1
|
Blondeau-Bidet E, Tine M, Gonzalez AA, Guinand B, Lorin-Nebel C. Coping with salinity extremes: Gill transcriptome profiling in the black-chinned tilapia (Sarotherodon melanotheron). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172620. [PMID: 38642748 DOI: 10.1016/j.scitotenv.2024.172620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/21/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Steeper and sometimes extreme salinity gradients increasingly affect aquatic organisms because of climate change. Hypersalinity habitats demand powerful physiological adaptive strategies. Few teleost species have the capacity to spend their whole life cycle in salinities way over seawater levels. Focusing on the multifunctional gill, we unraveled the tilapia S. melanotheron key strategies to cope with different environmental conditions, ranging from freshwater up to hypersaline habitats. De novo transcriptome assembly based on RNAseq allowed for the analysis of 40,967 annotated transcripts among samples collected in three wild populations at 0, 40 and 80 ‰. A trend analysis of the expression patterns revealed responses across the salinity gradient with different gene pathways involved. Genes linked to ion transport, pH regulation and cell surface receptor signaling were mainly upregulated in the high salinity habitat. We identified tight junction proteins that were critical in high salinity habitats and that were different from the well-known tightening junctional proteins identified and expressed in fresh water. Expression profiles also suggest a change in the vascular tone that could be linked to an osmorespiratory compromise not only in fresh water, but also in high salinity environments. A striking downregulation of genes linked to the immune system and to the heat shock response was observed suggesting an energetic trade-off between immunity and acclimation/adaptation in the hypersaline habitat. The high expression of transcripts coding for immune and heat shock response in the freshwater habitat suggests the establishment of powerful mechanisms to protect gills from environmental threats and to maintain protein integrity. Non-directional expression trends were also detected with an upregulation of genes only in the hypersaline habitat (80 ‰) or only in the marine habitat (40 ‰). Unravel physiological strategies in S. melanotheron populations will help to better understand the molecular basis of fish euryhalinity in salinity-contrasted environments.
Collapse
Affiliation(s)
| | - Mbaye Tine
- UFR of Agricultural Sciences, Aquaculture and Food Technologies (UFR S2ATA), Gaston Berger University, Saint-Louis, Senegal
| | | | - Bruno Guinand
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| | | |
Collapse
|
2
|
Burioli EAV, Hammel M, Vignal E, Vidal-Dupiol J, Mitta G, Thomas F, Bierne N, Destoumieux-Garzón D, Charrière GM. Transcriptomics of mussel transmissible cancer MtrBTN2 suggests accumulation of multiple cancer traits and oncogenic pathways shared among bilaterians. Open Biol 2023; 13:230259. [PMID: 37816387 PMCID: PMC10564563 DOI: 10.1098/rsob.230259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Transmissible cancer cell lines are rare biological entities giving rise to diseases at the crossroads of cancer and parasitic diseases. These malignant cells have acquired the amazing capacity to spread from host to host. They have been described only in dogs, Tasmanian devils and marine bivalves. The Mytilus trossulus bivalve transmissible neoplasia 2 (MtrBTN2) lineage has even acquired the capacity to spread inter-specifically between marine mussels of the Mytilus edulis complex worldwide. To identify the oncogenic processes underpinning the biology of these atypical cancers we performed transcriptomics of MtrBTN2 cells. Differential expression, enrichment, protein-protein interaction network, and targeted analyses were used. Overall, our results suggest the accumulation of multiple cancerous traits that may be linked to the long-term evolution of MtrBTN2. We also highlight that vertebrate and lophotrochozoan cancers could share a large panel of common drivers, which supports the hypothesis of an ancient origin of oncogenic processes in bilaterians.
Collapse
Affiliation(s)
- E A V Burioli
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - M Hammel
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - E Vignal
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - J Vidal-Dupiol
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - G Mitta
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre Ifremer du Pacifique, Tahiti, Polynésie française
| | - F Thomas
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - N Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - D Destoumieux-Garzón
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - G M Charrière
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| |
Collapse
|
3
|
Higuera A, Salas-Leiva DE, Curtis B, Patiño LH, Zhao D, Jerlström-Hultqvist J, Dlutek M, Muñoz M, Roger AJ, Ramírez JD. Draft genomes of Blastocystis subtypes from human samples of Colombia. Parasit Vectors 2023; 16:52. [PMID: 36732768 PMCID: PMC9896827 DOI: 10.1186/s13071-022-05619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/14/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Blastocystis is one of the most common eukaryotic microorganisms colonizing the intestines of both humans and animals, but the conditions under which it may be a pathogen are unclear. METHODS To study the genomic characteristics of circulating subtypes (ST) in Colombia, we established nine xenic cultures from Blastocystis isolated from human fecal samples, we identified 10 different subtypes, since one sample had a mixed infection. Thus, the genomes of the subtypes ST1 (n = 3), ST2 (n = 1), ST3 (n = 2), ST6 (n = 1), ST7 (n = 1), and ST8 (n = 2) were sequenced using Illumina and Oxford Nanopore Technologies (ONT). RESULTS Analyses of these draft nuclear genomes indicated remarkable diversity in terms of genome size and guanine-cytosine (GC) content among the compared STs. Illumina sequencing-only draft genomes contained 824 to 2077 scaffolds, with total genome size ranging from 12 to 13.2 Mb and N50 values ranging from 10,585 to 29,404 base pairs (bp). The genome of one ST1 isolate was sequenced using ONT. This assembly was more contiguous, with a size of 20 million base pairs (Mb) spread over 116 scaffolds, and an N50 of 248,997 bp. CONCLUSION This work represents one of the few large-scale comparative genomic analyses of Blastocystis isolates, providing an additional glimpse into its genomic diversity.
Collapse
Affiliation(s)
- Adriana Higuera
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Dayana E. Salas-Leiva
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge, CB2 1QW United Kingdom
| | - Bruce Curtis
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Luz H. Patiño
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Dandan Zhao
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Jon Jerlström-Hultqvist
- grid.8993.b0000 0004 1936 9457Department of Cell and Molecular Biology, BMC, Uppsala Universitet, Box 596, 751 24 Uppsala, Sweden
| | - Marlena Dlutek
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Marina Muñoz
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Andrew J. Roger
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Juan David Ramírez
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia ,grid.59734.3c0000 0001 0670 2351Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY USA
| |
Collapse
|
4
|
Chen Z, Li J, Salas-Leiva DE, Chen M, Chen S, Li S, Wu Y, Yi Z. Group-specific functional patterns of mitochondrion-related organelles shed light on their multiple transitions from mitochondria in ciliated protists. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:609-623. [PMID: 37078085 PMCID: PMC10077286 DOI: 10.1007/s42995-022-00147-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/23/2022] [Indexed: 05/03/2023]
Abstract
Adaptations of ciliates to hypoxic environments have arisen independently several times. Studies on mitochondrion-related organelle (MRO) metabolisms from distinct anaerobic ciliate groups provide evidence for understanding the transitions from mitochondria to MROs within eukaryotes. To deepen our knowledge about the evolutionary patterns of ciliate anaerobiosis, mass-culture and single-cell transcriptomes of two anaerobic species, Metopus laminarius (class Armophorea) and Plagiopyla cf. narasimhamurtii (class Plagiopylea), were sequenced and their MRO metabolic maps were compared. In addition, we carried out comparisons using publicly available predicted MRO proteomes from other ciliate classes (i.e., Armophorea, Litostomatea, Muranotrichea, Oligohymenophorea, Parablepharismea and Plagiopylea). We found that single-cell transcriptomes were similarly comparable to their mass-culture counterparts in predicting MRO metabolic pathways of ciliates. The patterns of the components of the MRO metabolic pathways might be divergent among anaerobic ciliates, even among closely related species. Notably, our findings indicate the existence of group-specific functional relics of electron transport chains (ETCs). Detailed group-specific ETC functional patterns are as follows: full oxidative phosphorylation in Oligohymenophorea and Muranotrichea; only electron-transfer machinery in Armophorea; either of these functional types in Parablepharismea; and ETC functional absence in Litostomatea and Plagiopylea. These findings suggest that adaptation of ciliates to anaerobic conditions is group-specific and has occurred multiple times. Our results also show the potential and the limitations of detecting ciliate MRO proteins using single-cell transcriptomes and improve the understanding of the multiple transitions from mitochondria to MROs within ciliates. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00147-w.
