1
|
Abdelkader Y, Perez-Davalos L, LeDuc R, Zahedi RP, Labouta HI. Omics approaches for the assessment of biological responses to nanoparticles. Adv Drug Deliv Rev 2023; 200:114992. [PMID: 37414362 DOI: 10.1016/j.addr.2023.114992] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Nanotechnology has enabled the development of innovative therapeutics, diagnostics, and drug delivery systems. Nanoparticles (NPs) can influence gene expression, protein synthesis, cell cycle, metabolism, and other subcellular processes. While conventional methods have limitations in characterizing responses to NPs, omics approaches can analyze complete sets of molecular entities that change upon exposure to NPs. This review discusses key omics approaches, namely transcriptomics, proteomics, metabolomics, lipidomics and multi-omics, applied to the assessment of biological responses to NPs. Fundamental concepts and analytical methods used for each approach are presented, as well as good practices for omics experiments. Bioinformatics tools are essential to analyze, interpret and visualize large omics data, and to correlate observations in different molecular layers. The authors envision that conducting interdisciplinary multi-omics analyses in future nanomedicine studies will reveal integrated cell responses to NPs at different omics levels, and the incorporation of omics into the evaluation of targeted delivery, efficacy, and safety will improve the development of nanomedicine therapies.
Collapse
Affiliation(s)
- Yasmin Abdelkader
- Unity Health Toronto - St. Michael's Hospital, University of Toronto, 209 Victoria St., Toronto, Ontario M5B 1T8, Canada; College of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Av. W, Winnipeg, Manitoba R3E 0T5, Canada; Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 33 El Buhouth St., Cairo 12622, Egypt
| | - Luis Perez-Davalos
- Unity Health Toronto - St. Michael's Hospital, University of Toronto, 209 Victoria St., Toronto, Ontario M5B 1T8, Canada; College of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Av. W, Winnipeg, Manitoba R3E 0T5, Canada
| | - Richard LeDuc
- Children's Hospital Research Institute of Manitoba, 513 - 715 McDermot Av. W, Winnipeg, Manitoba R3E 3P4, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Av., Winnipeg, Manitoba R3E 0J9, Canada
| | - Rene P Zahedi
- Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Av., Winnipeg, Manitoba R3E 0J9, Canada; Department of Internal Medicine, 715 McDermot Av., Winnipeg, Manitoba R3E 3P4, Canada; Manitoba Centre for Proteomics and Systems Biology, 799 JBRC, 715 McDermot Av., Winnipeg, Manitoba R3E 3P4, Canada; CancerCare Manitoba Research Institute, 675 McDermot Av., Manitoba R3E 0V9, Canada
| | - Hagar I Labouta
- Unity Health Toronto - St. Michael's Hospital, University of Toronto, 209 Victoria St., Toronto, Ontario M5B 1T8, Canada; College of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Av. W, Winnipeg, Manitoba R3E 0T5, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada; Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Alexandria, Egypt, 21521.
| |
Collapse
|
2
|
Karagianni AE, Lisowski ZM, Hume DA, Scott Pirie R. The equine mononuclear phagocyte system: The relevance of the horse as a model for understanding human innate immunity. Equine Vet J 2020; 53:231-249. [PMID: 32881079 DOI: 10.1111/evj.13341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/07/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
The mononuclear phagocyte system (MPS) is a family of cells of related function that includes bone marrow progenitors, blood monocytes and resident tissue macrophages. Macrophages are effector cells in both innate and acquired immunity. They are a major resident cell population in every organ and their numbers increase in response to proinflammatory stimuli. Their function is highly regulated by a wide range of agonists, including lymphokines, cytokines and products of microorganisms. Macrophage biology has been studied most extensively in mice, yet direct comparisons of rodent and human macrophages have revealed many functional differences. In this review, we provide an overview of the equine MPS, describing the variation in the function and phenotype of macrophages depending on their location and the similarities and differences between the rodent, human and equine immune response. We discuss the use of the horse as a large animal model in which to study macrophage biology and pathological processes shared with humans. Finally, following the recent update to the horse genome, facilitating further comparative analysis of regulated gene expression between the species, we highlight the importance of future transcriptomic macrophage studies in the horse, the findings of which may also be applicable to human as well as veterinary research.
