1
|
Lee H, Min JW, Mun S, Han K. Human Retrotransposons and Effective Computational Detection Methods for Next-Generation Sequencing Data. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101583. [PMID: 36295018 PMCID: PMC9605557 DOI: 10.3390/life12101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
Transposable elements (TEs) are classified into two classes according to their mobilization mechanism. Compared to DNA transposons that move by the "cut and paste" mechanism, retrotransposons mobilize via the "copy and paste" method. They have been an essential research topic because some of the active elements, such as Long interspersed element 1 (LINE-1), Alu, and SVA elements, have contributed to the genetic diversity of primates beyond humans. In addition, they can cause genetic disorders by altering gene expression and generating structural variations (SVs). The development and rapid technological advances in next-generation sequencing (NGS) have led to new perspectives on detecting retrotransposon-mediated SVs, especially insertions. Moreover, various computational methods have been developed based on NGS data to precisely detect the insertions and deletions in the human genome. Therefore, this review discusses details about the recently studied and utilized NGS technologies and the effective computational approaches for discovering retrotransposons through it. The final part covers a diverse range of computational methods for detecting retrotransposon insertions with human NGS data. This review will give researchers insights into understanding the TEs and how to investigate them and find connections with research interests.
Collapse
Affiliation(s)
- Haeun Lee
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Korea
| | - Jun Won Min
- Department of Surgery, Dankook University College of Medicine, Cheonan 31116, Korea
| | - Seyoung Mun
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea
- Correspondence: (S.M.); (K.H.)
| | - Kyudong Han
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Korea
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea
- HuNbiome Co., Ltd., R&D Center, Seoul 08507, Korea
- Correspondence: (S.M.); (K.H.)
| |
Collapse
|
2
|
Roca I, González-Castro L, Fernández H, Couce ML, Fernández-Marmiesse A. Free-access copy-number variant detection tools for targeted next-generation sequencing data. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:114-125. [DOI: 10.1016/j.mrrev.2019.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 12/25/2018] [Accepted: 02/22/2019] [Indexed: 01/23/2023]
|
3
|
Yang Y, Xia C, Zhou Z, Wei D, Xu K, Jia J, Xu W, Zhang H. A multiplex ligation‑dependent probe amplification‑based next‑generation sequencing approach for the detection of copy number variations in the human genome. Mol Med Rep 2018; 18:5823-5833. [PMID: 30365071 DOI: 10.3892/mmr.2018.9581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 09/28/2018] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to describe a multiplex ligation‑dependent probe amplification (MLPA)‑based next‑generation sequencing (NGS) assay that exhibited a significantly higher efficiency in detecting copy number variations (CNVs) and known single‑nucleotide variants, compared with traditional MLPA. MLPA polymerase chain reaction products were used to construct a library with indexed adapters, which was subsequently tested on an NGS platform, and the resulting data were analyzed by a series of analytical software. The reads from each probe reflected genetic variations in the target regions, and fragment differentiation was based on the specific base composition of the sequences, rather than fragment length, which was determined by capillary electrophoresis. The results of this approach were not only consistent with the MLPA results following capillary electrophoresis, but also coincided with the CNV results from the single‑nucleotide polymorphism array chip. This method allowed high‑throughput screening for the number of fragments and samples by integrating additional indices for detection. Furthermore, this technology precisely and accurately performed large‑scale detection and quantification of DNA variations, thereby serving as an effective and sensitive method for diagnosing genetic disorders caused by CNVs and known single‑nucleotide variations. Notably, MLPA‑NGS circumvents the problems associated with the inaccuracies of NGS in CNV detection due to the use of target sequence capture.