Collapse
Affiliation(s)
- Zhicheng Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Jia Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | | | - Miaoying Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Shilong Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Senru Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Yanyan Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|
5
|
Roopa Sowjanya P, Shilpa P, Patil GP, Babu DK, Sharma J, Sangnure VR, Mundewadikar DM, Natarajan P, Marathe AR, Reddy UK, Singh VN. Reference quality genome sequence of Indian pomegranate cv. 'Bhagawa' ( Punica granatum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:947164. [PMID: 36186044 PMCID: PMC9521485 DOI: 10.3389/fpls.2022.947164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/07/2022] [Indexed: 06/16/2023]
Abstract
Pomegranate is an important fruit crop for ensuring livelihood and nutrition security in fragile semi-arid regions of the globe having limited irrigation resources. This is a high-value, nutritionally rich, and export-oriented agri-commodity that ensures high returns on investment to growers across the world. Although it is a valuable fruit crop, it has received only a limited genomics research outcome. To fast-track the pomegranate improvement program, de novo whole-genome sequencing of the main Indian cultivar 'Bhagawa' was initiated by the Indian Council of Agricultural Research-National Research Center on Pomegranate (ICAR-NRCP). We have demonstrated that a combination of commercially available technologies from Illumina, PacBio, 10X Genomics, and BioNano Genomics could be used efficiently for sequencing and reference-grade de novo assembly of the pomegranate genome. The research led to a final reference-quality genome assembly for 'Bhagawa' of 346.08 Mb in 342 scaffolds and an average N50 of 16.12 Mb and N90 of 1088.62 Kb. This assembly covered more than 98% of the estimated pomegranate genome size, 352.54 Mb. The LTR assembly index (LAI) value of 10 and 93.68% Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness score over the 1,440 ortholog genes of the completed pomegranate genome indicates the quality of the assembled pomegranate genome. Furthermore, 29,435 gene models were discovered with a mean transcript length of 2,954 bp and a mean coding sequence length 1,090 bp. Four transcript data samples of pomegranate tissues were mapped over the assembled 'Bhagawa' genome up to 95% significant matches, indicating the high quality of the assembled genome. We have compared the 'Bhagawa' genome with the genomes of the pomegranate cultivars 'Dabenzi' and 'Taishanhong.' We have also performed whole-genome phylogenetic analysis using Computational Analysis of Gene Family Evolution (CAFE) and found that Eucalyptus grandis and pomegranate diverged 64 (60-70) million years ago. About 1,573 protein-coding resistance genes identified in the 'Bhagawa' genome were classified into 32 domains. In all, 314 copies of miRNA belonging to 26 different families were identified in the 'Bhagawa' genome. The reference-quality genome assembly of 'Bhagawa' is certainly a significant genomic resource for accelerated pomegranate improvement.
Collapse
Affiliation(s)
| | | | | | | | - Jyotsana Sharma
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | | | | | - Purushothaman Natarajan
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, United States
| | | | - Umesh K. Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, United States
| | | |
Collapse
|
6
|
Ben Yamin B, Ahmed-Seghir S, Tomida J, Despras E, Pouvelle C, Yurchenko A, Goulas J, Corre R, Delacour Q, Droin N, Dessen P, Goidin D, Lange SS, Bhetawal S, Mitjavila-Garcia MT, Baldacci G, Nikolaev S, Cadoret JC, Wood RD, Kannouche PL. DNA polymerase zeta contributes to heterochromatin replication to prevent genome instability. EMBO J 2021; 40:e104543. [PMID: 34533226 PMCID: PMC8561639 DOI: 10.15252/embj.2020104543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/20/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
The DNA polymerase zeta (Polζ) plays a critical role in bypassing DNA damage. REV3L, the catalytic subunit of Polζ, is also essential in mouse embryonic development and cell proliferation for reasons that remain incompletely understood. In this study, we reveal that REV3L protein interacts with heterochromatin components including repressive histone marks and localizes in pericentromeric regions through direct interaction with HP1 dimer. We demonstrate that Polζ/REV3L ensures progression of replication forks through difficult‐to‐replicate pericentromeric heterochromatin, thereby preventing spontaneous chromosome break formation. We also find that Rev3l‐deficient cells are compromised in the repair of heterochromatin‐associated double‐stranded breaks, eliciting deletions in late‐replicating regions. Lack of REV3L leads to further consequences that may be ascribed to heterochromatin replication and repair‐associated functions of Polζ, with a disruption of the temporal replication program at specific loci. This is correlated with changes in epigenetic landscape and transcriptional control of developmentally regulated genes. These results reveal a new function of Polζ in preventing chromosome instability during replication of heterochromatic regions.
Collapse
Affiliation(s)
- Barbara Ben Yamin
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Sana Ahmed-Seghir
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Junya Tomida
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Emmanuelle Despras
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Caroline Pouvelle
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Andrey Yurchenko
- INSERM U981, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Jordane Goulas
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Raphael Corre
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Quentin Delacour
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | | | - Philippe Dessen
- Bioinformatics Core Facility, Gustave Roussy, Villejuif, France
| | - Didier Goidin
- Life Sciences and Diagnostics Group, Agilent Technologies France, Les Ulis, France
| | - Sabine S Lange
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sarita Bhetawal
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | - Giuseppe Baldacci
- Institut Jacques Monod, UMR7592, CNRS and University of Paris, Paris, France
| | - Sergey Nikolaev
- INSERM U981, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | | | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Patricia L Kannouche
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| |
Collapse
|
7
|
Re-examination of two diatom reference genomes using long-read sequencing. BMC Genomics 2021; 22:379. [PMID: 34030633 PMCID: PMC8147415 DOI: 10.1186/s12864-021-07666-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/26/2021] [Indexed: 12/03/2022] Open
Abstract
Background The marine diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum are valuable model organisms for exploring the evolution, diversity and ecology of this important algal group. Their reference genomes, published in 2004 and 2008, respectively, were the product of traditional Sanger sequencing. In the case of T. pseudonana, optical restriction site mapping was employed to further clarify and contextualize chromosome-level scaffolds. While both genomes are considered highly accurate and reasonably contiguous, they still contain many unresolved regions and unordered/unlinked scaffolds. Results We have used Oxford Nanopore Technologies long-read sequencing to update and validate the quality and contiguity of the T. pseudonana and P. tricornutum genomes. Fine-scale assessment of our long-read derived genome assemblies allowed us to resolve previously uncertain genomic regions, further characterize complex structural variation, and re-evaluate the repetitive DNA content of both genomes. We also identified 1862 previously undescribed genes in T. pseudonana. In P. tricornutum, we used transposable element detection software to identify 33 novel copia-type LTR-RT insertions, indicating ongoing activity and rapid expansion of this superfamily as the organism continues to be maintained in culture. Finally, Bionano optical mapping of P. tricornutum chromosomes was combined with long-read sequence data to explore the potential of long-read sequencing and optical mapping for resolving haplotypes. Conclusion Despite its potential to yield highly contiguous scaffolds, long-read sequencing is not a panacea. Even for relatively small nuclear genomes such as those investigated herein, repetitive DNA sequences cause problems for current genome assembly algorithms. Determining whether a long-read derived genomic assembly is ‘better’ than one produced using traditional sequence data is not straightforward. Our revised reference genomes for P. tricornutum and T. pseudonana nevertheless provide additional insight into the structure and evolution of both genomes, thereby providing a more robust foundation for future diatom research. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07666-3.
Collapse
|
8
|
Stenger PL, Ky CL, Reisser CMO, Cosseau C, Grunau C, Mege M, Planes S, Vidal-Dupiol J. Environmentally Driven Color Variation in the Pearl Oyster Pinctada margaritifera var. cumingii (Linnaeus, 1758) Is Associated With Differential Methylation of CpGs in Pigment- and Biomineralization-Related Genes. Front Genet 2021; 12:630290. [PMID: 33815466 PMCID: PMC8018223 DOI: 10.3389/fgene.2021.630290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/19/2021] [Indexed: 11/15/2022] Open
Abstract
Today, it is common knowledge that environmental factors can change the color of many animals. Studies have shown that the molecular mechanisms underlying such modifications could involve epigenetic factors. Since 2013, the pearl oyster Pinctada margaritifera var. cumingii has become a biological model for questions on color expression and variation in Mollusca. A previous study reported color plasticity in response to water depth variation, specifically a general darkening of the nacre color at greater depth. However, the molecular mechanisms behind this plasticity are still unknown. In this paper, we investigate the possible implication of epigenetic factors controlling shell color variation through a depth variation experiment associated with a DNA methylation study performed at the whole genome level with a constant genetic background. Our results revealed six genes presenting differentially methylated CpGs in response to the environmental change, among which four are linked to pigmentation processes or regulations (GART, ABCC1, MAPKAP1, and GRL101), especially those leading to darker phenotypes. Interestingly, the genes perlucin and MGAT1, both involved in the biomineralization process (deposition of aragonite and calcite crystals), also showed differential methylation, suggesting that a possible difference in the physical/spatial organization of the crystals could cause darkening (iridescence or transparency modification of the biomineral). These findings are of great interest for the pearl production industry, since wholly black pearls and their opposite, the palest pearls, command a higher value on several markets. They also open the route of epigenetic improvement as a new means for pearl production improvement.
Collapse
Affiliation(s)
- Pierre-Louis Stenger
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| | - Chin-Long Ky
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| | - Céline M. O. Reisser
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Céline Cosseau
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Perpignan, France
| | - Christoph Grunau
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Perpignan, France
| | - Mickaël Mege
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IFREMER, PDG-RBE-SGMM-LGPMM, La Tremblade, France
| | - Serge Planes
- EPHE-UPVD-CNRS, USR 3278 CRIOBE, Labex Corail, PSL Research University, Université de Perpignan, Perpignan, France
| | - Jeremie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| |
Collapse
|
9
|
Molecular Pathways and Pigments Underlying the Colors of the Pearl Oyster Pinctada margaritifera var. cumingii (Linnaeus 1758). Genes (Basel) 2021; 12:genes12030421. [PMID: 33804186 PMCID: PMC7998362 DOI: 10.3390/genes12030421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/25/2022] Open
Abstract
The shell color of the Mollusca has attracted naturalists and collectors for hundreds of years, while the molecular pathways regulating pigment production and the pigments themselves remain poorly described. In this study, our aim was to identify the main pigments and their molecular pathways in the pearl oyster Pinctada margaritifera—the species displaying the broadest range of colors. Three inner shell colors were investigated—red, yellow, and green. To maximize phenotypic homogeneity, a controlled population approach combined with common garden conditioning was used. Comparative analysis of transcriptomes (RNA-seq) of P. margaritifera with different shell colors revealed the central role of the heme pathway, which is involved in the production of red (uroporphyrin and derivates), yellow (bilirubin), and green (biliverdin and cobalamin forms) pigments. In addition, the Raper–Mason, and purine metabolism pathways were shown to produce yellow pigments (pheomelanin and xanthine) and the black pigment eumelanin. The presence of these pigments in pigmented shell was validated by Raman spectroscopy. This method also highlighted that all the identified pathways and pigments are expressed ubiquitously and that the dominant color of the shell is due to the preferential expression of one pathway compared with another. These pathways could likely be extrapolated to many other organisms presenting broad chromatic variation.
