1
|
Schmeltzer AJ, Peterson EM, Harris JM, Lathrop DK, German SR, White HS. Simultaneous Multipass Resistive-Pulse Sensing and Fluorescence Imaging of Liposomes. ACS NANO 2024; 18:7241-7252. [PMID: 38377597 DOI: 10.1021/acsnano.3c12627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Simultaneous multipass resistive-pulse sensing and fluorescence imaging have been used to correlate the size and fluorescence intensity of individual E. coli lipid liposomes composed of E. coli polar lipid extracts labeled with membrane-bound 3,3-dioctadecyloxacarbocyanine (DiO) fluorescent molecules. Here, a nanopipet serves as a waveguide to direct excitation light to the resistive-pulse sensing zone at the end of the nanopipet tip. Individual DiO-labeled liposomes (>50 nm radius) were multipassed back and forth through the orifices of glass nanopipets' 110-150 nm radius via potential switching to obtain subnanometer sizing precision, while recording the fluorescence intensity of the membrane-bound DiO molecules. Fluorescence was measured as a function of liposome radius and found to be approximately proportional to the total membrane surface area. The observed relationship between liposome size and fluorescence intensity suggests that multivesicle liposomes emit greater fluorescence compared to unilamellar liposomes, consistent with all lipid membranes of the multivesicle liposomes containing DiO. Fluorescent and nonfluorescent liposomes are readily distinguished from each other in the same solution using simultaneous multipass resistive-pulse sensing and fluorescence imaging. A fluorescence "dead zone" of ∼1 μm thickness just outside of the nanopipet orifice was observed during resistive-pulse sensing, resulting in "on/off" fluorescent behavior during liposome multipassing.
Collapse
Affiliation(s)
| | - Eric M Peterson
- Electronic BioSciences, Inc., 421 Wakara Way, Suite 328, Salt Lake City, Utah 84108, United States
| | - Joel M Harris
- Department of Chemistry, University of Utah; Salt Lake City, Utah 84112, United States
| | - Daniel K Lathrop
- Electronic BioSciences, Inc., 421 Wakara Way, Suite 328, Salt Lake City, Utah 84108, United States
| | - Sean R German
- Electronic BioSciences, Inc., 421 Wakara Way, Suite 328, Salt Lake City, Utah 84108, United States
| | - Henry S White
- Department of Chemistry, University of Utah; Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Kuhns S, Juhl AD, Anvarian Z, Wüstner D, Pedersen LB, Andersen JS. Endogenous Tagging of Ciliary Genes in Human RPE1 Cells for Live-Cell Imaging. Methods Mol Biol 2024; 2725:147-166. [PMID: 37856023 DOI: 10.1007/978-1-0716-3507-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
CRISPR-mediated endogenous tagging of genes provides unique possibilities to explore the function and dynamic subcellular localization of proteins in living cells. Here, we describe experimental strategies for endogenous PCR-tagging of ciliary genes in human RPE1 cells and how image acquisition and analysis of the expressed fluorescently tagged proteins can be utilized to study the dynamic ciliary processes of intraflagellar transport and vesicular trafficking.
Collapse
Affiliation(s)
- Stefanie Kuhns
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Zeinab Anvarian
- Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
3
|
Wüstner D, Dupont Juhl A, Egebjerg JM, Werner S, McNally J, Schneider G. Kinetic modelling of sterol transport between plasma membrane and endo-lysosomes based on quantitative fluorescence and X-ray imaging data. Front Cell Dev Biol 2023; 11:1144936. [PMID: 38020900 PMCID: PMC10644255 DOI: 10.3389/fcell.2023.1144936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Niemann Pick type C1 and C2 (NPC1 and NPC2) are two sterol-binding proteins which, together, orchestrate cholesterol transport through late endosomes and lysosomes (LE/LYSs). NPC2 can facilitate sterol exchange between model membranes severalfold, but how this is connected to its function in cells is poorly understood. Using fluorescent analogs of cholesterol and quantitative fluorescence microscopy, we have recently measured the transport kinetics of sterol between plasma membrane (PM), recycling endosomes (REs) and LE/LYSs in control and NPC2 deficient fibroblasts. Here, we use kinetic modeling of this data to determine rate constants for sterol transport between intracellular compartments. Our model predicts that sterol is trapped in intraluminal vesicles (ILVs) of LE/LYSs in the absence of NPC2, causing delayed sterol export from LE/LYSs in NPC2 deficient fibroblasts. Using soft X-ray tomography, we confirm, that LE/LYSs of NPC2 deficient cells but not of control cells contain enlarged, carbon-rich intraluminal vesicular structures, supporting our model prediction of lipid accumulation in ILVs. By including sterol export via exocytosis of ILVs as exosomes and by release of vesicles-ectosomes-from the PM, we can reconcile measured sterol efflux kinetics and show that both pathways can be reciprocally regulated by the intraluminal sterol transfer activity of NPC2 inside LE/LYSs. Our results thereby connect the in vitro function of NPC2 as sterol transfer protein between membranes with its in vivo function.
Collapse
Affiliation(s)
- Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jacob Marcus Egebjerg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Stephan Werner
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Berlin, Germany
| | - James McNally
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Berlin, Germany
| | - Gerd Schneider
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Berlin, Germany
| |
Collapse
|
4
|
Straehla JP, Reardon DA, Wen PY, Agar NYR. The Blood-Brain Barrier: Implications for Experimental Cancer Therapeutics. ANNUAL REVIEW OF CANCER BIOLOGY 2023; 7:265-289. [PMID: 38323268 PMCID: PMC10846865 DOI: 10.1146/annurev-cancerbio-061421-040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The blood-brain barrier is critically important for the treatment of both primary and metastatic cancers of the central nervous system (CNS). Clinical outcomes for patients with primary CNS tumors are poor and have not significantly improved in decades. As treatments for patients with extracranial solid tumors improve, the incidence of CNS metastases is on the rise due to suboptimal CNS exposure of otherwise systemically active agents. Despite state-of-the art surgical care and increasingly precise radiation therapy, clinical progress is limited by the ability to deliver an effective dose of a therapeutic agent to all cancerous cells. Given the tremendous heterogeneity of CNS cancers, both across cancer subtypes and within a single tumor, and the range of diverse therapies under investigation, a nuanced examination of CNS drug exposure is needed. With a shared goal, common vocabulary, and interdisciplinary collaboration, the field is poised for renewed progress in the treatment of CNS cancers.