Collapse
Affiliation(s)
- Anna E Karagianni
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Zofia M Lisowski
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - David A Hume
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, QLD, Australia
| | - R Scott Pirie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
3
|
Suliman Y, Becker F, Wimmers K. Implication of transcriptome profiling of spermatozoa for stallion fertility. Reprod Fertil Dev 2019. [PMID: 29534788 DOI: 10.1071/rd17188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Poor fertility of breeding stallions is a recognised problem in the equine industry. The aim of the present study was to detect molecular pathways using two groups of stallions that differed in pregnancy rates as well as in the proportion of normal and motile spermatozoa. RNA was isolated from spermatozoa of each stallion and microarray data were analysed to obtain a list of genes for which transcript abundance differed between the groups (P ≤0.05, fold change ≥1.2). In all, there were 437 differentially expressed (DE) genes between the two groups (P ≤ 0.05, fold change ≥1.2). Next, the DE genes were analysed using Database for Annotation, Visualisation, and Integrated Discovery (DAVID). Finally, ingenuity pathways analysis (IPA) was used to identify top biological functions and significant canonical pathways associated with the DE genes. Analysis using the DAVID database showed significant enrichment in the gene ontology (GO) term 'RNA binding' (P=0.05) and in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway cytokine-cytokine receptor interaction (P=0.02). Furthermore, IPA analysis showed interconnected biological functions and canonical pathways involved in the regulation of spermatogenesis and male fertility. In addition, significantly enriched metabolic pathways were identified. In conclusion, the present study has identified, for the first time, molecular processes in stallion spermatozoa that could be associated with stallion fertility.
Collapse
Affiliation(s)
- Yara Suliman
- Institute for Reproductive Biology, Leibniz Institute for Farm Animal Biology Dummerstorf, D-18196 Dummerstorf, Wilhem-Stahl-Allee 2, Germany
| | - Frank Becker
- Institute for Reproductive Biology, Leibniz Institute for Farm Animal Biology Dummerstorf, D-18196 Dummerstorf, Wilhem-Stahl-Allee 2, Germany
| | - Klaus Wimmers
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology Dummerstorf, D-18196 Dummerstorf, Wilhelm-Stahl-Allee 2, Germany
| |
Collapse
|
4
|
Bright LA, Dittmar W, Nanduri B, McCarthy FM, Mujahid N, Costa LR, Burgess SC, Swiderski CE. Modeling the pasture-associated severe equine asthma bronchoalveolar lavage fluid proteome identifies molecular events mediating neutrophilic airway inflammation. VETERINARY MEDICINE-RESEARCH AND REPORTS 2019; 10:43-63. [PMID: 31119093 PMCID: PMC6504673 DOI: 10.2147/vmrr.s194427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022]
Abstract
Background: Pasture-associated severe equine asthma is a warm season, environmentally-induced respiratory disease characterized by reversible airway obstruction, persistent and non-specific airway hyper-responsiveness, and chronic neutrophilic airway inflammation. During seasonal exacerbation, signs vary from mild to life-threatening episodes of wheezing, coughing, and chronic debilitating labored breathing. Purpose: In human asthma, neutrophilic airway inflammation is associated with more severe and steroid-refractory asthma phenotypes, highlighting a need to decipher the mechanistic basis of this disease characteristic. We hypothesize that the collective biological activities of proteins in bronchoalveolar lavage fluid (BALF) of horses with pasture-associated severe asthma predict changes in neutrophil functions that contribute to airway neutrophilic inflammation. Methods: Using shotgun proteomics, we identified 1,003 unique proteins in cell-free BALF from six horses experiencing asthma exacerbation and six control herdmates. Contributions of each protein to ten neutrophil functions were modeled using manual biocuration to determine each protein’s net effect on the respective neutrophil functions. Results: A total of 417 proteins were unique to asthmatic horses, 472 proteins were unique to control horses (p<0.05), and 114 proteins were common in both groups. Proteins whose biological activities are responsible for increasing neutrophil migration, chemotaxis, cell spreading, transmigration, and infiltration, which would collectively bring neutrophils to airways, were over-represented in the BALF of asthmatic relative to control horses. By contrast, proteins whose biological activities support neutrophil activation, adhesion, phagocytosis, respiratory burst, and apoptosis, which would collectively shorten neutrophil lifespan, were under-represented in BALF of asthmatic relative to control horses. Interaction networks generated using Ingenuity® Pathways Analysis further support the results of our biocuration. Conclusion: Congruent with our hypothesis, the collective biological functions represented in differentially expressed proteins of BALF from horses with pasture-associated severe asthma support neutrophilic airway inflammation. This illustrates the utility of systems modeling to organize functional genomics data in a manner that characterizes complex molecular events associated with clinically relevant disease.