Collapse
Affiliation(s)
- Yongchen Yang
- Department of Laboratory Medicine, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Chaoran Xia
- Shanghai Institute of Medical Genetics, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Zaiwei Zhou
- Product Department, WuXi Health Net Co., Ltd., Shanghai 200131, P.R. China
| | - Dongkai Wei
- BasePair Biotechnology Co., Ltd., Suzhou, Jiangsu 215028, P.R. China
| | - Kangping Xu
- BasePair Biotechnology Co., Ltd., Suzhou, Jiangsu 215028, P.R. China
| | - Jia Jia
- Shanghai Center for Bioinformation Technology, Shanghai Institutes of Biomedicine, Shanghai Academy of Science and Technology, Shanghai 201203, P.R. China
| | - Wuhen Xu
- Department of Laboratory Medicine, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Hong Zhang
- Department of Laboratory Medicine, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| |
Collapse
|
4
|
Gambin T, Akdemir ZC, Yuan B, Gu S, Chiang T, Carvalho CMB, Shaw C, Jhangiani S, Boone PM, Eldomery MK, Karaca E, Bayram Y, Stray-Pedersen A, Muzny D, Charng WL, Bahrambeigi V, Belmont JW, Boerwinkle E, Beaudet AL, Gibbs RA, Lupski JR. Homozygous and hemizygous CNV detection from exome sequencing data in a Mendelian disease cohort. Nucleic Acids Res 2017; 45:1633-1648. [PMID: 27980096 PMCID: PMC5389578 DOI: 10.1093/nar/gkw1237] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/29/2016] [Indexed: 11/14/2022] Open
Abstract
We developed an algorithm, HMZDelFinder, that uses whole exome sequencing (WES) data to identify rare and intragenic homozygous and hemizygous (HMZ) deletions that may represent complete loss-of-function of the indicated gene. HMZDelFinder was applied to 4866 samples in the Baylor–Hopkins Center for Mendelian Genomics (BHCMG) cohort and detected 773 HMZ deletion calls (567 homozygous or 206 hemizygous) with an estimated sensitivity of 86.5% (82% for single-exonic and 88% for multi-exonic calls) and precision of 78% (53% single-exonic and 96% for multi-exonic calls). Out of 773 HMZDelFinder-detected deletion calls, 82 were subjected to array comparative genomic hybridization (aCGH) and/or breakpoint PCR and 64 were confirmed. These include 18 single-exon deletions out of which 8 were exclusively detected by HMZDelFinder and not by any of seven other CNV detection tools examined. Further investigation of the 64 validated deletion calls revealed at least 15 pathogenic HMZ deletions. Of those, 7 accounted for 17–50% of pathogenic CNVs in different disease cohorts where 7.1–11% of the molecular diagnosis solved rate was attributed to CNVs. In summary, we present an algorithm to detect rare, intragenic, single-exon deletion CNVs using WES data; this tool can be useful for disease gene discovery efforts and clinical WES analyses.
Collapse
Affiliation(s)
- Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Institute of Computer Science, Warsaw University of Technology, Warsaw, 00-665 Warsaw, Poland
| | - Zeynep C Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Theodore Chiang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chad Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Philip M Boone
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mohammad K Eldomery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Division for Pediatric and Adolescent Medicine, Oslo University Hospital, N-0424 Oslo, Norway
| | - Donna Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wu-Lin Charng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vahid Bahrambeigi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Graduate Program in Diagnostic Genetics, School of Health Professions, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.,Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
5
|
White SJ, Laros JF, Bakker E, Cambon‐Thomsen A, Eden M, Leonard S, Lochmüller H, Matthijs G, Mattocks C, Patton S, Payne K, Scheffer H, Souche E, Thomassen E, Thompson R, Traeger‐Synodinos J, Vooren S, Janssen B, den Dunnen JT. Critical points for an accurate human genome analysis. Hum Mutat 2017; 38:912-921. [DOI: 10.1002/humu.23238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/13/2017] [Accepted: 04/23/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Stefan J. White
- Department of Human Genetics, Leiden University Medical Center The Netherlands
| | - Jeroen F.J. Laros
- Department of Human Genetics, Leiden University Medical Center The Netherlands
- Clinical GeneticsLeiden University Medical Center The Netherlands
- GenomeScan Leiden The Netherlands
| | - Egbert Bakker
- Clinical GeneticsLeiden University Medical Center The Netherlands
| | - Anne Cambon‐Thomsen
- Epidemiology and Public Health Analyses, Inserm and Université Toulouse III Paul Sabatier Toulouse UMR 1027 France