Collapse
Affiliation(s)
- Joelle P Straehla
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Singh AV, Katz A, Maharjan RS, Gadicherla AK, Richter MH, Heyda J, Del Pino P, Laux P, Luch A. Coronavirus-mimicking nanoparticles (CorNPs) in artificial saliva droplets and nanoaerosols: Influence of shape and environmental factors on particokinetics/particle aerodynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160503. [PMID: 36442637 PMCID: PMC9691506 DOI: 10.1016/j.scitotenv.2022.160503] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 05/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2, abbreviated as SARS-CoV-2, has been associated with the transmission of infectious COVID-19 disease through breathing and speech droplets emitted by infected carriers including asymptomatic cases. As part of SARS-CoV-2 global pandemic preparedness, we studied the transmission of aerosolized air mimicking the infected person releasing speech aerosol with droplets containing CorNPs using a vibrating mesh nebulizer as human patient simulator. Generally speech produces nanoaerosols with droplets of <5 μm in diameter that can travel distances longer than 1 m after release. It is assumed that speech aerosol droplets are a main element of the current Corona virus pandemic, unlike droplets larger than 5 m, which settle down within a 1 m radius. There are no systemic studies, which take into account speech-generated aerosol/droplet experimental validation and their aerodynamics/particle kinetics analysis. In this study, we cover these topics and explore role of residual water in aerosol droplet stability by exploring drying dynamics. Furthermore, a candle experiment was designed to determine whether air pollution might influence respiratory virus like nanoparticle transmission and air stability.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| | - Aaron Katz
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Romi Singh Maharjan
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Ashish K Gadicherla
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Martin Heinrich Richter
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Jan Heyda
- University of Chemistry and Technology (UCT), 166 28 Prague 6, Czech Republic
| | - Pablo Del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Peter Laux
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
6
|
Sakurai HT, Arakawa S, Noguchi S, Shimizu S. FLIP-based autophagy-detecting technique reveals closed autophagic compartments. Sci Rep 2022; 12:22452. [PMID: 36575188 PMCID: PMC9794774 DOI: 10.1038/s41598-022-26430-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Autophagy results in the degradation of cytosolic components via two major membrane deformations. First, the isolation membrane sequesters components from the cytosol and forms autophagosomes, by which open structures become closed compartments. Second, the outer membrane of the autophagosomes fuses with lysosomes to degrade the inner membrane and its contents. The efficiency of the latter degradation process, namely autophagic flux, can be easily evaluated using lysosomal inhibitors, whereas the dynamics of the former process is difficult to analyze because of the challenges in identifying closed compartments of autophagy (autophagosomes and autolysosomes). To resolve this problem, we here developed a method to detect closed autophagic compartments by applying the FLIP technique, and named it FLIP-based Autophagy Detection (FLAD). This technique visualizes closed autophagic compartments and enables differentiation of open autophagic structures and closed autophagic compartments in live cells. In addition, FLAD analysis detects not only starvation-induced canonical autophagy but also genotoxic stress-induced alternative autophagy. By the combinational use of FLAD and LC3, we were able to distinguish the structures of canonical autophagy from those of alternative autophagy in a single cell.
Collapse
Affiliation(s)
- Hajime Tajima Sakurai
- grid.265073.50000 0001 1014 9130Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| | - Satoko Arakawa
- grid.265073.50000 0001 1014 9130Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| | - Saori Noguchi
- grid.265073.50000 0001 1014 9130Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| | - Shigeomi Shimizu
- grid.265073.50000 0001 1014 9130Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| |
Collapse
|
7
|
Wüstner D. Image segmentation and separation of spectrally similar dyes in fluorescence microscopy by dynamic mode decomposition of photobleaching kinetics. BMC Bioinformatics 2022; 23:334. [PMID: 35962314 PMCID: PMC9373304 DOI: 10.1186/s12859-022-04881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Image segmentation in fluorescence microscopy is often based on spectral separation of fluorescent probes (color-based segmentation) or on significant intensity differences in individual image regions (intensity-based segmentation). These approaches fail, if dye fluorescence shows large spectral overlap with other employed probes or with strong cellular autofluorescence. RESULTS Here, a novel model-free approach is presented which determines bleaching characteristics based on dynamic mode decomposition (DMD) and uses the inferred photobleaching kinetics to distinguish different probes or dye molecules from autofluorescence. DMD is a data-driven computational method for detecting and quantifying dynamic events in complex spatiotemporal data. Here, DMD is first used on synthetic image data and thereafter used to determine photobleaching characteristics of a fluorescent sterol probe, dehydroergosterol (DHE), compared to that of cellular autofluorescence in the nematode Caenorhabditis elegans. It is shown that decomposition of those dynamic modes allows for separating probe from autofluorescence without invoking a particular model for the bleaching process. In a second application, DMD of dye-specific photobleaching is used to separate two green-fluorescent dyes, an NBD-tagged sphingolipid and Alexa488-transferrin, thereby assigning them to different cellular compartments. CONCLUSIONS Data-based decomposition of dynamic modes can be employed to analyze spatially varying photobleaching of fluorescent probes in cells and tissues for spatial and temporal image segmentation, discrimination of probe from autofluorescence and image denoising. The new method should find wide application in analysis of dynamic fluorescence imaging data.
Collapse
Affiliation(s)
- Daniel Wüstner
- Department of Biochemistry and Molecular Biology and Physics of Life Sciences (PhyLife) Center, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| |
Collapse
|
8
|
Wüstner D. Dynamic Mode Decomposition of Fluorescence Loss in Photobleaching Microscopy Data for Model-Free Analysis of Protein Transport and Aggregation in Living Cells. SENSORS (BASEL, SWITZERLAND) 2022; 22:4731. [PMID: 35808232 PMCID: PMC9269098 DOI: 10.3390/s22134731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023]
Abstract
The phase separation and aggregation of proteins are hallmarks of many neurodegenerative diseases. These processes can be studied in living cells using fluorescent protein constructs and quantitative live-cell imaging techniques, such as fluorescence recovery after photobleaching (FRAP) or the related fluorescence loss in photobleaching (FLIP). While the acquisition of FLIP images is straightforward on most commercial confocal microscope systems, the analysis and computational modeling of such data is challenging. Here, a novel model-free method is presented, which resolves complex spatiotemporal fluorescence-loss kinetics based on dynamic-mode decomposition (DMD) of FLIP live-cell image sequences. It is shown that the DMD of synthetic and experimental FLIP image series (DMD-FLIP) allows for the unequivocal discrimination of subcellular compartments, such as nuclei, cytoplasm, and protein condensates based on their differing transport and therefore fluorescence loss kinetics. By decomposing fluorescence-loss kinetics into distinct dynamic modes, DMD-FLIP will enable researchers to study protein dynamics at each time scale individually. Furthermore, it is shown that DMD-FLIP is very efficient in denoising confocal time series data. Thus, DMD-FLIP is an easy-to-use method for the model-free detection of barriers to protein diffusion, of phase-separated protein assemblies, and of insoluble protein aggregates. It should, therefore, find wide application in the analysis of protein transport and aggregation, in particular in relation to neurodegenerative diseases and the formation of protein condensates in living cells.