Collapse
Affiliation(s)
- Lauren A Bright
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Wellesley Dittmar
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Fiona M McCarthy
- School of Animal Comparative and Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Nisma Mujahid
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Lais Rr Costa
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Shane C Burgess
- School of Animal Comparative and Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Cyprianna E Swiderski
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
5
|
|
6
|
Kachroo P, Ivanov I, Seabury AG, Liu M, Chowdhary BP, Cohen ND. Age-related changes following in vitro stimulation with Rhodococcus equi of peripheral blood leukocytes from neonatal foals. PLoS One 2013; 8:e62879. [PMID: 23690962 PMCID: PMC3656898 DOI: 10.1371/journal.pone.0062879] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/25/2013] [Indexed: 01/10/2023] Open
Abstract
Rhodococcus equi is an intracellular bacterium primarily known as an equine pathogen that infects young foals causing a pyogranulomatuous pneumonia. The molecular mechanisms mediating the immune response of foals to R. equi are not fully elucidated. Hence, global genomic high-throughput tools like gene expression microarrays might identify age-related gene expression signatures and molecular pathways that contribute to the immune mechanisms underlying the inherent susceptibility of foals to disease caused by R. equi. The objectives of this study were 2-fold: 1) to compare the expression profiles at specific ages of blood leukocytes from foals stimulated with virulent R. equi with those of unstimulated leukocytes; and, 2) to characterize the age-related changes in the gene expression profile associated with blood leukocytes in response to stimulation with virulent R. equi. Peripheral blood leukocytes were obtained from 6 foals within 24 hours (h) of birth (day 1) and 2, 4, and 8 weeks after birth. The samples were split, such that half were stimulated with live virulent R. equi, and the other half served as unstimulated control. RNA was extracted and the generated cDNA was labeled with fluorescent dyes for microarray hybridizations using an equine microarray. Our findings suggest that there is age-related differential expression of genes involved in host immune response and immunity. We found induction of genes critical for host immunity against pathogens (MHC class II) only at the later time-points (compared to birth). While it appears that foals up to 8-weeks of age are able to initiate a protective inflammatory response against the bacteria, relatively decreased expression of various other immune-related genes points toward inherent diminished immune responses closer to birth. These genes and pathways may contribute to disease susceptibility in foals if infected early in life, and might thus be targeted for developing preventative or therapeutic strategies.