| | - Martin Eden
- Manchester Centre for Health Economics, University of Manchester Manchester UK
| | - Samantha Leonard
- Epidemiology and Public Health Analyses, Inserm and Université Toulouse III Paul Sabatier Toulouse UMR 1027 France
| | - Hanns Lochmüller
- Institute of Genetic Medicine, Newcastle University Newcastle upon Tyne UK
| | | | | | - Simon Patton
- Central Manchester University Hospitals Foundation Trust, EMQN Manchester UK
| | - Katherine Payne
- Manchester Centre for Health Economics, University of Manchester Manchester UK
| | | | | | - Ellen Thomassen
- Department of Human Genetics, Leiden University Medical Center The Netherlands
| | - Rachel Thompson
- Institute of Genetic Medicine, Newcastle University Newcastle upon Tyne UK
| | | | | | | | - Johan T. den Dunnen
- Department of Human Genetics, Leiden University Medical Center The Netherlands
- Clinical GeneticsLeiden University Medical Center The Netherlands
| |
Collapse
|
6
|
McCarrey JR, Lehle JD, Raju SS, Wang Y, Nilsson EE, Skinner MK. Tertiary Epimutations - A Novel Aspect of Epigenetic Transgenerational Inheritance Promoting Genome Instability. PLoS One 2016; 11:e0168038. [PMID: 27992467 PMCID: PMC5167269 DOI: 10.1371/journal.pone.0168038] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/23/2016] [Indexed: 11/29/2022] Open
Abstract
Exposure to environmental factors can induce the epigenetic transgenerational inheritance of disease. Alterations to the epigenome termed “epimutations” include “primary epimutations” which are epigenetic alterations in the absence of genetic change and “secondary epimutations” which form following an initial genetic change. To determine if secondary epimutations contribute to transgenerational transmission of disease following in utero exposure to the endocrine disruptor vinclozolin, we exposed pregnant female rats carrying the lacI mutation-reporter transgene to vinclozolin and assessed the frequency of mutations in kidney tissue and sperm recovered from F1 and F3 generation progeny. Our results confirm that vinclozolin induces primary epimutations rather than secondary epimutations, but also suggest that some primary epimutations can predispose a subsequent accelerated accumulation of genetic mutations in F3 generation descendants that have the potential to contribute to transgenerational phenotypes. We therefore propose the existence of “tertiary epimutations” which are initial primary epimutations that promote genome instability leading to an accelerated accumulation of genetic mutations.
Collapse
Affiliation(s)
- John R. McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX United States of America
- * E-mail:
| | - Jake D. Lehle
- Department of Biology, University of Texas at San Antonio, San Antonio, TX United States of America
| | - Seetha S. Raju
- Department of Biology, University of Texas at San Antonio, San Antonio, TX United States of America
| | - Yufeng Wang
- Department of Biology, University of Texas at San Antonio, San Antonio, TX United States of America
| | - Eric E. Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA United States of America
| |
Collapse
|
7
|
Skinner MK, Guerrero-Bosagna C, Haque MM. Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations. Epigenetics 2016; 10:762-71. [PMID: 26237076 PMCID: PMC4622673 DOI: 10.1080/15592294.2015.1062207] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A variety of environmental factors have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. This involves the germline transmission of epigenetic information between generations. Exposure specific transgenerational sperm epimutations have been previously observed. The current study was designed to investigate the potential role genetic mutations have in the process, using copy number variations (CNV). In the first (F1) generation following exposure, negligible CNV were identified; however, in the transgenerational F3 generation, a significant increase in CNV was observed in the sperm. The genome-wide locations of differential DNA methylation regions (epimutations) and genetic mutations (CNV) were investigated. Observations suggest the environmental induction of the epigenetic transgenerational inheritance of sperm epimutations promote genome instability, such that genetic CNV mutations are acquired in later generations. A combination of epigenetics and genetics is suggested to be involved in the transgenerational phenotypes. The ability of environmental factors to promote epigenetic inheritance that subsequently promotes genetic mutations is a significant advance in our understanding of how the environment impacts disease and evolution.