Collapse
Affiliation(s)
- Daniel Wüstner
- Department of Biochemistry and Molecular Biology and Physics of Life Sciences (PhyLife) Center, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
9
|
Juhl AD, Heegaard CW, Werner S, Schneider G, Krishnan K, Covey DF, Wüstner D. Quantitative imaging of membrane contact sites for sterol transfer between endo-lysosomes and mitochondria in living cells. Sci Rep 2021; 11:8927. [PMID: 33903617 PMCID: PMC8076251 DOI: 10.1038/s41598-021-87876-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/31/2021] [Indexed: 01/25/2023] Open
Abstract
Mitochondria receive cholesterol from late endosomes and lysosomes (LE/LYSs) or from the plasma membrane for production of oxysterols and steroid hormones. This process depends on the endo-lysosomal sterol transfer protein Niemann Pick C2 (NPC2). Using the intrinsically fluorescent cholesterol analog, cholestatrienol, we directly observe sterol transport to mitochondria in fibroblasts upon treating NPC2 deficient human fibroblasts with NPC2 protein. Soft X-ray tomography reveals the ultrastructure of mitochondria and discloses close contact to endosome-like organelles. Using fluorescence microscopy, we localize endo-lysosomes containing NPC2 relative to mitochondria based on the Euclidian distance transform and use statistical inference to show that about 30% of such LE/LYSs are in contact to mitochondria in human fibroblasts. Using Markov Chain Monte Carlo image simulations, we show that interaction between both organelle types, a defining feature of membrane contact sites (MCSs) can give rise to the observed spatial organelle distribution. We devise a protocol to determine the surface fraction of endo-lysosomes in contact with mitochondria and show that this fraction does not depend on functional NPC1 or NPC2 proteins. Finally, we localize MCSs between LE/LYSs containing NPC2 and mitochondria in time-lapse image sequences and show that they either form transiently or remain stable for tens of seconds. Lasting MCSs between endo-lysosomes containing NPC2 and mitochondria move by slow anomalous sub-diffusion, providing location and time for sterol transport between both organelles. Our quantitative imaging strategy will be of high value for characterizing the dynamics and function of MCSs between various organelles in living cells.
Collapse
Affiliation(s)
- Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Christian W Heegaard
- Department of Molecular Biology and Genetics, University of Aarhus, 8000, Aarhus C, Denmark
| | - Stephan Werner
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Gerd Schneider
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University, St. Louis, MO, 63110, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University, St. Louis, MO, 63110, USA
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
10
|
Dhekne HS, Yanatori I, Vides EG, Sobu Y, Diez F, Tonelli F, Pfeffer SR. LRRK2-phosphorylated Rab10 sequesters Myosin Va with RILPL2 during ciliogenesis blockade. Life Sci Alliance 2021; 4:4/5/e202101050. [PMID: 33727250 PMCID: PMC7994366 DOI: 10.26508/lsa.202101050] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Pathogenic LRRK2 phosphorylation of Rab10 GTPase dramatically redistributes Myosin Va and RILPL2 proteins to the mother centriole and sequesters Myosin Va at that location in a manner that likely interferes with its role in ciliogenesis. Activating mutations in LRRK2 kinase causes Parkinson’s disease. Pathogenic LRRK2 phosphorylates a subset of Rab GTPases and blocks ciliogenesis. Thus, defining novel phospho-Rab interacting partners is critical to our understanding of the molecular basis of LRRK2 pathogenesis. RILPL2 binds with strong preference to LRRK2-phosphorylated Rab8A and Rab10. RILPL2 is a binding partner of the motor protein and Rab effector, Myosin Va. We show here that the globular tail domain of Myosin Va also contains a high affinity binding site for LRRK2-phosphorylated Rab10. In the presence of pathogenic LRRK2, RILPL2 and MyoVa relocalize to the peri-centriolar region in a phosphoRab10-dependent manner. PhosphoRab10 retains Myosin Va over pericentriolar membranes as determined by fluorescence loss in photobleaching microscopy. Without pathogenic LRRK2, RILPL2 is not essential for ciliogenesis but RILPL2 over-expression blocks ciliogenesis in RPE cells independent of tau tubulin kinase recruitment to the mother centriole. These experiments show that LRRK2 generated-phosphoRab10 dramatically redistributes a significant fraction of Myosin Va and RILPL2 to the mother centriole in a manner that likely interferes with Myosin Va’s role in ciliogenesis.
Collapse
Affiliation(s)
- Herschel S Dhekne
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Izumi Yanatori
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Edmundo G Vides
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuriko Sobu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Federico Diez
- Medical Research Council Lab of Protein Phosphorylation and Ubiquitylation, University of Dundee, Dundee, Scotland
| | - Francesca Tonelli
- Medical Research Council Lab of Protein Phosphorylation and Ubiquitylation, University of Dundee, Dundee, Scotland
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
11
|
Duan S, Li H, Zhang Y, Yang S, Chen Y, Qiu B, Huang C, Wang J, Li J, Zhu X, Yan X. Rabl2 GTP hydrolysis licenses BBSome-mediated export to fine-tune ciliary signaling. EMBO J 2021; 40:e105499. [PMID: 33241915 PMCID: PMC7809784 DOI: 10.15252/embj.2020105499] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 01/04/2023] Open
Abstract
Cilia of higher animals sense various environmental stimuli. Proper ciliary signaling requires appropriate extent of BBSome-mediated export of membrane receptors across ciliary barrier transition zone (TZ) through retrograde intraflagellar transport (IFT) machinery. How the barrier passage is controlled, however, remains unknown. Here, we show that small GTPase Rabl2 functions as a molecular switch for the outward TZ passage. Rabl2-GTP enters cilia by binding to IFT-B complex. Its GTP hydrolysis enables the outward TZ passage of the BBSome and its cargos with retrograde IFT machinery, whereas its persistent association leads to their shedding from IFT-B during the passing process and consequently ciliary retention. Rabl2 deficiency or expression of a GTP-locked mutant impairs the ciliary hedgehog signaling without interfering with ciliation and respectively results in different spectrums of mouse developmental disorders. We propose that the switch role of Rabl2 ensures proper turnover of the BBSome and ciliary membrane receptors to fine-tune cilia-dependent signaling for normal embryonic development and organismic homeostasis.
Collapse
Affiliation(s)
- Shichao Duan
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Department of PathologyFirst Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hao Li
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yirong Zhang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Suming Yang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yawen Chen
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Benhua Qiu
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Cheng Huang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Juan Wang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jinsong Li
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xueliang Zhu
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- School of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Xiumin Yan
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| |
Collapse
|
12
|
Chong S, Mir M. Towards Decoding the Sequence-Based Grammar Governing the Functions of Intrinsically Disordered Protein Regions. J Mol Biol 2020; 433:166724. [PMID: 33248138 DOI: 10.1016/j.jmb.2020.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 01/03/2023]
Abstract
A substantial portion of the proteome consists of intrinsically disordered regions (IDRs) that do not fold into well-defined 3D structures yet perform numerous biological functions and are associated with a broad range of diseases. It has been a long-standing enigma how different IDRs successfully execute their specific functions. Further putting a spotlight on IDRs are recent discoveries of functionally relevant biomolecular assemblies, which in some cases form through liquid-liquid phase separation. At the molecular level, the formation of biomolecular assemblies is largely driven by weak, multivalent, but selective IDR-IDR interactions. Emerging experimental and computational studies suggest that the primary amino acid sequences of IDRs encode a variety of their interaction behaviors. In this review, we focus on findings and insights that connect sequence-derived features of IDRs to their conformations, propensities to form biomolecular assemblies, selectivity of interaction partners, functions in the context of physiology and disease, and regulation of function. We also discuss directions of future research to facilitate establishing a comprehensive sequence-function paradigm that will eventually allow prediction of selective interactions and specificity of function mediated by IDRs.