Collapse
Affiliation(s)
- Priyanka Kachroo
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Ivan Ivanov
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Ashley G. Seabury
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Mei Liu
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, United States of America
| | - Bhanu P. Chowdhary
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, United States of America
- * E-mail:
| |
Collapse
|
7
|
Das PJ, McCarthy F, Vishnoi M, Paria N, Gresham C, Li G, Kachroo P, Sudderth AK, Teague S, Love CC, Varner DD, Chowdhary BP, Raudsepp T. Stallion sperm transcriptome comprises functionally coherent coding and regulatory RNAs as revealed by microarray analysis and RNA-seq. PLoS One 2013; 8:e56535. [PMID: 23409192 PMCID: PMC3569414 DOI: 10.1371/journal.pone.0056535] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/10/2013] [Indexed: 01/23/2023] Open
Abstract
Mature mammalian sperm contain a complex population of RNAs some of which might regulate spermatogenesis while others probably play a role in fertilization and early development. Due to this limited knowledge, the biological functions of sperm RNAs remain enigmatic. Here we report the first characterization of the global transcriptome of the sperm of fertile stallions. The findings improved understanding of the biological significance of sperm RNAs which in turn will allow the discovery of sperm-based biomarkers for stallion fertility. The stallion sperm transcriptome was interrogated by analyzing sperm and testes RNA on a 21,000-element equine whole-genome oligoarray and by RNA-seq. Microarray analysis revealed 6,761 transcripts in the sperm, of which 165 were sperm-enriched, and 155 were differentially expressed between the sperm and testes. Next, 70 million raw reads were generated by RNA-seq of which 50% could be aligned with the horse reference genome. A total of 19,257 sequence tags were mapped to all horse chromosomes and the mitochondrial genome. The highest density of mapped transcripts was in gene-rich ECA11, 12 and 13, and the lowest in gene-poor ECA9 and X; 7 gene transcripts originated from ECAY. Structural annotation aligned sperm transcripts with 4,504 known horse and/or human genes, rRNAs and 82 miRNAs, whereas 13,354 sequence tags remained anonymous. The data were aligned with selected equine gene models to identify additional exons and splice variants. Gene Ontology annotations showed that sperm transcripts were associated with molecular processes (chemoattractant-activated signal transduction, ion transport) and cellular components (membranes and vesicles) related to known sperm functions at fertilization, while some messenger and micro RNAs might be critical for early development. The findings suggest that the rich repertoire of coding and non-coding RNAs in stallion sperm is not a random remnant from spermatogenesis in testes but a selectively retained and functionally coherent collection of RNAs.
Collapse
Affiliation(s)
- Pranab J Das
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. J Appl Genet 2011; 52:413-35. [PMID: 21698376 PMCID: PMC3189340 DOI: 10.1007/s13353-011-0057-x] [Citation(s) in RCA: 377] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/27/2011] [Accepted: 05/31/2011] [Indexed: 12/21/2022]
Abstract
The high-throughput - next generation sequencing (HT-NGS) technologies are currently the hottest topic in the field of human and animals genomics researches, which can produce over 100 times more data compared to the most sophisticated capillary sequencers based on the Sanger method. With the ongoing developments of high throughput sequencing machines and advancement of modern bioinformatics tools at unprecedented pace, the target goal of sequencing individual genomes of living organism at a cost of $1,000 each is seemed to be realistically feasible in the near future. In the relatively short time frame since 2005, the HT-NGS technologies are revolutionizing the human and animal genome researches by analysis of chromatin immunoprecipitation coupled to DNA microarray (ChIP-chip) or sequencing (ChIP-seq), RNA sequencing (RNA-seq), whole genome genotyping, genome wide structural variation, de novo assembling and re-assembling of genome, mutation detection and carrier screening, detection of inherited disorders and complex human diseases, DNA library preparation, paired ends and genomic captures, sequencing of mitochondrial genome and personal genomics. In this review, we addressed the important features of HT-NGS like, first generation DNA sequencers, birth of HT-NGS, second generation HT-NGS platforms, third generation HT-NGS platforms: including single molecule Heliscope™, SMRT™ and RNAP sequencers, Nanopore, Archon Genomics X PRIZE foundation, comparison of second and third HT-NGS platforms, applications, advances and future perspectives of sequencing technologies on human and animal genome research.