Collapse
Affiliation(s)
- Michael K Skinner
- a Center for Reproductive Biology; School of Biological Sciences; Washington State University ; Pullman , WA USA
| | | | | |
Collapse
|
8
|
Lyon KF, Strong CL, Schooler SG, Young RJ, Roy N, Ozar B, Bachmeier M, Rajasekaran S, Schiller MR. Natural variability of minimotifs in 1092 people indicates that minimotifs are targets of evolution. Nucleic Acids Res 2015; 43:6399-412. [PMID: 26068475 PMCID: PMC4513861 DOI: 10.1093/nar/gkv580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 04/17/2015] [Accepted: 05/21/2015] [Indexed: 01/05/2023] Open
Abstract
Since the function of a short contiguous peptide minimotif can be introduced or eliminated by a single point mutation, these functional elements may be a source of human variation and a target of selection. We analyzed the variability of ∼300 000 minimotifs in 1092 human genomes from the 1000 Genomes Project. Most minimotifs have been purified by selection, with a 94% invariance, which supports important functional roles for minimotifs. Minimotifs are generally under negative selection, possessing high genomic evolutionary rate profiling (GERP) and sitewise likelihood-ratio (SLR) scores. Some are subject to neutral drift or positive selection, similar to coding regions. Most SNPs in minimotif were common variants, but with minor allele frequencies generally <10%. This was supported by low substation rates and few newly derived minimotifs. Several minimotif alleles showed different intercontinental and regional geographic distributions, strongly suggesting a role for minimotifs in adaptive evolution. We also note that 4% of PTM minimotif sites in histone tails were common variants, which has the potential to differentially affect DNA packaging among individuals. In conclusion, minimotifs are a source of functional genetic variation in the human population; thus, they are likely to be an important target of selection and evolution.
Collapse
Affiliation(s)
- Kenneth F Lyon
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| | - Christy L Strong
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| | - Steve G Schooler
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| | - Richard J Young
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269-2155, USA
| | - Nervik Roy
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| | - Brittany Ozar
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| | - Mark Bachmeier
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| | - Sanguthevar Rajasekaran
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269-2155, USA
| | - Martin R Schiller
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| |
Collapse
|
9
|
Deep intronic GPR143 mutation in a Japanese family with ocular albinism. Sci Rep 2015; 5:11334. [PMID: 26061757 PMCID: PMC4650666 DOI: 10.1038/srep11334] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/21/2015] [Indexed: 11/08/2022] Open
Abstract
Deep intronic mutations are often ignored as possible causes of human disease. Using whole-exome sequencing, we analysed genomic DNAs of a Japanese family with two male siblings affected by ocular albinism and congenital nystagmus. Although mutations or copy number alterations of coding regions were not identified in candidate genes, the novel intronic mutation c.659-131 T > G within GPR143 intron 5 was identified as hemizygous in affected siblings and as heterozygous in the unaffected mother. This mutation was predicted to create a cryptic splice donor site within intron 5 and activate a cryptic acceptor site at 41nt upstream, causing the insertion into the coding sequence of an out-of-frame 41-bp pseudoexon with a premature stop codon in the aberrant transcript, which was confirmed by minigene experiments. This result expands the mutational spectrum of GPR143 and suggests the utility of next-generation sequencing integrated with in silico and experimental analyses for improving the molecular diagnosis of this disease.