Collapse
Affiliation(s)
- Shasha Chong
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, United States; The Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, United States.
| | - Mustafa Mir
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
13
|
Nicholson L, Gervasi N, Falières T, Leroy A, Miremont D, Zala D, Hanus C. Whole-Cell Photobleaching Reveals Time-Dependent Compartmentalization of Soluble Proteins by the Axon Initial Segment. Front Cell Neurosci 2020; 14:180. [PMID: 32754013 PMCID: PMC7366827 DOI: 10.3389/fncel.2020.00180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/27/2020] [Indexed: 01/12/2023] Open
Abstract
By limiting protein exchange between the soma and the axon, the axon initial segment (AIS) enables the segregation of specific proteins and hence the differentiation of the somatodendritic compartment and the axonal compartment. Electron microscopy and super-resolution fluorescence imaging have provided important insights in the ultrastructure of the AIS. Yet, the full extent of its filtering properties is not fully delineated. In particular, it is unclear whether and how the AIS opposes the free exchange of soluble proteins. Here we describe a robust framework to combine whole-cell photobleaching and retrospective high-resolution imaging in developing neurons. With this assay, we found that cytoplasmic soluble proteins that are not excluded from the axon upon expression over tens of hours exhibit a strong mobility reduction at the AIS – i.e., are indeed compartmentalized – when monitored over tens of minutes. This form of compartmentalization is developmentally regulated, requires intact F-actin and may be correlated with the composition and ultrastructure of the submembranous spectrin cytoskeleton. Using computational modeling, we provide evidence that both neuronal morphology and the AIS regulate this compartmentalization but act on distinct time scales, with the AIS having a more pronounced effect on fast exchanges. Our results thus suggest that the rate of protein accumulation in the soma may impact to what extent and over which timescales freely moving molecules can be segregated from the axon. This in turn has important implications for our understanding of compartment-specific signaling in neurons.
Collapse
Affiliation(s)
- LaShae Nicholson
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Nicolas Gervasi
- Center for Interdisciplinary Research in Biology, College de France, Inserm U1050, CNRS UMR 7241, Labex Memolife, Paris, France
| | - Thibault Falières
- Institute for Psychiatry and Neurosciences of Paris, Inserm UMR 1266, University of Paris, 4 GHU PARIS Psychiatrie & Neurosciences, Paris, France
| | - Adrien Leroy
- Center for Interdisciplinary Research in Biology, College de France, Inserm U1050, CNRS UMR 7241, Labex Memolife, Paris, France
| | - Dorian Miremont
- Institute for Psychiatry and Neurosciences of Paris, Inserm UMR 1266, University of Paris, 4 GHU PARIS Psychiatrie & Neurosciences, Paris, France
| | - Diana Zala
- Institute for Psychiatry and Neurosciences of Paris, Inserm UMR 1266, University of Paris, 4 GHU PARIS Psychiatrie & Neurosciences, Paris, France
| | - Cyril Hanus
- Institute for Psychiatry and Neurosciences of Paris, Inserm UMR 1266, University of Paris, 4 GHU PARIS Psychiatrie & Neurosciences, Paris, France
| |
Collapse
|
14
|
Oluwadare O, Highsmith M, Cheng J. An Overview of Methods for Reconstructing 3-D Chromosome and Genome Structures from Hi-C Data. Biol Proced Online 2019; 21:7. [PMID: 31049033 PMCID: PMC6482566 DOI: 10.1186/s12575-019-0094-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/01/2019] [Indexed: 01/08/2023] Open
Abstract
Over the past decade, methods for predicting three-dimensional (3-D) chromosome and genome structures have proliferated. This has been primarily due to the development of high-throughput, next-generation chromosome conformation capture (3C) technologies, which have provided next-generation sequencing data about chromosome conformations in order to map the 3-D genome structure. The introduction of the Hi-C technique-a variant of the 3C method-has allowed researchers to extract the interaction frequency (IF) for all loci of a genome at high-throughput and at a genome-wide scale. In this review we describe, categorize, and compare the various methods developed to map chromosome and genome structures from 3C data-particularly Hi-C data. We summarize the improvements introduced by these methods, describe the approach used for method evaluation, and discuss how these advancements shape the future of genome structure construction.
Collapse
Affiliation(s)
- Oluwatosin Oluwadare
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211 USA
| | - Max Highsmith
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211 USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211 USA
- Informatics Institute, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
15
|
Hansen CV, Schroll HJ, Wüstner D. A discontinuous Galerkin model for fluorescence loss in photobleaching of intracellular polyglutamine protein aggregates. BMC BIOPHYSICS 2018; 11:7. [PMID: 30519460 PMCID: PMC6264036 DOI: 10.1186/s13628-018-0046-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 10/30/2018] [Indexed: 12/03/2022]
Abstract
Background Intracellular phase separation and aggregation of proteins with extended poly-glutamine (polyQ) stretches are hallmarks of various age-associated neurodegenerative diseases. Progress in our understanding of such processes heavily relies on quantitative fluorescence imaging of suitably tagged proteins. Fluorescence loss in photobleaching (FLIP) is particularly well-suited to study the dynamics of protein aggregation in cellular models of Chorea Huntington and other polyQ diseases, as FLIP gives access to the full spatio-temporal profile of intensity changes in the cell geometry. In contrast to other methods, also dim aggregates become visible during time evolution of fluorescence loss in cellular compartments. However, methods for computational analysis of FLIP data are sparse, and transport models for estimation of transport and diffusion parameters from experimental FLIP sequences are missing. Results In this paper, we present a computational method for analysis of FLIP imaging experiments of intracellular polyglutamine protein aggregates also called inclusion bodies (IBs). By this method, we can determine the diffusion constant and nuclear membrane transport coefficients of polyQ proteins as well as the exchange rates between aggregates and the cytoplasm. Our method is based on a reaction-diffusion multi-compartment model defined on a mesh obtained by segmentation of the cell images from the FLIP sequence. The discontinuous Galerkin (DG) method is used for numerical implementation of our model in FEniCS, which greatly reduces the computing time. The method is applied to representative experimental FLIP sequences, and consistent estimates of all transport parameters are obtained. Conclusions By directly estimating the transport parameters from live-cell image sequences using our new computational FLIP approach surprisingly fast exchange dynamics of mutant Huntingtin between cytoplasm and dim IBs could be revealed. This is likely relevant also for other polyQ diseases. Thus, our method allows for quantifying protein dynamics at different stages of the protein aggregation process in cellular models of neurodegeneration. Electronic supplementary material The online version of this article (10.1186/s13628-018-0046-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian V Hansen
- 1Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, Odense M, 5230 Denmark
| | - Hans J Schroll
- 1Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, Odense M, 5230 Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, Campusvej 55, Odense M, 5230 Denmark
| |
Collapse
|
16
|
Tang L, Ye H, Xiao D. Photo-induced luminescence degradation in Ce, Yb co-doped yttrium aluminum garnet phosphors. APPLIED OPTICS 2018; 57:7627-7633. [PMID: 30461832 DOI: 10.1364/ao.57.007627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/19/2018] [Indexed: 06/09/2023]
Abstract
Photon-induced luminescence degradation of Ce, Yb co-doped yttrium aluminum garnet phosphors with different Yb concentrations under 457 nm irradiation is studied for the first time, to the best of our knowledge. The degradation behavior is more significant in nano-phosphors prepared via the solgel method, compared with bulkier samples prepared via solid-state reaction. Photoluminescence intensity of Ce3+ ions experiences a drop after initial illumination, due to photoionization of Ce3+ ions, whereas the down-converted luminescence of Yb3+ ions remains relatively stable. Co-doping Yb3+ contributes to the luminescence drop of Ce3+ with the excessive Yb3+ ions serving as additional electron traps. The results are in support of a charge transfer process.