Collapse
|
10
|
Westbury MV, Le Duc D, Duchêne DA, Krishnan A, Prost S, Rutschmann S, Grau JH, Dalen L, Weyrich A, Norén K, Werdelin L, Dalerum F, Schöneberg T, Hofreiter M. Ecological Specialisation and Evolutionary Reticulation in Extant Hyaenidae. Mol Biol Evol 2021; 38:3884-3897. [PMID: 34426844 PMCID: PMC8382907 DOI: 10.1093/molbev/msab055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During the Miocene, Hyaenidae was a highly diverse family of Carnivora that has since been severely reduced to four species: the bone-cracking spotted, striped, and brown hyenas, and the specialized insectivorous aardwolf. Previous studies investigated the evolutionary histories of the spotted and brown hyenas, but little is known about the remaining two species. Moreover, the genomic underpinnings of scavenging and insectivory, defining traits of the extant species, remain elusive. Here, we generated an aardwolf genome and analyzed it together with the remaining three species to reveal their evolutionary relationships, genomic underpinnings of their scavenging and insectivorous lifestyles, and their respective genetic diversities and demographic histories. High levels of phylogenetic discordance suggest gene flow between the aardwolf lineage and the ancestral brown/striped hyena lineage. Genes related to immunity and digestion in the bone-cracking hyenas and craniofacial development in the aardwolf showed the strongest signals of selection, suggesting putative key adaptations to carrion and termite feeding, respectively. A family-wide expansion in olfactory receptor genes suggests that an acute sense of smell was a key early adaptation. Finally, we report very low levels of genetic diversity within the brown and striped hyenas despite no signs of inbreeding, putatively linked to their similarly slow decline in effective population size over the last ∼2 million years. High levels of genetic diversity and more stable population sizes through time are seen in the spotted hyena and aardwolf. Taken together, our findings highlight how ecological specialization can impact the evolutionary history, demographics, and adaptive genetic changes of an evolutionary lineage.
Collapse
Affiliation(s)
- M V Westbury
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany.,Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Diana Le Duc
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, 04103, Germany.,Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - David A Duchêne
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark.,Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Arunkumar Krishnan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.,Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India
| | - Stefan Prost
- LOEWE-Center for Translational Biodiversity Genomics, Senckenberg, 60325, Germany. Frankfurt.,South African National Biodiversity Institute, National Zoological Garden, Pretoria, 0184, South Africa
| | - Sereina Rutschmann
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
| | - Jose H Grau
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany.,amedes Genetics, amedes Medizinische Dienstleistungen, Berlin, Germany
| | - Love Dalen
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, Stockholm, 10405, Sweden
| | - Alexandra Weyrich
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, 10315, Germany
| | - Karin Norén
- Department of Zoology, Stockholm University, Stockholm, 106 91, Sweden
| | - Lars Werdelin
- Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, Stockholm, SE-10405, Sweden
| | - Fredrik Dalerum
- Department of Zoology, Stockholm University, Stockholm, 106 91, Sweden.,Research Unit of Biodiversity (UO-CSIC-PA), Mieres Campus, University of Oviedo, Mieres, Asturias, 33600, Spain.,Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, South Africa
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Johannisallee 30, Leipzig, 04103, Germany
| | - Michael Hofreiter
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
| |
Collapse
|
11
|
Schulz T, Wittler R, Rahmann S, Hach F, Stoye J. Detecting High Scoring Local Alignments in Pangenome Graphs. Bioinformatics 2021; 37:2266-2274. [PMID: 33532821 PMCID: PMC8388040 DOI: 10.1093/bioinformatics/btab077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/02/2020] [Accepted: 01/29/2021] [Indexed: 11/23/2022] Open
Abstract
Motivation Increasing amounts of individual genomes sequenced per species motivate the usage of pangenomic approaches. Pangenomes may be represented as graphical structures, e.g. compacted colored de Bruijn graphs, which offer a low memory usage and facilitate reference-free sequence comparisons. While sequence-to-graph mapping to graphical pangenomes has been studied for some time, no local alignment search tool in the vein of BLAST has been proposed yet. Results We present a new heuristic method to find maximum scoring local alignments of a DNA query sequence to a pangenome represented as a compacted colored de Bruijn graph. Our approach additionally allows a comparison of similarity among sequences within the pangenome. We show that local alignment scores follow an exponential-tail distribution similar to BLAST scores, and we discuss how to estimate its parameters to separate local alignments representing sequence homology from spurious findings. An implementation of our method is presented, and its performance and usability are shown. Our approach scales sublinearly in running time and memory usage with respect to the number of genomes under consideration. This is an advantage over classical methods that do not make use of sequence similarity within the pangenome. Availability and implementation Source code and test data are available from https://gitlab.ub.uni-bielefeld.de/gi/plast. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tizian Schulz
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, 33615, Germany.,Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, Bielefeld, 33615, Germany.,Graduate School "Digital Infrastructure for the Life Sciences" (DILS), Bielefeld University, Bielefeld, 33615, Germany
| | - Roland Wittler
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, 33615, Germany.,Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, Bielefeld, 33615, Germany
| | - Sven Rahmann
- Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Faraz Hach
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Jens Stoye
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, 33615, Germany.,Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, Bielefeld, 33615, Germany
| |
Collapse
|
12
|
Carneiro CM, Noble JD, Pietras A, Moler P, Austin JD. Iso-seq analysis and functional annotation of the Santa Fe cave crayfish (Procambarus erythrops) transcriptome. Mar Genomics 2021; 58:100842. [PMID: 34217485 DOI: 10.1016/j.margen.2021.100842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 10/22/2022]
Abstract
The genus Procambarus represents a diverse genus of freshwater crayfish that includes epigean species, stygobitic species, and at least one parthenogenic species. Despite its evolutionary, ecological, and economic importance, most genomic and transcriptomic resources for this genus are limited to a couple of model species. We sequenced the transcriptome of a non-model species, P. erythrops, a geographically restricted stygobitic species from Florida. RNA isolated from gill, muscle and eye tissue was pooled to create a de novo transcriptome assembly using Single Molecule Real-Time sequencing (PacBio), resulting in 19,442 full-length isoforms. The assembly has been deposited in the NCBI (BioProject PRJNA657230). These data will make an important contribution to the comparative study of transcriptome evolution in crayfish and crustaceans.
Collapse
Affiliation(s)
- Celine M Carneiro
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, United States of America; School of Natural Resources and Environment, University of Florida, Gainesville, FL 32611, United States of America
| | - Jerald D Noble
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32611, United States of America
| | - Adele Pietras
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, United States of America
| | - Paul Moler
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Insituute, 1105 SW Williston Road, Gainesville FL32601, United States of America
| | - James D Austin
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, United States of America; School of Natural Resources and Environment, University of Florida, Gainesville, FL 32611, United States of America.
| |
Collapse
|
13
|
Dittami SM, Corre E, Brillet-Guéguen L, Lipinska AP, Pontoizeau N, Aite M, Avia K, Caron C, Cho CH, Collén J, Cormier A, Delage L, Doubleau S, Frioux C, Gobet A, González-Navarrete I, Groisillier A, Hervé C, Jollivet D, KleinJan H, Leblanc C, Liu X, Marie D, Markov GV, Minoche AE, Monsoor M, Pericard P, Perrineau MM, Peters AF, Siegel A, Siméon A, Trottier C, Yoon HS, Himmelbauer H, Boyen C, Tonon T. The genome of Ectocarpus subulatus - A highly stress-tolerant brown alga. Mar Genomics 2020; 52:100740. [PMID: 31937506 DOI: 10.1016/j.margen.2020.100740] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/01/2020] [Indexed: 11/20/2022]
Abstract
Brown algae are multicellular photosynthetic stramenopiles that colonize marine rocky shores worldwide. Ectocarpus sp. Ec32 has been established as a genomic model for brown algae. Here we present the genome and metabolic network of the closely related species, Ectocarpus subulatus Kützing, which is characterized by high abiotic stress tolerance. Since their separation, both strains show new traces of viral sequences and the activity of large retrotransposons, which may also be related to the expansion of a family of chlorophyll-binding proteins. Further features suspected to contribute to stress tolerance include an expanded family of heat shock proteins, the reduction of genes involved in the production of halogenated defence compounds, and the presence of fewer cell wall polysaccharide-modifying enzymes. Overall, E. subulatus has mainly lost members of gene families down-regulated in low salinities, and conserved those that were up-regulated in the same condition. However, 96% of genes that differed between the two examined Ectocarpus species, as well as all genes under positive selection, were found to encode proteins of unknown function. This underlines the uniqueness of brown algal stress tolerance mechanisms as well as the significance of establishing E. subulatus as a comparative model for future functional studies.