Collapse
|
10
|
Wang W, Wang W, Sun W, Crowley JJ, Szatkiewicz JP. Allele-specific copy-number discovery from whole-genome and whole-exome sequencing. Nucleic Acids Res 2015; 43:e90. [PMID: 25883151 PMCID: PMC4538801 DOI: 10.1093/nar/gkv319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/27/2015] [Indexed: 11/14/2022] Open
Abstract
Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/.
Collapse
Affiliation(s)
- WeiBo Wang
- Department of Computer Science, University of North Carolina at Chapel Hill, NC 27599-3175, USA
| | - Wei Wang
- Department of Computer Science, University of California, Los Angeles, CA 90095, USA
| | - Wei Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, NC 27599-7400, USA
| | - James J Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, NC 27599-7264, USA
| | - Jin P Szatkiewicz
- Department of Genetics, University of North Carolina at Chapel Hill, NC 27599-7264, USA
| |
Collapse
|
11
|
Meienberg J, Zerjavic K, Keller I, Okoniewski M, Patrignani A, Ludin K, Xu Z, Steinmann B, Carrel T, Röthlisberger B, Schlapbach R, Bruggmann R, Matyas G. New insights into the performance of human whole-exome capture platforms. Nucleic Acids Res 2015; 43:e76. [PMID: 25820422 PMCID: PMC4477645 DOI: 10.1093/nar/gkv216] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/03/2015] [Indexed: 11/18/2022] Open
Abstract
Whole exome sequencing (WES) is increasingly used in research and diagnostics. WES users expect coverage of the entire coding region of known genes as well as sufficient read depth for the covered regions. It is, however, unknown which recent WES platform is most suitable to meet these expectations. We present insights into the performance of the most recent standard exome enrichment platforms from Agilent, NimbleGen and Illumina applied to six different DNA samples by two sequencing vendors per platform. Our results suggest that both Agilent and NimbleGen overall perform better than Illumina and that the high enrichment performance of Agilent is stable among samples and between vendors, whereas NimbleGen is only able to achieve vendor- and sample-specific best exome coverage. Moreover, the recent Agilent platform overall captures more coding exons with sufficient read depth than NimbleGen and Illumina. Due to considerable gaps in effective exome coverage, however, the three platforms cannot capture all known coding exons alone or in combination, requiring improvement. Our data emphasize the importance of evaluation of updated platform versions and suggest that enrichment-free whole genome sequencing can overcome the limitations of WES in sufficiently covering coding exons, especially GC-rich regions, and in characterizing structural variants.
Collapse
Affiliation(s)
- Janine Meienberg
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich CH-8952, Switzerland
| | - Katja Zerjavic
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich CH-8952, Switzerland
| | - Irene Keller
- Department of Clinical Research, University of Berne, Berne CH-3010, Switzerland
| | - Michal Okoniewski
- Functional Genomics Center Zurich, Zurich CH-8057, Switzerland Division of Scientific IT Services, ETH Zurich, Zurich CH-8092, Switzerland
| | | | - Katja Ludin
- Division of Medical Genetics, Center for Laboratory Medicine, Aarau CH-5001, Switzerland
| | - Zhenyu Xu
- Sophia Genetics SA, Lausanne CH-1015, Switzerland
| | - Beat Steinmann
- Division of Metabolism, University Children's Hospital, Zurich CH-8032, Switzerland
| | - Thierry Carrel
- Department of Cardiovascular Surgery, University Hospital, Berne CH-3010, Switzerland
| | - Benno Röthlisberger
- Division of Medical Genetics, Center for Laboratory Medicine, Aarau CH-5001, Switzerland
| | | | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Berne, Berne CH-3012, Switzerland
| | - Gabor Matyas
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich CH-8952, Switzerland Department of Cardiovascular Surgery, University Hospital, Berne CH-3010, Switzerland Zurich Center for Integrative Human Physiology, University of Zurich, Zurich CH-8057, Switzerland
| |
Collapse
|
12
|
Hwang MY, Moon S, Heo L, Kim YJ, Oh JH, Kim YJ, Kim YK, Lee J, Han BG, Kim BJ. Combinatorial approach to estimate copy number genotype using whole-exome sequencing data. Genomics 2014; 105:145-9. [PMID: 25535679 DOI: 10.1016/j.ygeno.2014.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/08/2014] [Accepted: 12/16/2014] [Indexed: 11/29/2022]
Abstract