Collapse
|
17
|
Ege N, Dowbaj AM, Jiang M, Howell M, Hooper S, Foster C, Jenkins RP, Sahai E. Quantitative Analysis Reveals that Actin and Src-Family Kinases Regulate Nuclear YAP1 and Its Export. Cell Syst 2018; 6:692-708.e13. [PMID: 29909276 PMCID: PMC6035388 DOI: 10.1016/j.cels.2018.05.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 02/08/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
Abstract
The transcriptional regulator YAP1 is critical for the pathological activation of fibroblasts. In normal fibroblasts, YAP1 is located in the cytoplasm, while in activated cancer-associated fibroblasts, it is nuclear and promotes the expression of genes required for pro-tumorigenic functions. Here, we investigate the dynamics of YAP1 shuttling in normal and activated fibroblasts, using EYFP-YAP1, quantitative photobleaching methods, and mathematical modeling. Imaging of migrating fibroblasts reveals the tight temporal coupling of cell shape change and altered YAP1 localization. Both 14-3-3 and TEAD binding modulate YAP1 shuttling, but neither affects nuclear import. Instead, we find that YAP1 nuclear accumulation in activated fibroblasts results from Src and actomyosin-dependent suppression of phosphorylated YAP1 export. Finally, we show that nuclear-constrained YAP1, upon XPO1 depletion, remains sensitive to blockade of actomyosin function. Together, these data place nuclear export at the center of YAP1 regulation and indicate that the cytoskeleton can regulate YAP1 within the nucleus.
Collapse
Affiliation(s)
- Nil Ege
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Cell and Developmental Biology Department, University College London, London WC1E 6BT, UK
| | - Anna M Dowbaj
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Ming Jiang
- High Throughput Screening, The Francis Crick Institute, London NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening, The Francis Crick Institute, London NW1 1AT, UK
| | - Steven Hooper
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Charles Foster
- Transcription Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Robert P Jenkins
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
18
|
Zhang H, Wang S, Chang K, Sun H, Guo Q, Ma L, Yang Y, Zou C, Wang L, Hu J. Optical Characterization of Paper Aging Based on Laser-Induced Fluorescence (LIF) Spectroscopy. APPLIED SPECTROSCOPY 2018; 72:913-920. [PMID: 29512412 DOI: 10.1177/0003702818761669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Paper aging and degradation are growing concerns for those who are responsible for the conservation of documents, archives, and libraries. In this study, the paper aging was investigated using laser-induced fluorescence spectroscopy (LIFS), where the fluorescence properties of 47 paper samples with different ages were explored. The paper exhibits fluorescence in the blue-green spectral region with two peaks at about 448 nm and 480 nm under the excitation of 405 nm laser. Both fluorescence peaks changed in absolute intensities and thus the ratio of peak intensities was also influenced with the increasing ages. By applying principal component analysis (PCA) and k-means clustering algorithm, all 47 paper samples were classified into nine groups based on the differences in paper age. Then the first-derivative fluorescence spectral curves were proposed to figure out the relationship between the spectral characteristic and the paper age, and two quantitative models were established based on the changes of first-derivative spectral peak at 443 nm, where one is an exponential fitting curve with an R-squared value of 0.99 and another is a linear fitting curve with an R-squared value of 0.88. The results demonstrated that the combination of fluorescence spectroscopy and PCA can be used for the classification of paper samples with different ages. Moreover, the first-derivative fluorescence spectral curves can be used to quantitatively evaluate the age-related changes of paper samples.
Collapse
Affiliation(s)
- Hao Zhang
- 1 College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China
| | - Shun Wang
- 1 College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China
| | - Keke Chang
- 1 College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China
| | - Haifeng Sun
- 1 College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China
| | - Qingqian Guo
- 1 College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China
| | - Liuzheng Ma
- 1 College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China
| | - Yatao Yang
- 1 College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China
| | - Caihong Zou
- 1 College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China
| | - Ling Wang
- 1 College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China
| | - Jiandong Hu
- 1 College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China
- 2 State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| |
Collapse
|
19
|
A Discontinuous Galerkin Model for Fluorescence Loss in Photobleaching. Sci Rep 2018; 8:1387. [PMID: 29362364 PMCID: PMC5780497 DOI: 10.1038/s41598-018-19159-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/21/2017] [Indexed: 11/09/2022] Open
Abstract
Fluorescence loss in photobleaching (FLIP) is a modern microscopy method for visualization of transport processes in living cells. This paper presents the simulation of FLIP sequences based on a calibrated reaction-diffusion system defined on segmented cell images. By the use of a discontinuous Galerkin method, the computational complexity is drastically reduced compared to continuous Galerkin methods. Using this approach on green fluorescent protein (GFP), we can determine its intracellular diffusion constant, the strength of localized hindrance to diffusion as well as the permeability of the nuclear membrane for GFP passage, directly from the FLIP image series. Thus, we present for the first time, to our knowledge, a quantitative computational FLIP method for inferring several molecular transport parameters in parallel from FLIP image data acquired at commercial microscope systems.