Collapse
Affiliation(s)
- Simon M Dittami
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France.
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Loraine Brillet-Guéguen
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Agnieszka P Lipinska
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Noé Pontoizeau
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Meziane Aite
- Univ Rennes, Inria, CNRS, IRISA, 35000 Rennes, France
| | - Komlan Avia
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Université de Strasbourg, INRA, SVQV UMR-A 1131, F-68000 Colmar, France
| | - Christophe Caron
- CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jonas Collén
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Alexandre Cormier
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Ludovic Delage
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Sylvie Doubleau
- IRD, UMR DIADE, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | | | - Angélique Gobet
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Irene González-Navarrete
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Agnès Groisillier
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Cécile Hervé
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Didier Jollivet
- Sorbonne Université, CNRS, Adaptation and Diversity in the Marine Environment (ADME), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Hetty KleinJan
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Xi Liu
- CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Dominique Marie
- Sorbonne Université, CNRS, Adaptation and Diversity in the Marine Environment (ADME), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - André E Minoche
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Misharl Monsoor
- CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Pierre Pericard
- CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Marie-Mathilde Perrineau
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Scottish Association for Marine Science, Scottish Marine Institute, Oban PA37 1QA, United Kingdom
| | | | - Anne Siegel
- Univ Rennes, Inria, CNRS, IRISA, 35000 Rennes, France
| | - Amandine Siméon
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Camille Trottier
- Univ Rennes, Inria, CNRS, IRISA, 35000 Rennes, France; Laboratory of Digital Sciences of Nantes (LS2N) - University of Nantes, France
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Heinz Himmelbauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190 Vienna, Austria
| | - Catherine Boyen
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Thierry Tonon
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
14
|
ProtPCV: A Fixed Dimensional Numerical Representation of Protein Sequence to Significantly Reduce Sequence Search Time. Interdiscip Sci 2020; 12:276-287. [PMID: 32524529 DOI: 10.1007/s12539-020-00380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/19/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
Protein sequence is a wealth of experimental information which is yet to be exploited to extract information on protein homologues. Consequently, it is observed from publications that dynamic programming, heuristics and HMM profile-based alignment techniques along with the alignment free techniques do not directly utilize ordered profile of physicochemical properties of a protein to identify its homologue. Also, it is found that these works lack crucial bench-marking or validation in absence of which their incorporation in search engines may appears to be questionable. In this direction this research approach offers fixed dimensional numerical representation of protein sequences extending the concept of periodicity count value of nucleotide types (2017) to accommodate Euclidean distance as direct similarity measure between two proteins. Instead of bench-marking with BLAST and PSI-BLAST only, this new similarity measure was also compared with Needleman-Wunsch and Smith-Waterman. For enhancing the strength of comparison, this work for the first time introduces two novel benchmarking methods based on correlation of "similarity scores" and "proximity of ranked outputs from a standard sequence alignment method" between all possible pairs of search techniques including the new one presented in this paper. It is found that the novel and unique numerical representation of a protein can reduce computational complexity of protein sequence search to the tune of O(log(n)). It may also help implementation of various other similarity-based operation possible, such as clustering, phylogenetic analysis and classification of proteins on the basis of the properties used to build this numerical representation of protein.
Collapse
|
15
|
Shirshikov FV, Pekov YA, Miroshnikov KA. MorphoCatcher: a multiple-alignment based web tool for target selection and designing taxon-specific primers in the loop-mediated isothermal amplification method. PeerJ 2019; 7:e6801. [PMID: 31086739 PMCID: PMC6487805 DOI: 10.7717/peerj.6801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/18/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Advantages of loop-mediated isothermal amplification in molecular diagnostics allow to consider the method as a promising technology of nucleic acid detection in agriculture and medicine. A bioinformatics tool that provides rapid screening and selection of target nucleotide sequences with subsequent taxon-specific primer design toward polymorphic orthologous genes, not only unique or conserved common regions of genome, would contribute to the development of more specific and sensitive diagnostic assays. However, considering features of the original software for primer selection, also known as the PrimerExplorer (Eiken Chemical Co. LTD, Tokyo, Japan), the taxon-specific primer design using multiple sequence alignments of orthologs or even viral genomes with conservative architecture is still complicated. FINDINGS Here, MorphoCatcher is introduced as a fast and simple web plugin for PrimerExplorer with a clear interface. It enables an execution of multiple-alignment based search of taxon-specific mutations, visual screening and selection of target sequences, and easy-to-start specific primer design using the PrimerExplorer software. The combination of MorphoCatcher and PrimerExplorer allows to perform processing of the multiple alignments of orthologs for informative sliding-window plot analysis, which is used to identify the sequence regions with a high density of taxon-specific mutations and cover them by the primer ends for better specificity of amplification. CONCLUSIONS We hope that this new bioinformatics tool developed for target selection and taxon-specific primer design, called the MorphoCatcher, will gain more popularity of the loop-mediated isothermal amplification method for molecular diagnostics community. MorphoCatcher is a simple web plugin tool for the PrimerExplorer software which is freely available only for non-commercial and academic users at http://morphocatcher.ru.
Collapse
Affiliation(s)
- Fedor V Shirshikov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Yuri A Pekov
- Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
16
|
Breitwieser FP, Pertea M, Zimin AV, Salzberg SL. Human contamination in bacterial genomes has created thousands of spurious proteins. Genome Res 2019; 29:954-960. [PMID: 31064768 PMCID: PMC6581058 DOI: 10.1101/gr.245373.118] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/03/2019] [Indexed: 01/22/2023]
Abstract
Contaminant sequences that appear in published genomes can cause numerous problems for downstream analyses, particularly for evolutionary studies and metagenomics projects. Our large-scale scan of complete and draft bacterial and archaeal genomes in the NCBI RefSeq database reveals that 2250 genomes are contaminated by human sequence. The contaminant sequences derive primarily from high-copy human repeat regions, which themselves are not adequately represented in the current human reference genome, GRCh38. The absence of the sequences from the human assembly offers a likely explanation for their presence in bacterial assemblies. In some cases, the contaminating contigs have been erroneously annotated as containing protein-coding sequences, which over time have propagated to create spurious protein “families” across multiple prokaryotic and eukaryotic genomes. As a result, 3437 spurious protein entries are currently present in the widely used nr and TrEMBL protein databases. We report here an extensive list of contaminant sequences in bacterial genome assemblies and the proteins associated with them. We found that nearly all contaminants occurred in small contigs in draft genomes, which suggests that filtering out small contigs from draft genome assemblies may mitigate the issue of contamination while still keeping nearly all of the genuine genomic sequences.
Collapse
Affiliation(s)
- Florian P Breitwieser
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Mihaela Pertea
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.,Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Aleksey V Zimin
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Steven L Salzberg
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.,Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
17
|
Pillonel T, Bertelli C, Aeby S, de Barsy M, Jacquier N, Kebbi-Beghdadi C, Mueller L, Vouga M, Greub G. Sequencing the Obligate Intracellular Rhabdochlamydia helvetica within Its Tick Host Ixodes ricinus to Investigate Their Symbiotic Relationship. Genome Biol Evol 2019; 11:1334-1344. [PMID: 30949677 PMCID: PMC6490308 DOI: 10.1093/gbe/evz072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
The Rhabdochlamydiaceae family is one of the most widely distributed within the phylum Chlamydiae, but most of its members remain uncultivable. Rhabdochlamydia 16S rRNA was recently reported in more than 2% of 8,534 pools of ticks from Switzerland. Shotgun metagenomics was performed on a pool of five female Ixodes ricinus ticks presenting a high concentration of chlamydial DNA, allowing the assembly of a high-quality draft genome. About 60% of sequence reads originated from a single bacterial population that was named "Candidatus Rhabdochlamydia helvetica" whereas only few thousand reads mapped to the genome of "Candidatus Midichloria mitochondrii," a symbiont normally observed in all I. ricinus females. The 1.8 Mbp genome of R. helvetica is smaller than other Chlamydia-related bacteria. Comparative analyses with other chlamydial genomes identified transposases of the PD-(D/E)XK nuclease family that are unique to this new genome. These transposases show evidence of interphylum horizontal gene transfers between multiple arthropod endosymbionts, including Cardinium spp. (Bacteroidetes) and diverse proteobacteria such as Wolbachia, Rickettsia spp. (Rickettsiales), and Caedimonas varicaedens (Holosporales). Bacterial symbionts were previously suggested to provide B-vitamins to hematophagous hosts. However, incomplete metabolic capacities including for B-vitamin biosynthesis, high bacterial density and limited prevalence suggest that R. helvetica is parasitic rather than symbiotic to its host. The identification of novel Rhabdochlamydia strains in different hosts and their sequencing will help understanding if members of this genus have become highly specialized parasites with reduced genomes, like the Chlamydiaceae, or if they could be pathogenic to humans using ticks as a transmission vector.