Copy number variations (CNVs) are known risk factors in complex diseases. Array-based approaches have been widely used to detect CNVs, but limitations of array-based CNV detection methods, such as noisy signal and low resolution, have hindered detection of small CNVs. Recently, the development of next-generation sequencing techniques has increased rapidly owing to declines in cost. Particularly, whole-exome sequencing has proved useful for finding causal genes and variants in complex diseases. Because gene copy number may affect expression, CNV genotyping can be very valuable in disease association studies. However, almost all current CNV detection tools consider only two types of CNV genotypes. In this study, we propose a CNV genotype estimation approach using a combination of existing methods. Our approach was comprehensively compared with the customized Agilent array-comparative genomic hybridization. We found that our genotyping approach proved to be accurate, and reproducible, suggesting that it can complement existing CNV genotyping methods.
Collapse
Affiliation(s)
- Mi Yeong Hwang
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, 361-951, Republic of Korea
| | - Sanghoon Moon
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, 361-951, Republic of Korea
| | - Lyong Heo
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, 361-951, Republic of Korea
| | - Young Jin Kim
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, 361-951, Republic of Korea
| | - Ji Hee Oh
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, 361-951, Republic of Korea
| | - Yeon-Jung Kim
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, 361-951, Republic of Korea
| | - Yun Kyoung Kim
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, 361-951, Republic of Korea
| | - Juyoung Lee
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, 361-951, Republic of Korea
| | - Bok-Ghee Han
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, 361-951, Republic of Korea
| | - Bong-Jo Kim
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, 361-951, Republic of Korea.
| |
Collapse
|
13
|
Bayer DK, Martinez CA, Sorte HS, Forbes LR, Demmler-Harrison GJ, Hanson IC, Pearson NM, Noroski LM, Zaki SR, Bellini WJ, Leduc MS, Yang Y, Eng CM, Patel A, Rodningen OK, Muzny DM, Gibbs RA, Campbell IM, Shaw CA, Baker MW, Zhang V, Lupski JR, Orange JS, Seeborg FO, Stray-Pedersen A. Vaccine-associated varicella and rubella infections in severe combined immunodeficiency with isolated CD4 lymphocytopenia and mutations in IL7R detected by tandem whole exome sequencing and chromosomal microarray. Clin Exp Immunol 2014; 178:459-69. [PMID: 25046553 PMCID: PMC4238873 DOI: 10.1111/cei.12421] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2014] [Indexed: 12/22/2022] Open
Abstract
In areas without newborn screening for severe combined immunodeficiency (SCID), disease-defining infections may lead to diagnosis, and in some cases, may not be identified prior to the first year of life. We describe a female infant who presented with disseminated vaccine-acquired varicella (VZV) and vaccine-acquired rubella infections at 13 months of age. Immunological evaluations demonstrated neutropenia, isolated CD4 lymphocytopenia, the presence of CD8(+) T cells, poor lymphocyte proliferation, hypergammaglobulinaemia and poor specific antibody production to VZV infection and routine immunizations. A combination of whole exome sequencing and custom-designed chromosomal microarray with exon coverage of primary immunodeficiency genes detected compound heterozygous mutations (one single nucleotide variant and one intragenic copy number variant involving one exon) within the IL7R gene. Mosaicism for wild-type allele (20-30%) was detected in pretransplant blood and buccal DNA and maternal engraftment (5-10%) demonstrated in pretransplant blood DNA. This may be responsible for the patient's unusual immunological phenotype compared to classical interleukin (IL)-7Rα deficiency. Disseminated VZV was controlled with anti-viral and immune-based therapy, and umbilical cord blood stem cell transplantation was successful. Retrospectively performed T cell receptor excision circle (TREC) analyses completed on neonatal Guthrie cards identified absent TREC. This case emphasizes the danger of live viral vaccination in severe combined immunodeficiency (SCID) patients and the importance of newborn screening to identify patients prior to high-risk exposures. It also illustrates the value of aggressive pathogen identification and treatment, the influence newborn screening can have on morbidity and mortality and the significant impact of newer genomic diagnostic tools in identifying the underlying genetic aetiology for SCID patients.