Collapse
|
20
|
Malacrida L, Hedde PN, Ranjit S, Cardarelli F, Gratton E. Visualization of barriers and obstacles to molecular diffusion in live cells by spatial pair-cross-correlation in two dimensions. BIOMEDICAL OPTICS EXPRESS 2018; 9:303-321. [PMID: 29359105 PMCID: PMC5772584 DOI: 10.1364/boe.9.000303] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 05/09/2023]
Abstract
Despite recent advances in optical super-resolution, we lack a method that can visualize the path followed by diffusing molecules in the cytoplasm or in the nucleus of cells. Fluorescence correlation spectroscopy (FCS) provides molecular dynamics at the single molecule level by averaging the behavior of many molecules over time at a single spot, thus achieving very good statistics but at only one point in the cell. Earlier image-based methods including raster-scan and spatiotemporal image correlation need spatial averaging over relatively large areas, thus compromising spatial resolution. Here, we use spatial pair-cross-correlation in two dimensions (2D-pCF) to obtain relatively high resolution images of molecular diffusion dynamics and transport in live cells. The 2D-pCF method measures the time for a particle to go from one location to another by cross-correlating the intensity fluctuations at specific points in an image. Hence, a visual map of the average path followed by molecules is created.
Collapse
Affiliation(s)
- Leonel Malacrida
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, USA
- Área de Investigación Respiratoria, Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Uruguay
- LM and PNH contributed equally to this work
| | - Per Niklas Hedde
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, USA
- LM and PNH contributed equally to this work
| | - Suman Ranjit
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, USA
| | - Francesco Cardarelli
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, USA
| |
Collapse
|
21
|
Kinetic stability analysis of protein assembly on the center manifold around the critical point. BMC SYSTEMS BIOLOGY 2017; 11:13. [PMID: 28153012 PMCID: PMC5288876 DOI: 10.1186/s12918-017-0391-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/05/2017] [Indexed: 11/22/2022]
Abstract
Background Non-linear kinetic analysis is a useful method for illustration of the dynamic behavior of cellular biological systems. To date, center manifold theory (CMT) has not been sufficiently applied for stability analysis of biological systems. The aim of this study is to demonstrate the application of CMT to kinetic analysis of protein assembly and disassembly, and to propose a novel framework for nonlinear multi-parametric analysis. We propose a protein assembly model with nonlinear kinetics provided by the fluctuation in monomer concentrations during their diffusion. Results When the diffusion process of a monomer is self-limited to give kinetics non-linearity, numerical simulations suggest the probability that the assembly and disassembly oscillate near the critical point. We applied CMT to kinetic analysis of the center manifold around the critical point in detail, and successfully demonstrated bifurcation around the critical point, which explained the observed oscillation. Conclusions The stability kinetics of the present model based on CMT illustrates a unique feature of protein assembly, namely non-linear behavior. Our findings are expected to provide methodology for analysis of biological systems.
Collapse
|
22
|
Zhao ZW, White MD, Bissiere S, Levi V, Plachta N. Quantitative imaging of mammalian transcriptional dynamics: from single cells to whole embryos. BMC Biol 2016; 14:115. [PMID: 28010727 PMCID: PMC5180410 DOI: 10.1186/s12915-016-0331-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Probing dynamic processes occurring within the cell nucleus at the quantitative level has long been a challenge in mammalian biology. Advances in bio-imaging techniques over the past decade have enabled us to directly visualize nuclear processes in situ with unprecedented spatial and temporal resolution and single-molecule sensitivity. Here, using transcription as our primary focus, we survey recent imaging studies that specifically emphasize the quantitative understanding of nuclear dynamics in both time and space. These analyses not only inform on previously hidden physical parameters and mechanistic details, but also reveal a hierarchical organizational landscape for coordinating a wide range of transcriptional processes shared by mammalian systems of varying complexity, from single cells to whole embryos.
Collapse
Affiliation(s)
- Ziqing W Zhao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Melanie D White
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Stephanie Bissiere
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Valeria Levi
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Conicet, Buenos Aires, C1428EHA, Argentina
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore.
| |
Collapse
|
23
|
Li L, Liu H, Dong P, Li D, Legant WR, Grimm JB, Lavis LD, Betzig E, Tjian R, Liu Z. Real-time imaging of Huntingtin aggregates diverting target search and gene transcription. eLife 2016; 5. [PMID: 27484239 PMCID: PMC4972539 DOI: 10.7554/elife.17056] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/07/2016] [Indexed: 01/21/2023] Open
Abstract
The presumptive altered dynamics of transient molecular interactions in vivo contributing to neurodegenerative diseases have remained elusive. Here, using single-molecule localization microscopy, we show that disease-inducing Huntingtin (mHtt) protein fragments display three distinct dynamic states in living cells - 1) fast diffusion, 2) dynamic clustering and 3) stable aggregation. Large, stable aggregates of mHtt exclude chromatin and form 'sticky' decoy traps that impede target search processes of key regulators involved in neurological disorders. Functional domain mapping based on super-resolution imaging reveals an unexpected role of aromatic amino acids in promoting protein-mHtt aggregate interactions. Genome-wide expression analysis and numerical simulation experiments suggest mHtt aggregates reduce transcription factor target site sampling frequency and impair critical gene expression programs in striatal neurons. Together, our results provide insights into how mHtt dynamically forms aggregates and disrupts the finely-balanced gene control mechanisms in neuronal cells.
Collapse
Affiliation(s)
- Li Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,LKS Bio-medical and Health Sciences Center, CIRM Center of Excellence, University of California, Berkeley, United States
| | - Hui Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Peng Dong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Dong Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Wesley R Legant
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Transcription Imaging Consortium, Howard Hughes Medical Institute, Ashburn, United States
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Robert Tjian
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,LKS Bio-medical and Health Sciences Center, CIRM Center of Excellence, University of California, Berkeley, United States.,Transcription Imaging Consortium, Howard Hughes Medical Institute, Ashburn, United States
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Transcription Imaging Consortium, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
24
|
Miorin L, Maiuri P, Marcello A. Visual detection of Flavivirus RNA in living cells. Methods 2016; 98:82-90. [PMID: 26542763 PMCID: PMC7129942 DOI: 10.1016/j.ymeth.2015.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 12/24/2022] Open
Abstract
Flaviviruses include a wide range of important human pathogens delivered by insects or ticks. These viruses have a positive-stranded RNA genome that is replicated in the cytoplasm of the infected cell. The viral RNA genome is the template for transcription by the virally encoded RNA polymerase and for translation of the viral proteins. Furthermore, the double-stranded RNA intermediates of viral replication are believed to trigger the innate immune response through interaction with cytoplasmic cellular sensors. Therefore, understanding the subcellular distribution and dynamics of Flavivirus RNAs is of paramount importance to understand the interaction of the virus with its cellular host, which could be of insect, tick or mammalian, including human, origin. Recent advances on the visualization of Flavivirus RNA in living cells together with the development of methods to measure the dynamic properties of viral RNA are reviewed and discussed in this essay. In particular the application of bleaching techniques such as fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) are analysed in the context of tick-borne encephalitis virus replication. Conclusions driven by this approached are discussed in the wider context Flavivirus infection.