Collapse
Affiliation(s)
- Chandra Shekhar Pareek
- Laboratory of Functional Genomics, Institute of General and Molecular Biology, Nicolaus Copernicus University, Torun, Poland.
| | | | | |
Collapse
|
9
|
Bright LA, Mujahid N, Nanduri B, McCarthy FM, Costa LRR, Burgess SC, Swiderski CE. Functional modelling of an equine bronchoalveolar lavage fluid proteome provides experimental confirmation and functional annotation of equine genome sequences. Anim Genet 2011; 42:395-405. [PMID: 21749422 DOI: 10.1111/j.1365-2052.2010.02158.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The equine genome sequence enables the use of high-throughput genomic technologies in equine research, but accurate identification of expressed gene products and interpreting their biological relevance require additional structural and functional genome annotation. Here, we employ the equine genome sequence to identify predicted and known proteins using proteomics and model these proteins into biological pathways, identifying 582 proteins in normal cell-free equine bronchoalveolar lavage fluid (BALF). We improved structural and functional annotation by directly confirming the in vivo expression of 558 (96%) proteins, which were computationally predicted previously, and adding Gene Ontology (GO) annotations for 174 proteins, 108 of which lacked functional annotation. Bronchoalveolar lavage is commonly used to investigate equine respiratory disease, leading us to model the associated proteome and its biological functions. Modelling of protein functions using Ingenuity Pathway Analysis identified carbohydrate metabolism, cell-to-cell signalling, cellular function, inflammatory response, organ morphology, lipid metabolism and cellular movement as key biological processes in normal equine BALF. Comparative modelling of protein functions in normal cell-free bronchoalveolar lavage proteomes from horse, human, and mouse, performed by grouping GO terms sharing common ancestor terms, confirms conservation of functions across species. Ninety-one of 92 human GO categories and 105 of 109 mouse GO categories were conserved in the horse. Our approach confirms the utility of the equine genome sequence to characterize protein networks without antibodies or mRNA quantification, highlights the need for continued structural and functional annotation of the equine genome and provides a framework for equine researchers to aid in the annotation effort.
Collapse
Affiliation(s)
- L A Bright
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, MS 39762, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
McCarthy FM, Gresham CR, Buza TJ, Chouvarine P, Pillai LR, Kumar R, Ozkan S, Wang H, Manda P, Arick T, Bridges SM, Burgess SC. AgBase: supporting functional modeling in agricultural organisms. Nucleic Acids Res 2010; 39:D497-506. [PMID: 21075795 PMCID: PMC3013706 DOI: 10.1093/nar/gkq1115] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AgBase (http://www.agbase.msstate.edu/) provides resources to facilitate modeling of functional genomics data and structural and functional annotation of agriculturally important animal, plant, microbe and parasite genomes. The website is redesigned to improve accessibility and ease of use, including improved search capabilities. Expanded capabilities include new dedicated pages for horse, cat, dog, cotton, rice and soybean. We currently provide 590 240 Gene Ontology (GO) annotations to 105 454 gene products in 64 different species, including GO annotations linked to transcripts represented on agricultural microarrays. For many of these arrays, this provides the only functional annotation available. GO annotations are available for download and we provide comprehensive, species-specific GO annotation files for 18 different organisms. The tools available at AgBase have been expanded and several existing tools improved based upon user feedback. One of seven new tools available at AgBase, GOModeler, supports hypothesis testing from functional genomics data. We host several associated databases and provide genome browsers for three agricultural pathogens. Moreover, we provide comprehensive training resources (including worked examples and tutorials) via links to Educational Resources at the AgBase website.