Collapse
Affiliation(s)
- D K Bayer
- Department of Pediatrics, Section of Immunology, Allergy, and Rheumatology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Retterer K, Scuffins J, Schmidt D, Lewis R, Pineda-Alvarez D, Stafford A, Schmidt L, Warren S, Gibellini F, Kondakova A, Blair A, Bale S, Matyakhina L, Meck J, Aradhya S, Haverfield E. Assessing copy number from exome sequencing and exome array CGH based on CNV spectrum in a large clinical cohort. Genet Med 2014; 17:623-9. [PMID: 25356966 DOI: 10.1038/gim.2014.160] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/01/2014] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Detection of copy-number variation (CNV) is important for investigating many genetic disorders. Testing a large clinical cohort by array comparative genomic hybridization provides a deep perspective on the spectrum of pathogenic CNV. In this context, we describe a bioinformatics approach to extract CNV information from whole-exome sequencing and demonstrate its utility in clinical testing. METHODS Exon-focused arrays and whole-genome chromosomal microarray analysis were used to test 14,228 and 14,000 individuals, respectively. Based on these results, we developed an algorithm to detect deletions/duplications in whole-exome sequencing data and a novel whole-exome array. RESULTS In the exon array cohort, we observed a positive detection rate of 2.4% (25 duplications, 318 deletions), of which 39% involved one or two exons. Chromosomal microarray analysis identified 3,345 CNVs affecting single genes (18%). We demonstrate that our whole-exome sequencing algorithm resolves CNVs of three or more exons. CONCLUSION These results demonstrate the clinical utility of single-exon resolution in CNV assays. Our whole-exome sequencing algorithm approaches this resolution but is complemented by a whole-exome array to unambiguously identify intragenic CNVs and single-exon changes. These data illustrate the next advancements in CNV analysis through whole-exome sequencing and whole-exome array.Genet Med 17 8, 623-629.