Collapse
MESH Headings
- Animals
- Cell Line
- Cricetinae
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/metabolism
- Encephalitis Viruses, Tick-Borne/ultrastructure
- Fluorescence Recovery After Photobleaching
- Fluorescent Dyes/chemistry
- Gene Expression Regulation, Viral
- Host-Pathogen Interactions
- Humans
- Molecular Imaging/methods
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Staining and Labeling/methods
- Ticks/virology
- Transcription, Genetic
Collapse
Affiliation(s)
- Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paolo Maiuri
- IFOM - Istituto FIRC di Oncologia Molecolare, via Adamello 16, 20139 Milan, Italy
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy.
| |
Collapse
|
25
|
Imaging approaches for analysis of cholesterol distribution and dynamics in the plasma membrane. Chem Phys Lipids 2016; 199:106-135. [PMID: 27016337 DOI: 10.1016/j.chemphyslip.2016.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/04/2016] [Indexed: 11/21/2022]
Abstract
Cholesterol is an important lipid component of the plasma membrane (PM) of mammalian cells, where it is involved in control of many physiological processes, such as endocytosis, cell migration, cell signalling and surface ruffling. In an attempt to explain these functions of cholesterol, several models have been put forward about cholesterol's lateral and transbilayer organization in the PM. In this article, we review imaging techniques developed over the last two decades for assessing the distribution and dynamics of cholesterol in the PM of mammalian cells. Particular focus is on fluorescence techniques to study the lateral and inter-leaflet distribution of suitable cholesterol analogues in the PM of living cells. We describe also several methods for determining lateral cholesterol dynamics in the PM including fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), single particle tracking (SPT) and spot variation FCS coupled to stimulated emission depletion (STED) microscopy. For proper interpretation of such measurements, we provide some background in probe photophysics and diffusion phenomena occurring in cell membranes. In particular, we show the equivalence of the reaction-diffusion approach, as used in FRAP and FCS, and continuous time random walk (CTRW) models, as often invoked in SPT studies. We also discuss mass spectrometry (MS) based imaging of cholesterol in the PM of fixed cells and compare this method with fluorescence imaging of sterols. We conclude that evidence from many experimental techniques converges towards a model of a homogeneous distribution of cholesterol with largely free and unhindered diffusion in both leaflets of the PM.
Collapse
|
26
|
Wüstner D, Lund FW, Röhrl C, Stangl H. Potential of BODIPY-cholesterol for analysis of cholesterol transport and diffusion in living cells. Chem Phys Lipids 2016; 194:12-28. [DOI: 10.1016/j.chemphyslip.2015.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/07/2015] [Accepted: 08/12/2015] [Indexed: 01/04/2023]
|
27
|
Han K, Wang SB, Lei Q, Zhu JY, Zhang XZ. Ratiometric Biosensor for Aggregation-Induced Emission-Guided Precise Photodynamic Therapy. ACS NANO 2015; 9:10268-10277. [PMID: 26348984 DOI: 10.1021/acsnano.5b04243] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photodynamic therapy faces the barrier of choosing the appropriate irradiation region and time. In this paper, a matrix metalloproteinase-2 (MMP-2) responsive ratiometric biosensor was designed and synthesized for aggregation-induced emission (AIE)-guided precise photodynamic therapy. It was found that the biosensor presented the MMP-2 responsive AIE behavior. Most importantly, it could accurately differentiate the tumor cells from the healthy cells by the fluorescence ratio between freed tetraphenylethylene and protoporphyrin IX (PpIX, internal reference). In vivo study demonstrated that the biosensor could preferentially accumulate in the tumor tissue with a relative long blood retention time. Note that the intrinsic fluorescence of PpIX and MMP-2-triggered AIE fluorescence provided a real-time feedback which guided precise photodynamic therapy in vivo efficiently. This strategy demonstrated here opens a window in the precise medicine, especially for phototherapy.
Collapse
Affiliation(s)
- Kai Han
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry and ‡The Institute for Advanced Studies, Wuhan University , Wuhan 430072, China
| | - Shi-Bo Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry and ‡The Institute for Advanced Studies, Wuhan University , Wuhan 430072, China
| | - Qi Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry and ‡The Institute for Advanced Studies, Wuhan University , Wuhan 430072, China
| | - Jing-Yi Zhu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry and ‡The Institute for Advanced Studies, Wuhan University , Wuhan 430072, China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry and ‡The Institute for Advanced Studies, Wuhan University , Wuhan 430072, China
| |
Collapse
|
28
|
Amen T, Kaganovich D. Dynamic droplets: the role of cytoplasmic inclusions in stress, function, and disease. Cell Mol Life Sci 2015; 72:401-415. [PMID: 25283146 PMCID: PMC11113435 DOI: 10.1007/s00018-014-1740-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/16/2014] [Accepted: 09/22/2014] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases and other proteinopathies constitute a class of several dozen illnesses etiologically linked to pathological protein misfolding and aggregation. Because of this strong association with disease pathology, cell death, and aging, accumulation of proteins in aggregates or aggregation-associated structures (inclusions) has come to be regarded by many as a deleterious process, to be avoided if possible. Recent work has led us to see inclusion structures and disordered aggregate-like protein mixtures (which we call dynamic droplets) in a new light: not necessarily as a result of a pathological breakdown of cellular order, but as an elaborate cellular architecture regulating function and stress response. In this review, we discuss what is currently known about the role of inclusion structures in cellular homeostasis, stress response, toxicity, and disease. We will focus on possible mechanisms of aggregate toxicity, in contrast to the homeostatic function of several inclusion structures.
Collapse
Affiliation(s)
- Triana Amen
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Alexander Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Kaganovich
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
29
|
Abstract
When a protein unfolds in the cell, its diffusion coefficient is affected by its increased hydrodynamic radius and by interactions of exposed hydrophobic residues with the cytoplasmic matrix, including chaperones. We characterize protein diffusion by photobleaching whole cells at a single point, and imaging the concentration change of fluorescent-labeled protein throughout the cell as a function of time. As a folded reference protein we use green fluorescent protein. The resulting region-dependent anomalous diffusion is well characterized by 2-D or 3-D diffusion equations coupled to a clustering algorithm that accounts for position-dependent diffusion. Then we study diffusion of a destabilized mutant of the enzyme phosphoglycerate kinase (PGK) and of its stable control inside the cell. Unlike the green fluorescent protein control's diffusion coefficient, PGK's diffusion coefficient is a non-monotonic function of temperature, signaling ‘sticking’ of the protein in the cytosol as it begins to unfold. The temperature-dependent increase and subsequent decrease of the PGK diffusion coefficient in the cytosol is greater than a simple size-scaling model suggests. Chaperone binding of the unfolding protein inside the cell is one plausible candidate for even slower diffusion of PGK, and we test the plausibility of this hypothesis experimentally, although we do not rule out other candidates.