Collapse
Affiliation(s)
- Fiona M McCarthy
- Department of Basic Sciences, College of Veterinary Medicine, PO Box 6100, Mississippi State University, MS 39762, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Das PJ, Paria N, Gustafson-Seabury A, Vishnoi M, Chaki SP, Love CC, Varner DD, Chowdhary BP, Raudsepp T. Total RNA isolation from stallion sperm and testis biopsies. Theriogenology 2010; 74:1099-1106, 1106e1-2. [DOI: 10.1016/j.theriogenology.2010.04.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 04/17/2010] [Accepted: 04/24/2010] [Indexed: 01/09/2023]
|
12
|
Wren JD, Kupfer DM, Perkins EJ, Bridges S, Berleant D. Proceedings of the 2010 MidSouth Computational Biology and Bioinformatics Society (MCBIOS) Conference. BMC Bioinformatics 2010; 11 Suppl 6:S1. [PMID: 20946592 PMCID: PMC3026356 DOI: 10.1186/1471-2105-11-s6-s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
13
|
Abstract
The objective of this review is to introduce equine clinicians to the rapidly evolving field of clinical genomics with a vision of improving the health and welfare of the domestic horse. For 15 years a consortium of veterinary geneticists and clinicians has worked together under the umbrella of The Horse Genome Project. This group, encompassing 22 laboratories in 12 countries, has made rapid progress, developing several iterations of linkage, physical and comparative gene maps of the horse with increasing levels of detail. In early 2006, the research was greatly facilitated when the US National Human Genome Research Institute of the National Institutes of Health added the horse to the list of mammalian species scheduled for whole genome sequencing. The genome of the domestic horse has now been sequenced and is available to researchers worldwide in publicly accessible databases. This achievement creates the potential for transformative change within the horse industry, particularly in the fields of internal medicine, sports medicine and reproduction. The genome sequence has enabled the development of new genome-wide tools and resources for studying inherited diseases of the horse. To date, researchers have identified 11 mutations causing 10 clinical syndromes in the horse. Testing is commercially available for all but one of these diseases. Future research will probably identify the genetic bases for other equine diseases, produce new diagnostic tests and generate novel therapeutics for some of these conditions. This will enable equine clinicians to play a critical role in ensuring the thoughtful and appropriate application of this knowledge as they assist clients with breeding and clinical decision-making.
Collapse
Affiliation(s)
- M M Brosnahan
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, New York, USA
| | | | | |
Collapse
|
14
|
McGivney BA, McGettigan PA, Browne JA, Evans ACO, Fonseca RG, Loftus BJ, Lohan A, MacHugh DE, Murphy BA, Katz LM, Hill EW. Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training. BMC Genomics 2010; 11:398. [PMID: 20573200 PMCID: PMC2900271 DOI: 10.1186/1471-2164-11-398] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 06/23/2010] [Indexed: 11/22/2022] Open
Abstract
Background Digital gene expression profiling was used to characterize the assembly of genes expressed in equine skeletal muscle and to identify the subset of genes that were differentially expressed following a ten-month period of exercise training. The study cohort comprised seven Thoroughbred racehorses from a single training yard. Skeletal muscle biopsies were collected at rest from the gluteus medius at two time points: T1 - untrained, (9 ± 0.5 months old) and T2 - trained (20 ± 0.7 months old). Results The most abundant mRNA transcripts in the muscle transcriptome were those involved in muscle contraction, aerobic respiration and mitochondrial function. A previously unreported over-representation of genes related to RNA processing, the stress response and proteolysis was observed. Following training 92 tags were differentially expressed of which 74 were annotated. Sixteen genes showed increased expression, including the mitochondrial genes ACADVL, MRPS21 and SLC25A29 encoded by the nuclear genome. Among the 58 genes with decreased expression, MSTN, a negative regulator of muscle growth, had the greatest decrease. Functional analysis of all expressed genes using FatiScan revealed an asymmetric distribution of 482 Gene Ontology (GO) groups and 18 KEGG pathways. Functional groups displaying highly significant (P < 0.0001) increased expression included mitochondrion, oxidative phosphorylation and fatty acid metabolism while functional groups with decreased expression were mainly associated with structural genes and included the sarcoplasm, laminin complex and cytoskeleton. Conclusion Exercise training in Thoroughbred racehorses results in coordinate changes in the gene expression of functional groups of genes related to metabolism, oxidative phosphorylation and muscle structure.
Collapse
Affiliation(s)
- Beatrice A McGivney
- Animal Genomics Laboratory, UCD School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Wren JD, Gusev Y, Isokpehi RD, Berleant D, Braga-Neto U, Wilkins D, Bridges S. Proceedings of the 2009 MidSouth Computational Biology and Bioinformatics Society (MCBIOS) Conference. BMC Bioinformatics 2009; 10 Suppl 11:S1. [PMID: 19811674 PMCID: PMC3313274 DOI: 10.1186/1471-2105-10-s11-s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|