Collapse
Affiliation(s)
- Trestan Pillonel
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Claire Bertelli
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Sébastien Aeby
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Marie de Barsy
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Nicolas Jacquier
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Carole Kebbi-Beghdadi
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Linda Mueller
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Manon Vouga
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| |
Collapse
|
18
|
Gobet A, Barbeyron T, Matard-Mann M, Magdelenat G, Vallenet D, Duchaud E, Michel G. Evolutionary Evidence of Algal Polysaccharide Degradation Acquisition by Pseudoalteromonas carrageenovora 9 T to Adapt to Macroalgal Niches. Front Microbiol 2018; 9:2740. [PMID: 30524390 PMCID: PMC6262041 DOI: 10.3389/fmicb.2018.02740] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/26/2018] [Indexed: 01/16/2023] Open
Abstract
About half of seaweed biomass is composed of polysaccharides. Most of these complex polymers have a marked polyanionic character. For instance, the red algal cell wall is mainly composed of sulfated galactans, agars and carrageenans, while brown algae contain alginate and fucose-containing sulfated polysaccharides (FCSP) as cell wall polysaccharides. Some marine heterotrophic bacteria have developed abilities to grow on such macroalgal polysaccharides. This is the case of Pseudoalteromonas carrageenovora 9T (ATCC 43555T), a marine gammaproteobacterium isolated in 1955 and which was an early model organism for studying carrageenan catabolism. We present here the genomic analysis of P. carrageenovora. Its genome is composed of two chromosomes and of a large plasmid encompassing 109 protein-coding genes. P. carrageenovora possesses a diverse repertoire of carbohydrate-active enzymes (CAZymes), notably specific for the degradation of macroalgal polysaccharides (laminarin, alginate, FCSP, carrageenans). We confirm these predicted capacities by screening the growth of P. carrageenovora with a large collection of carbohydrates. Most of these CAZyme genes constitute clusters located either in the large chromosome or in the small one. Unexpectedly, all the carrageenan catabolism-related genes are found in the plasmid, suggesting that P. carrageenovora acquired its hallmark capacity for carrageenan degradation by horizontal gene transfer (HGT). Whereas P. carrageenovora is able to use lambda-carrageenan as a sole carbon source, genomic and physiological analyses demonstrate that its catabolic pathway for kappa- and iota-carrageenan is incomplete. This is due to the absence of the recently discovered 3,6-anhydro-D-galactosidase genes (GH127 and GH129 families). A genomic comparison with 52 Pseudoalteromonas strains confirms that carrageenan catabolism has been recently acquired only in a few species. Even though the loci for cellulose biosynthesis and alginate utilization are located on the chromosomes, they were also horizontally acquired. However, these HGTs occurred earlier in the evolution of the Pseudoalteromonas genus, the cellulose- and alginate-related loci being essentially present in one large, late-diverging clade (LDC). Altogether, the capacities to degrade cell wall polysaccharides from macroalgae are not ancestral in the Pseudoalteromonas genus. Such catabolism in P. carrageenovora resulted from a succession of HGTs, likely allowing an adaptation to the life on the macroalgal surface.
Collapse
Affiliation(s)
- Angélique Gobet
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Tristan Barbeyron
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Maria Matard-Mann
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France.,Amadéite SAS, "Pôle Biotechnologique" du Haut du Bois, Bréhan, France
| | - Ghislaine Magdelenat
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, Evry, France
| | - David Vallenet
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, Evry, France
| | - Eric Duchaud
- VIM, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Gurvan Michel
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| |
Collapse
|
19
|
Molecular and cellular characterization of apoptosis in flat oyster a key mechanisms at the heart of host-parasite interactions. Sci Rep 2018; 8:12494. [PMID: 30131502 PMCID: PMC6104086 DOI: 10.1038/s41598-018-29776-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/14/2018] [Indexed: 01/09/2023] Open
Abstract
Bonamia ostreae has been associated with the decline of flat oyster Ostrea edulis populations in some European countries. This obligatory intracellular parasite persists and multiplies into hemocytes. Previous in vitro experiments showed that apoptosis is activated in hemocytes between 1 h and 4 h of contact with the parasite. The flat oyster uses the apoptosis pathway to defend against B. ostreae. However, the parasite might be also able to modulate this response in order to survive in its host. In order to investigate this hypothesis the apoptotic response of the host was evaluated using flow cytometry, transmission electron microscopy and by measuring the response of genes involved in the apoptotic pathway after 4 h. In parallel, the parasite response was investigated by measuring the expression of B. ostreae genes involved in different biological functions including cell cycle and cell death. Obtained results allow describing molecular apoptotic pathways in O. edulis and confirm that apoptosis is early activated in hemocytes after a contact with B. ostreae. Interestingly, at cellular and molecular levels this process appeared downregulated after 44 h of contact. Concurrently, parasite gene expression appeared reduced suggesting that the parasite could inhibit its own metabolism to escape the immune response.
Collapse
|
20
|
Bennett DJ, Hettling H, Silvestro D, Zizka A, Bacon CD, Faurby S, Vos RA, Antonelli A. phylotaR: An Automated Pipeline for Retrieving Orthologous DNA Sequences from GenBank in R. Life (Basel) 2018; 8:life8020020. [PMID: 29874797 PMCID: PMC6027284 DOI: 10.3390/life8020020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/26/2018] [Accepted: 06/01/2018] [Indexed: 12/04/2022] Open
Abstract
The exceptional increase in molecular DNA sequence data in open repositories is mirrored by an ever-growing interest among evolutionary biologists to harvest and use those data for phylogenetic inference. Many quality issues, however, are known and the sheer amount and complexity of data available can pose considerable barriers to their usefulness. A key issue in this domain is the high frequency of sequence mislabeling encountered when searching for suitable sequences for phylogenetic analysis. These issues include, among others, the incorrect identification of sequenced species, non-standardized and ambiguous sequence annotation, and the inadvertent addition of paralogous sequences by users. Taken together, these issues likely add considerable noise, error or bias to phylogenetic inference, a risk that is likely to increase with the size of phylogenies or the molecular datasets used to generate them. Here we present a software package, phylotaR that bypasses the above issues by using instead an alignment search tool to identify orthologous sequences. Our package builds on the framework of its predecessor, PhyLoTa, by providing a modular pipeline for identifying overlapping sequence clusters using up-to-date GenBank data and providing new features, improvements and tools. We demonstrate and test our pipeline’s effectiveness by presenting trees generated from phylotaR clusters for two large taxonomic clades: Palms and primates. Given the versatility of this package, we hope that it will become a standard tool for any research aiming to use GenBank data for phylogenetic analysis.
Collapse
Affiliation(s)
- Dominic J Bennett
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden.
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden.
| | - Hannes Hettling
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands.
| | - Daniele Silvestro
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden.
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden.
| | - Alexander Zizka
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden.
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden.
| | - Christine D Bacon
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden.
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden.
| | - Søren Faurby
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden.
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden.
| | - Rutger A Vos
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands.
| | - Alexandre Antonelli
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden.
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden.
- Gothenburg Botanical Garden, Carl Skottsbergsgata 22A, SE-413 19 Gothenburg, Sweden.
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138 USA.
| |
Collapse
|
21
|
Warner JF, Guerlais V, Amiel AR, Johnston H, Nedoncelle K, Röttinger E. NvERTx: a gene expression database to compare embryogenesis and regeneration in the sea anemone Nematostella vectensis. Development 2018; 145:dev.162867. [PMID: 29739837 DOI: 10.1242/dev.162867] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/25/2018] [Indexed: 01/28/2023]
Abstract
For over a century, researchers have been comparing embryogenesis and regeneration hoping that lessons learned from embryonic development will unlock hidden regenerative potential. This problem has historically been a difficult one to investigate because the best regenerative model systems are poor embryonic models and vice versa. Recently, however, there has been renewed interest in this question, as emerging models have allowed researchers to investigate these processes in the same organism. This interest has been further fueled by the advent of high-throughput transcriptomic analyses that provide virtual mountains of data. Here, we present Nematostella vectensis Embryogenesis and Regeneration Transcriptomics (NvERTx), a platform for comparing gene expression during embryogenesis and regeneration. NvERTx consists of close to 50 transcriptomic data sets spanning embryogenesis and regeneration in Nematostella These data were used to perform a robust de novo transcriptome assembly, with which users can search, conduct BLAST analyses, and plot the expression of multiple genes during these two developmental processes. The site is also home to the results of gene clustering analyses, to further mine the data and identify groups of co-expressed genes. The site can be accessed at http://nvertx.kahikai.org.
