase inhibits LC3 processing and basal autophagy. Cell Signal 2016; 28:1380-1388. [PMID: 27328773 PMCID: PMC4973805 DOI: 10.1016/j.cellsig.2016.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/17/2016] [Accepted: 06/17/2016] [Indexed: 11/23/2022]
Abstract
Autophagy and cellular metabolism are tightly linked processes, but how individual metabolic enzymes regulate the process of autophagy is not well understood. This study implicates ribose-5-phosphate isomerase (RPIA), a key regulator of the pentose phosphate pathway, in the control of autophagy. We used a dual gene deletion strategy, combining shRNA-mediated knockdown studies with CRISPR/Cas9 genome editing. Knockdown of RPIA by shRNA or genomic deletion by CRISPR/Cas9 genome editing, results in an increase of ATG4B-mediated LC3 processing and in the appearance of LC3-positive autophagosomes in cells. Increased LC3 processing upon knockdown of RPIA can be reversed by treatment with the antioxidant N-acetyl cysteine. The results are consistent with a model in which RPIA suppresses autophagy and LC3 processing by modulation of redox signaling. Ribose-5-phosphate isomerase links autophagy with the pentose phosphate pathway. Generation of a CRISPR/Cas9 genome edited RPIA knockout cell line RPIA isomerase suppresses cellular LC3 processing and autophagosome formation.
Collapse
|
15
|
Zhang PT, Shan C, Li XD, Liu SQ, Deng CL, Ye HQ, Shang BD, Shi PY, Lv M, Shen BF, Qin CF, Zhang B. Generation of a recombinant West Nile virus stably expressing the Gaussia luciferase for neutralization assay. Virus Res 2016; 211:17-24. [DOI: 10.1016/j.virusres.2015.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
|