Collapse
|
30
|
Lund FW, Jensen MLV, Christensen T, Nielsen GK, Heegaard CW, Wüstner D. SpatTrack: An Imaging Toolbox for Analysis of Vesicle Motility and Distribution in Living Cells. Traffic 2014; 15:1406-29. [DOI: 10.1111/tra.12228] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Frederik W. Lund
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; DK-5230 Odense M Denmark
- Department of Biochemistry; Weill Medical College of Cornell University; York Ave. 1300 10065 NY USA
| | - Maria Louise V. Jensen
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; DK-5230 Odense M Denmark
| | - Tanja Christensen
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; DK-5230 Odense M Denmark
| | - Gitte K. Nielsen
- Department of Biomedicine; University of Aarhus; DK-8000 Aarhus C. Denmark
| | - Christian W. Heegaard
- Department of Molecular Biology and Genetics; University of Aarhus; DK-8000 Aarhus C. Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; DK-5230 Odense M Denmark
| |
Collapse
|
31
|
Tsuruyama T. A model of cell biological signaling predicts a phase transition of signaling and provides mathematical formulae. PLoS One 2014; 9:e102911. [PMID: 25079957 PMCID: PMC4117461 DOI: 10.1371/journal.pone.0102911] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/25/2014] [Indexed: 11/30/2022] Open
Abstract
A biological signal is transmitted by interactions between signaling molecules in the cell. To date, there have been extensive studies regarding signaling pathways using numerical simulation of kinetic equations that are based on equations of continuity and Fick’s law. To obtain a mathematical formulation of cell signaling, we propose a stability kinetic model of cell biological signaling of a simple two-parameter model based on the kinetics of the diffusion-limiting step. In the present model, the signaling is regulated by the binding of a cofactor, such as ATP. Non-linearity of the kinetics is given by the diffusion fluctuation in the interaction between signaling molecules, which is different from previous works that hypothesized autocatalytic reactions. Numerical simulations showed the presence of a critical concentration of the cofactor beyond which the cell signaling molecule concentration is altered in a chaos-like oscillation with frequency, which is similar to a discontinuous phase transition in physics. Notably, we found that the frequency is given by the logarithm function of the difference of the outside cofactor concentration from the critical concentration. This implies that the outside alteration of the cofactor concentration is transformed into the oscillatory alteration of cell inner signaling. Further, mathematical stability kinetic analysis predicted a discontinuous dynamic phase transition in the critical state at which the cofactor concentration is equivalent to the critical concentration. In conclusion, the present model illustrates a unique feature of cell signaling, and the stability analysis may provide an analytical framework of the cell signaling system and a novel formulation of biological signaling.
Collapse
Affiliation(s)
- Tatsuaki Tsuruyama
- Department of Molecular Pathology, Kyoto University Graduate School of Medicine, Kyoto city, Kyoto Prefecture, Japan
- * E-mail:
| |
Collapse
|
32
|
Wüstner D, Christensen T, Solanko LM, Sage D. Photobleaching kinetics and time-integrated emission of fluorescent probes in cellular membranes. Molecules 2014; 19:11096-130. [PMID: 25076144 PMCID: PMC6271172 DOI: 10.3390/molecules190811096] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/04/2014] [Accepted: 07/10/2014] [Indexed: 12/02/2022] Open
Abstract
Since the pioneering work of Hirschfeld, it is known that time-integrated emission (TiEm) of a fluorophore is independent of fluorescence quantum yield and illumination intensity. Practical implementation of this important result for determining exact probe distribution in living cells is often hampered by the presence of autofluorescence. Using kinetic modelling of photobleaching combined with pixel-wise bleach rate fitting of decay models with an updated plugin to the ImageJ program, it is shown that the TiEm of a fluorophore in living cells can be determined exactly from the product of bleaching amplitude and time constant. This applies to mono-exponential bleaching from the first excited singlet and/or triplet state and to multi-exponential combinations of such processes. The TiEm can be used to correct for illumination shading and background autofluorescence without the need for fluorescent test layers or separate imaging of non-stained cells. We apply the method to simulated images and to images of cells, whose membranes were labelled with fluorescent sterols and sphingolipids. Our bleaching model can be extended to include a probability density function (PDF) of intrinsic bleach rate constants with a memory kernel. This approach results in a time-dependent bleach rate coefficient and is exemplified for fluorescent sterols in restricted intracellular environments, like lipid droplets. We show that for small deviations from the classical exponential bleaching, the TiEm of decay functions with rate coefficients remains largely independent of fluorescence lifetime and illumination, and thereby represents a faithful measure of probe distribution.
Collapse
Affiliation(s)
- Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Tanja Christensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Lukasz M Solanko
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Daniel Sage
- Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
33
|
Solanko LM, Honigmann A, Midtiby HS, Lund FW, Brewer JR, Dekaris V, Bittman R, Eggeling C, Wüstner D. Membrane orientation and lateral diffusion of BODIPY-cholesterol as a function of probe structure. Biophys J 2014; 105:2082-92. [PMID: 24209853 DOI: 10.1016/j.bpj.2013.09.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/26/2013] [Accepted: 09/16/2013] [Indexed: 11/29/2022] Open
Abstract
Cholesterol tagged with the BODIPY fluorophore via the central difluoroboron moiety of the dye (B-Chol) is a promising probe for studying intracellular cholesterol dynamics. We synthesized a new BODIPY-cholesterol probe (B-P-Chol) with the fluorophore attached via one of its pyrrole rings to carbon-24 of cholesterol (B-P-Chol). Using two-photon fluorescence polarimetry in giant unilamellar vesicles and in the plasma membrane (PM) of living intact and actin-disrupted cells, we show that the BODIPY-groups in B-Chol and B-P-Chol are oriented perpendicular and almost parallel to the bilayer normal, respectively. B-Chol is in all three membrane systems much stronger oriented than B-P-Chol. Interestingly, we found that the lateral diffusion in the PM was two times slower for B-Chol than for B-P-Chol, although we found no difference in lateral diffusion in model membranes. Stimulated emission depletion microscopy, performed for the first time, to our knowledge, with fluorescent sterols, revealed that the difference in lateral diffusion of the BODIPY-cholesterol probes was not caused by anomalous subdiffusion, because diffusion of both analogs in the PM was free but not hindered. Our combined measurements show that the position and orientation of the BODIPY moiety in cholesterol analogs have a severe influence on lateral diffusion specifically in the PM of living cells.
Collapse
Affiliation(s)
- Lukasz M Solanko
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
LUND F, WÜSTNER D. A comparison of single particle tracking and temporal image correlation spectroscopy for quantitative analysis of endosome motility. J Microsc 2013; 252:169-88. [DOI: 10.1111/jmi.12080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 02/08/2013] [Indexed: 11/27/2022]
Affiliation(s)
- F.W. LUND
- Department of Biochemistry and Molecular Biology, University of Southern Denmark; DK-5230 Odense M Denmark
| | - D. WÜSTNER
- Department of Biochemistry and Molecular Biology, University of Southern Denmark; DK-5230 Odense M Denmark
| |
Collapse
|