Collapse
Affiliation(s)
- Jacob F Warner
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Vincent Guerlais
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Aldine R Amiel
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Hereroa Johnston
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Karine Nedoncelle
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| |
Collapse
|
22
|
Becker L, Fuchs S, Pfeifer Y, Semmler T, Eckmanns T, Korr G, Sissolak D, Friedrichs M, Zill E, Tung ML, Dohle C, Kaase M, Gatermann S, Rüssmann H, Steglich M, Haller S, Werner G. Whole Genome Sequence Analysis of CTX-M-15 Producing Klebsiella Isolates Allowed Dissecting a Polyclonal Outbreak Scenario. Front Microbiol 2018. [PMID: 29527200 PMCID: PMC5829066 DOI: 10.3389/fmicb.2018.00322] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Extended-spectrum β-lactamase (ESBL) producing Klebsiella pneumoniae pose an important threat of infection with increased morbidity and mortality, especially for immunocompromised patients. Here, we use the rise of multidrug-resistant K. pneumoniae in a German neurorehabilitation center from April 2015 to April 2016 to dissect the benefit of whole genome sequencing (WGS) for outbreak analyses. In total, 53 isolates were obtained from 52 patients and examined using WGS. Two independent analysis strategies (reference-based and -free) revealed the same distinct clusters of two CTX-M-15 producing K. pneumoniae clones (ST15, n = 31; ST405, n = 7) and one CTX-M-15 producing Klebsiella quasipneumoniae strain (ST414, n = 8). Additionally, we determined sequence variations associated with antimicrobial resistance phenotypes in single isolates expressing carbapenem and colistin resistance, respectively. For rapid detection of the major K. pneumoniae outbreak clone (ST15), a selective triplex PCR was deduced from WGS data of the major outbreak strain and K. pneumoniae genome data deposited in central databases. Moreover, we introduce two novel open-source applications supporting reference genome selection (refRank; https://gitlab.com/s.fuchs/refRank) and alignment-based SNP-filtering (SNPfilter; https://gitlab.com/s.fuchs/snpfilter) in NGS analyses.
Collapse
Affiliation(s)
- Laura Becker
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Stephan Fuchs
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Yvonne Pfeifer
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Tim Eckmanns
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Gerit Korr
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany.,Postgraduate Training for Applied Epidemiology, Robert Koch Institute, Affiliated to the European Programme for Intervention Epidemiology Training, European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Dagmar Sissolak
- Department of Infection Control, Medical Disaster Control and Environmental Health Control, Department of Public Health, Berlin, Germany
| | | | - Edith Zill
- Medical Care Centre Labor 28 GmbH, Berlin, Germany
| | | | | | - Martin Kaase
- National Reference Centre for Multidrug-Resistant Gram-Negative Bacteria, Department for Medical Microbiology, Ruhr-University Bochum, Berlin, Germany
| | - Sören Gatermann
- National Reference Centre for Multidrug-Resistant Gram-Negative Bacteria, Department for Medical Microbiology, Ruhr-University Bochum, Berlin, Germany
| | - Holger Rüssmann
- Immunology and Laboratory Medicine, Institute for Microbiology, HELIOS Klinikum Emil von Behring, Berlin, Germany
| | - Matthias Steglich
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Culture, Braunschweig, Germany
| | - Sebastian Haller
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Guido Werner
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
23
|
Pillonel T, Bertelli C, Greub G. Environmental Metagenomic Assemblies Reveal Seven New Highly Divergent Chlamydial Lineages and Hallmarks of a Conserved Intracellular Lifestyle. Front Microbiol 2018. [PMID: 29515524 PMCID: PMC5826181 DOI: 10.3389/fmicb.2018.00079] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Chlamydiae phylum exclusively encompasses bacteria sharing a similar obligate intracellular life cycle. Existing 16S rDNA data support a high diversity within the phylum, however genomic data remain scarce owing to the difficulty in isolating strains using culture systems with eukaryotic cells. Yet, Chlamydiae genome data extracted from large scale metagenomic studies might help fill this gap. This work compares 33 cultured and 27 environmental, uncultured chlamydial genomes, in order to clarify the phylogenetic relatedness of the new chlamydial clades and to investigate the genetic diversity of the Chlamydiae phylum. The analysis of published chlamydial genomes from metagenomics bins and single cell sequencing allowed the identification of seven new deeply branching chlamydial clades sharing genetic hallmarks of parasitic Chlamydiae. Comparative genomics suggests important biological differences between those clades, including loss of many proteins involved in cell division in the genus Similichlamydia, and loss of respiratory chain and tricarboxylic acid cycle in several species. Comparative analyses of chlamydial genomes with two proteobacterial orders, the Rhizobiales and the Rickettsiales showed that genomes of different Rhizobiales families are much more similar than genomes of different Rickettsiales families. On the other hand, the chlamydial 16S rRNAs exhibit a higher sequence conservation than their Rickettsiales counterparts, while chlamydial proteins exhibit increased sequence divergence. Studying the diversity and genome plasticity of the entire Chlamydiae phylum is of major interest to better understand the emergence and evolution of this ubiquitous and ancient clade of obligate intracellular bacteria.
Collapse
Affiliation(s)
- Trestan Pillonel
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Claire Bertelli
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
24
|
Dittami SM, Corre E. Detection of bacterial contaminants and hybrid sequences in the genome of the kelp Saccharina japonica using Taxoblast. PeerJ 2017; 5:e4073. [PMID: 29158994 PMCID: PMC5695246 DOI: 10.7717/peerj.4073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/30/2017] [Indexed: 12/03/2022] Open
Abstract
Modern genome sequencing strategies are highly sensitive to contamination making the detection of foreign DNA sequences an important part of analysis pipelines. Here we use Taxoblast, a simple pipeline with a graphical user interface, for the post-assembly detection of contaminating sequences in the published genome of the kelp Saccharina japonica. Analyses were based on multiple blastn searches with short sequence fragments. They revealed a number of probable bacterial contaminations as well as hybrid scaffolds that contain both bacterial and algal sequences. This or similar types of analysis, in combination with manual curation, may thus constitute a useful complement to standard bioinformatics analyses prior to submission of genomic data to public repositories. Our analysis pipeline is open-source and freely available at http://sdittami.altervista.org/taxoblast and via SourceForge (https://sourceforge.net/projects/taxoblast).
Collapse
Affiliation(s)
- Simon M Dittami
- UMR8227-Sorbonne Universités CNRS UPMC, Station Biologique de Roscoff, Roscoff, Brittany, France
| | - Erwan Corre
- FR2424-Sorbonne Universités CNRS UPMC, Station Biologique de Roscoff, Roscoff, Brittany, France
| |
Collapse
|
25
|
Yim WC, Cushman JC. Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments. PeerJ 2017; 5:e3486. [PMID: 28652936 PMCID: PMC5483034 DOI: 10.7717/peerj.3486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/31/2017] [Indexed: 12/02/2022] Open
Abstract
Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible and used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. This freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.
Collapse
Affiliation(s)
- Won Cheol Yim
- Department of Biochemistry and Molecular Biology, University of Nevada-Reno, Reno, NV, United States of America
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada-Reno, Reno, NV, United States of America
| |
Collapse
|
26
|
Klotz P, Göttig S, Leidner U, Semmler T, Scheufen S, Ewers C. Carbapenem-resistance and pathogenicity of bovine Acinetobacter indicus-like isolates. PLoS One 2017; 12:e0171986. [PMID: 28207789 PMCID: PMC5313175 DOI: 10.1371/journal.pone.0171986] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/30/2017] [Indexed: 02/04/2023] Open
Abstract
The objective of this study was to characterize blaOXA-23 harbouring Acinetobacter indicus-like strains from cattle including genomic and phylogenetic analyses, antimicrobial susceptibility testing and evaluation of pathogenicity in vitro and in vivo. Nasal and rectal swabs (n = 45) from cattle in Germany were screened for carbapenem-non-susceptible Acinetobacter spp. Thereby, two carbapenem resistant Acinetobacter spp. from the nasal cavities of two calves could be isolated. MALDI-TOF mass spectrometry and 16S rDNA sequencing identified these isolates as A. indicus-like. A phylogenetic tree based on partial rpoB sequences indicated closest relation of the two bovine isolates to the A. indicus type strain A648T and human clinical A. indicus isolates, while whole genome comparison revealed considerable intraspecies diversity. High mimimum inhibitory concentrations were observed for carbapenems and other antibiotics including fluoroquinolones and gentamicin. Whole genome sequencing and PCR mapping revealed that both isolates harboured blaOXA-23 localized on the chromosome and surrounded by interrupted Tn2008 transposon structures. Since the pathogenic potential of A. indicus is unknown, pathogenicity was assessed employing the Galleria (G.) mellonella infection model and an in vitro cytotoxicity assay using A549 human lung epithelial cells. Pathogenicity in vivo (G. mellonella killing assay) and in vitro (cytotoxicity assay) of the two A. indicus-like isolates was lower compared to A. baumannii ATCC 17978 and similar to A. lwoffii ATCC 15309. The reduced pathogenicity of A. indicus compared to A. baumannii correlated with the absence of important virulence genes encoding like phospholipase C1+C2, acinetobactin outer membrane protein BauA, RND-type efflux system proteins AdeRS and AdeAB or the trimeric autotransporter adhesin Ata. The emergence of carbapenem-resistant A. indicus-like strains from cattle carrying blaOXA-23 on transposable elements and revealing genetic relatedness to isolates from human clinical sources requires further investigations regarding the pathogenic potential, genomic characteristics, zoonotic risk and putative additional sources of this new Acinetobacter species.
Collapse
Affiliation(s)
- Peter Klotz
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Giessen, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, Hospital of the Johann Wolfgang von Goethe-University, Frankfurt am Main, Germany
| | - Ursula Leidner
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Giessen, Germany
| | | | - Sandra Scheufen
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
27
|
Noé L. Best hits of 11110110111: model-free selection and parameter-free sensitivity calculation of spaced seeds. Algorithms Mol Biol 2017; 12:1. [PMID: 28289437 PMCID: PMC5310094 DOI: 10.1186/s13015-017-0092-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/30/2017] [Indexed: 12/02/2022] Open
Abstract
Background Spaced seeds, also named gapped q-grams, gapped k-mers, spaced q-grams, have been proven to be more sensitive than contiguous seeds (contiguous q-grams, contiguous k-mers) in nucleic and amino-acid sequences analysis. Initially proposed to detect sequence similarities and to anchor sequence alignments, spaced seeds have more recently been applied in several alignment-free related methods. Unfortunately, spaced seeds need to be initially designed. This task is known to be time-consuming due to the number of spaced seed candidates. Moreover, it can be altered by a set of arbitrary chosen parameters from the probabilistic alignment models used. In this general context, Dominant seeds have been introduced by Mak and Benson (Bioinformatics 25:302–308, 2009) on the Bernoulli model, in order to reduce the number of spaced seed candidates that are further processed in a parameter-free calculation of the sensitivity. Results We expand the scope of work of Mak and Benson on single and multiple seeds by considering the Hit Integration model of Chung and Park (BMC Bioinform 11:31, 2010), demonstrate that the same dominance definition can be applied, and that a parameter-free study can be performed without any significant additional cost. We also consider two new discrete models, namely the Heaviside and the Dirac models, where lossless seeds can be integrated. From a theoretical standpoint, we establish a generic framework on all the proposed models, by applying a counting semi-ring to quickly compute large polynomial coefficients needed by the dominance filter. From a practical standpoint, we confirm that dominant seeds reduce the set of, either single seeds to thoroughly analyse, or multiple seeds to store. Moreover, in http://bioinfo.cristal.univ-lille.fr/yass/iedera_dominance, we provide a full list of spaced seeds computed on the four aforementioned models, with one (continuous) parameter left free for each model, and with several (discrete) alignment lengths.
Collapse
|
28
|
Le Gac M, Metegnier G, Chomérat N, Malestroit P, Quéré J, Bouchez O, Siano R, Destombe C, Guillou L, Chapelle A. Evolutionary processes and cellular functions underlying divergence in Alexandrium minutum. Mol Ecol 2016; 25:5129-5143. [DOI: 10.1111/mec.13815] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 01/07/2023]
Affiliation(s)
| | - Gabriel Metegnier
- Ifremer; DYNECO PELAGOS; 29280 Plouzané France
- CNRS, PUCCh, UACH, UMI 3614; Evolutionary Biology and Ecology of Algae; Station Biologique de Roscoff; Université Pierre et Marie Curie - Paris 6; Sorbonne Universités; Place Georges Teissier, CS90074 29688 Roscoff Cedex France
| | | | | | | | - Olivier Bouchez
- GeT PlaGe; Genotoul; INRA Auzeville; Castanet Tolosan France
| | | | - Christophe Destombe
- CNRS, PUCCh, UACH, UMI 3614; Evolutionary Biology and Ecology of Algae; Station Biologique de Roscoff; Université Pierre et Marie Curie - Paris 6; Sorbonne Universités; Place Georges Teissier, CS90074 29688 Roscoff Cedex France
| | - Laure Guillou
- CNRS, UMR 7144; Station Biologique de Roscoff; Université Pierre et Marie Curie - Paris 6; Sorbonne Universités; Place Georges Teissier CS90074 29688 Roscoff Cedex France
| | | |
Collapse
|
29
|
Emami-Khoyi A, Hartley DA, Paterson AM, Boren LJ, Cruickshank RH, Ross JG, Murphy EC, Else TA. Identifying prey items from New Zealand fur seal (Arctocephalus forsteri) faeces using massive parallel sequencing. CONSERV GENET RESOUR 2016. [DOI: 10.1007/s12686-016-0560-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Ambroset C, Coluzzi C, Guédon G, Devignes MD, Loux V, Lacroix T, Payot S, Leblond-Bourget N. New Insights into the Classification and Integration Specificity of Streptococcus Integrative Conjugative Elements through Extensive Genome Exploration. Front Microbiol 2016; 6:1483. [PMID: 26779141 PMCID: PMC4701971 DOI: 10.3389/fmicb.2015.01483] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/08/2015] [Indexed: 12/30/2022] Open
Abstract
Recent genome analyses suggest that integrative and conjugative elements (ICEs) are widespread in bacterial genomes and therefore play an essential role in horizontal transfer. However, only a few of these elements are precisely characterized and correctly delineated within sequenced bacterial genomes. Even though previous analysis showed the presence of ICEs in some species of Streptococci, the global prevalence and diversity of ICEs was not analyzed in this genus. In this study, we searched for ICEs in the completely sequenced genomes of 124 strains belonging to 27 streptococcal species. These exhaustive analyses revealed 105 putative ICEs and 26 slightly decayed elements whose limits were assessed and whose insertion site was identified. These ICEs were grouped in seven distinct unrelated or distantly related families, according to their conjugation modules. Integration of these streptococcal ICEs is catalyzed either by a site-specific tyrosine integrase, a low-specificity tyrosine integrase, a site-specific single serine integrase, a triplet of site-specific serine integrases or a DDE transposase. Analysis of their integration site led to the detection of 18 target-genes for streptococcal ICE insertion including eight that had not been identified previously (ftsK, guaA, lysS, mutT, rpmG, rpsI, traG, and ebfC). It also suggests that all specificities have evolved to minimize the impact of the insertion on the host. This overall analysis of streptococcal ICEs emphasizes their prevalence and diversity and demonstrates that exchanges or acquisitions of conjugation and recombination modules are frequent.
Collapse
Affiliation(s)
- Chloé Ambroset
- DynAMic, Faculté des Sciences et Technologies, Université de Lorraine, UMR 1128Vandœuvre-lès-Nancy, France; DynAMic, Institut National de la Recherche Agronomique, UMR 1128Vandœuvre-lès-Nancy, France
| | - Charles Coluzzi
- DynAMic, Faculté des Sciences et Technologies, Université de Lorraine, UMR 1128Vandœuvre-lès-Nancy, France; DynAMic, Institut National de la Recherche Agronomique, UMR 1128Vandœuvre-lès-Nancy, France
| | - Gérard Guédon
- DynAMic, Faculté des Sciences et Technologies, Université de Lorraine, UMR 1128Vandœuvre-lès-Nancy, France; DynAMic, Institut National de la Recherche Agronomique, UMR 1128Vandœuvre-lès-Nancy, France
| | - Marie-Dominique Devignes
- Laboratoire Lorrain de Recherche en Informatique et ses Applications, Faculté des Sciences et Technologies, Université de Lorraine, UMR 7503Vandœuvre-lès-Nancy, France; CNRS, Laboratoire Lorrain de Recherche en Informatique et ses Applications, UMR 7503Vandśuvre-lès-Nancy, France
| | - Valentin Loux
- UR 1404 Mathématiques et Informatique Appliquées du Génome à l'Environnement, Institut National de la Recherche Agronomique Jouy-en-Josas, France
| | - Thomas Lacroix
- UR 1404 Mathématiques et Informatique Appliquées du Génome à l'Environnement, Institut National de la Recherche Agronomique Jouy-en-Josas, France
| | - Sophie Payot
- DynAMic, Faculté des Sciences et Technologies, Université de Lorraine, UMR 1128Vandœuvre-lès-Nancy, France; DynAMic, Institut National de la Recherche Agronomique, UMR 1128Vandœuvre-lès-Nancy, France
| | - Nathalie Leblond-Bourget
- DynAMic, Faculté des Sciences et Technologies, Université de Lorraine, UMR 1128Vandœuvre-lès-Nancy, France; DynAMic, Institut National de la Recherche Agronomique, UMR 1128Vandœuvre-lès-Nancy, France
| |
Collapse
|
31
|
Pible O, Armengaud J. Improving the quality of genome, protein sequence, and taxonomy databases: A prerequisite for microbiome meta-omics 2.0. Proteomics 2015; 15:3418-23. [DOI: 10.1002/pmic.201500104] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/17/2015] [Accepted: 05/30/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Olivier Pible
- CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D; Laboratory “Innovative technologies for Detection and Diagnostics”; Bagnols-sur-Cèze France
| | - Jean Armengaud
- CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D; Laboratory “Innovative technologies for Detection and Diagnostics”; Bagnols-sur-Cèze France
| |
Collapse
|
32
|
Sequencing of the mitochondrial genome of the avocado lace bug Pseudacysta perseae (Heteroptera, Tingidae) using a genome skimming approach. C R Biol 2015; 338:149-60. [PMID: 25636225 DOI: 10.1016/j.crvi.2014.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 11/23/2022]
Abstract
Lace bugs (Tingidae) are a family of phytophagous heteropterans, some of which are important agricultural and forestry pests. They currently comprise around 2500 species distributed worldwide, for which only one mitochondrial genome has been described so far. We sequenced the complete mitochondrial genome and the nuclear ribosomal gene segment of the avocado lace bug Pseudacysta perseae using a genome skimming approach on an Illumina Hiseq 2000 platform. Fifty-four additional heteropteran mitogenomes, including the one of the sycamore lace bug Corythucha ciliata, were retrieved to allow for comparisons and phylogenetic analyses. P. perseae mitochondrial genome was determined to be 15,850 bp long, and presented the typical organisation of insect mitogenomes. The phylogenetic analysis placed P. perseae as a sister to C. ciliata but did not confirm the monophyly of Miroidae including Tingidae. Our results contradicted widely accepted phylogenetic hypothesis, which highlights the limits of analyses based on mitochondrial data only. Shotgun sequencing approaches should provide substantial improvements in harmonizing mitochondrial and nuclear databases.
Collapse
|
33
|
Shotgun assembly of the assassin bug Brontostoma colossus mitochondrial genome (Heteroptera, Reduviidae). Gene 2014; 552:184-94. [PMID: 25240790 DOI: 10.1016/j.gene.2014.09.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/27/2014] [Accepted: 09/15/2014] [Indexed: 12/26/2022]
Abstract
The complete mitochondrial genome of the assassin bug Brontostoma colossus (Distant, 1902) (Heteroptera: Reduviidae) has been sequenced using a genome-skimming approach on an Illumina Hiseq 2000 platform. Fifty-four additional heteropteran mitogenomes, including five assassin bug species, were retrieved to allow for comparisons and phylogenetic analyses. The mitochondrial genome of B. colossus was determined to be 16,625 bp long, and consists of 13 protein-coding genes (PCGs), 23 transfer-RNA genes (tRNAs), two ribosomal-RNA genes (rRNAs), and one control region. The nucleotide composition is biased toward adenine and thymine (A+T=73.4%). Overall, architecture, nucleotide composition and genome asymmetry are similar among all available assassin bug mitogenomes. All PCGs have usual start-codons (Met and Ile). Three T and two TA incomplete termination codons were identified adjacent to tRNAs, which was consistent with the punctuation model for primary transcripts processing followed by 3' polyadenylation of mature mRNA. All tRNAs exhibit the classic clover-leaf secondary structure except for tRNASer(AGN) in which the DHU arm forms a simple loop. Two notable features are present in the B. colossus mitogenome: (i) a 131 bp duplicated unit including the complete tRNAArg gene, resulting in 23 potentially functional tRNAs in total, and (ii) a 857 bp duplicated region comprising 277 bp of the srRNA gene and 580 bp of the control region. A phylogenetic analysis based on 55 true bug mitogenomes confirmed that B. colossus belongs to Reduviidae, but contradicted a widely accepted hypothesis. This highlights the limits of phylogenetic analyses based on mitochondrial data only.
Collapse
|
34
|
Abstract
MOTIVATION Since 1990, the basic local alignment search tool (BLAST) has become one of the most popular and fundamental bioinformatics tools for sequence similarity searching, receiving extensive attention from the research community. The two pioneering papers on BLAST have received over 96 000 citations. Given the huge population of BLAST users and the increasing size of sequence databases, an urgent topic of study is how to improve the speed. Recently, graphics processing units (GPUs) have been widely used as low-cost, high-performance computing platforms. The existing GPU-BLAST is a promising software tool that uses a GPU to accelerate protein sequence alignment. Unfortunately, there is still no GPU-accelerated software tool for BLAST-based nucleotide sequence alignment. RESULTS We developed G-BLASTN, a GPU-accelerated nucleotide alignment tool based on the widely used NCBI-BLAST. G-BLASTN can produce exactly the same results as NCBI-BLAST, and it has very similar user commands. Compared with the sequential NCBI-BLAST, G-BLASTN can achieve an overall speedup of 14.80X under 'megablast' mode. More impressively, it achieves an overall speedup of 7.15X over the multithreaded NCBI-BLAST running on 4 CPU cores. When running under 'blastn' mode, the overall speedups are 4.32X (against 1-core) and 1.56X (against 4-core). G-BLASTN also supports a pipeline mode that further improves the overall performance by up to 44% when handling a batch of queries as a whole. Currently G-BLASTN is best optimized for databases with long sequences. We plan to optimize its performance on short database sequences in our future work. AVAILABILITY http://www.comp.hkbu.edu.hk/∼chxw/software/G-BLASTN.html CONTACT chxw@comp.hkbu.edu.hk SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kaiyong Zhao
- Department of Computer Science, Hong Kong Baptist University, Hong Kong, China and Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, China
| | | |
Collapse
|
35
|
Besnard G, Christin PA, Malé PJG, Coissac E, Ralimanana H, Vorontsova MS. Phylogenomics and taxonomy of Lecomtelleae (Poaceae), an isolated panicoid lineage from Madagascar. ANNALS OF BOTANY 2013; 112:1057-66. [PMID: 23985988 PMCID: PMC3783238 DOI: 10.1093/aob/mct174] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/17/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS An accurate characterization of biodiversity requires analyses of DNA sequences in addition to classical morphological descriptions. New methods based on high-throughput sequencing may allow investigation of specimens with a large set of genetic markers to infer their evolutionary history. In the grass family, the phylogenetic position of the monotypic genus Lecomtella, a rare bamboo-like endemic from Madagascar, has never been appropriately evaluated. Until now its taxonomic treatment has remained controversial, indicating the need for re-evaluation based on a combination of molecular and morphological data. METHODS The phylogenetic position of Lecomtella in Poaceae was evaluated based on sequences from the nuclear and plastid genomes generated by next-generation sequencing (NGS). In addition, a detailed morphological description of L. madagascariensis was produced, and its distribution and habit were investigated in order to assess its conservation status. KEY RESULTS The complete plastid sequence, a ribosomal DNA unit and fragments of low-copy nuclear genes (phyB and ppc) were obtained. All phylogenetic analyses place Lecomtella as an isolated member of the core panicoids, which last shared a common ancestor with other species >20 million years ago. Although Lecomtella exhibits morphological characters typical of Panicoideae, an unusual combination of traits supports its treatment as a separate group. CONCLUSIONS The study showed that NGS can be used to generate abundant phylogenetic information rapidly, opening new avenues for grass phylogenetics. These data clearly showed that Lecomtella forms an isolated lineage, which, in combination with its morphological peculiarities, justifies its treatment as a separate tribe: Lecomtelleae. New descriptions of the tribe, genus and species are presented with a typification, a distribution map and an IUCN conservation assessment.
Collapse
Affiliation(s)
- Guillaume Besnard
- Université de Toulouse, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, 31062 Toulouse, France
- CNRS, Université Paul Sabatier, UMR5174 EDB, 31062 Toulouse, France
| | | | - Pierre-Jean G. Malé
- Université de Toulouse, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, 31062 Toulouse, France
- CNRS, Université Paul Sabatier, UMR5174 EDB, 31062 Toulouse, France
| | - Eric Coissac
- Laboratoire d'écologie Alpine (LECA), UMR5553, CNRS/Université Joseph Fourier – Grenoble I, Université de Savoie, 38041 Grenoble, France
| | - Hélène Ralimanana
- Kew Madagascar Conservation Centre, II J 131 B, Ambodivoanjo Ivandry, 101 Antananarivo, Madagascar
| | | |
Collapse
|
36
|
Linard B, Thompson JD, Poch O, Lecompte O. OrthoInspector: comprehensive orthology analysis and visual exploration. BMC Bioinformatics 2011; 12:11. [PMID: 21219603 PMCID: PMC3024942 DOI: 10.1186/1471-2105-12-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 01/10/2011] [Indexed: 01/28/2023] Open
Abstract
Background The accurate determination of orthology and inparalogy relationships is essential for comparative sequence analysis, functional gene annotation and evolutionary studies. Various methods have been developed based on either simple blast all-versus-all pairwise comparisons and/or time-consuming phylogenetic tree analyses. Results We have developed OrthoInspector, a new software system incorporating an original algorithm for the rapid detection of orthology and inparalogy relations between different species. In comparisons with existing methods, OrthoInspector improves detection sensitivity, with a minimal loss of specificity. In addition, several visualization tools have been developed to facilitate in-depth studies based on these predictions. The software has been used to study the orthology/in-paralogy relationships for a large set of 940,855 protein sequences from 59 different eukaryotic species. Conclusion OrthoInspector is a new software system for orthology/paralogy analysis. It is made available as an independent software suite that can be downloaded and installed for local use. Command line querying facilitates the integration of the software in high throughput processing pipelines and a graphical interface provides easy, intuitive access to results for the non-expert.
Collapse
Affiliation(s)
- Benjamin Linard
- Laboratoire de bioinformatique et genomique integratives, Département de Biologie et Génomique Structurales CNRS/INSERM/UDS, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch, Cedex, France.
| | | | | | | |
Collapse
|
37
|
Vouzis PD, Sahinidis NV. GPU-BLAST: using graphics processors to accelerate protein sequence alignment. Bioinformatics 2010; 27:182-8. [PMID: 21088027 PMCID: PMC3018811 DOI: 10.1093/bioinformatics/btq644] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Motivation: The Basic Local Alignment Search Tool (BLAST) is one of the most widely used bioinformatics tools. The widespread impact of BLAST is reflected in over 53 000 citations that this software has received in the past two decades, and the use of the word ‘blast’ as a verb referring to biological sequence comparison. Any improvement in the execution speed of BLAST would be of great importance in the practice of bioinformatics, and facilitate coping with ever increasing sizes of biomolecular databases. Results: Using a general-purpose graphics processing unit (GPU), we have developed GPU-BLAST, an accelerated version of the popular NCBI-BLAST. The implementation is based on the source code of NCBI-BLAST, thus maintaining the same input and output interface while producing identical results. In comparison to the sequential NCBI-BLAST, the speedups achieved by GPU-BLAST range mostly between 3 and 4. Availability: The source code of GPU-BLAST is freely available at http://archimedes.cheme.cmu.edu/biosoftware.html. Contact:sahinidis@cmu.edu Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Panagiotis D Vouzis
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | |
Collapse
|