Collapse
|
15
|
Wu J, Lee WP, Ward A, Walker JA, Konkel MK, Batzer MA, Marth GT. Tangram: a comprehensive toolbox for mobile element insertion detection. BMC Genomics 2014; 15:795. [PMID: 25228379 PMCID: PMC4180832 DOI: 10.1186/1471-2164-15-795] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 09/03/2014] [Indexed: 11/10/2022] Open
Abstract
Background Mobile elements (MEs) constitute greater than 50% of the human genome as a result of repeated insertion events during human genome evolution. Although most of these elements are now fixed in the population, some MEs, including ALU, L1, SVA and HERV-K elements, are still actively duplicating. Mobile element insertions (MEIs) have been associated with human genetic disorders, including Crohn’s disease, hemophilia, and various types of cancer, motivating the need for accurate MEI detection methods. To comprehensively identify and accurately characterize these variants in whole genome next-generation sequencing (NGS) data, a computationally efficient detection and genotyping method is required. Current computational tools are unable to call MEI polymorphisms with sufficiently high sensitivity and specificity, or call individual genotypes with sufficiently high accuracy. Results Here we report Tangram, a computationally efficient MEI detection program that integrates read-pair (RP) and split-read (SR) mapping signals to detect MEI events. By utilizing SR mapping in its primary detection module, a feature unique to this software, Tangram is able to pinpoint MEI breakpoints with single-nucleotide precision. To understand the role of MEI events in disease, it is essential to produce accurate individual genotypes in clinical samples. Tangram is able to determine sample genotypes with very high accuracy. Using simulations and experimental datasets, we demonstrate that Tangram has superior sensitivity, specificity, breakpoint resolution and genotyping accuracy, when compared to other, recently developed MEI detection methods. Conclusions Tangram serves as the primary MEI detection tool in the 1000 Genomes Project, and is implemented as a highly portable, memory-efficient, easy-to-use C++ computer program, built under an open-source development model.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gabor T Marth
- Department of Human Genetics and USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
16
|
Alsmadi O, John SE, Thareja G, Hebbar P, Antony D, Behbehani K, Thanaraj TA. Genome at juncture of early human migration: a systematic analysis of two whole genomes and thirteen exomes from Kuwaiti population subgroup of inferred Saudi Arabian tribe ancestry. PLoS One 2014; 9:e99069. [PMID: 24896259 PMCID: PMC4045902 DOI: 10.1371/journal.pone.0099069] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 05/10/2014] [Indexed: 01/19/2023] Open
Abstract
Population of the State of Kuwait is composed of three genetic subgroups of inferred Persian, Saudi Arabian tribe and Bedouin ancestry. The Saudi Arabian tribe subgroup traces its origin to the Najd region of Saudi Arabia. By sequencing two whole genomes and thirteen exomes from this subgroup at high coverage (>40X), we identify 4,950,724 Single Nucleotide Polymorphisms (SNPs), 515,802 indels and 39,762 structural variations. Of the identified variants, 10,098 (8.3%) exomic SNPs, 139,923 (2.9%) non-exomic SNPs, 5,256 (54.3%) exomic indels, and 374,959 (74.08%) non-exomic indels are 'novel'. Up to 8,070 (79.9%) of the reported novel biallelic exomic SNPs are seen in low frequency (minor allele frequency <5%). We observe 5,462 known and 1,004 novel potentially deleterious nonsynonymous SNPs. Allele frequencies of common SNPs from the 15 exomes is significantly correlated with those from genotype data of a larger cohort of 48 individuals (Pearson correlation coefficient, 0.91; p <2.2×10-16). A set of 2,485 SNPs show significantly different allele frequencies when compared to populations from other continents. Two notable variants having risk alleles in high frequencies in this subgroup are: a nonsynonymous deleterious SNP (rs2108622 [19:g.15990431C>T] from CYP4F2 gene [MIM:*604426]) associated with warfarin dosage levels [MIM:#122700] required to elicit normal anticoagulant response; and a 3' UTR SNP (rs6151429 [22:g.51063477T>C]) from ARSA gene [MIM:*607574]) associated with Metachromatic Leukodystrophy [MIM:#250100]. Hemoglobin Riyadh variant (identified for the first time in a Saudi Arabian woman) is observed in the exome data. The mitochondrial haplogroup profiles of the 15 individuals are consistent with the haplogroup diversity seen in Saudi Arabian natives, who are believed to have received substantial gene flow from Africa and eastern provenance. We present the first genome resource imperative for designing future genetic studies in Saudi Arabian tribe subgroup. The full-length genome sequences and the identified variants are available at ftp://dgr.dasmaninstitute.org and http://dgr.dasmaninstitute.org/DGR/gb.html.
Collapse
Affiliation(s)
- Osama Alsmadi
- Dasman Diabetes Institute, Dasman, Kuwait
- * E-mail: (TAT); (OA)
| | | | | | | | | | | | | |
Collapse
|
17
|
Longoni M, Marangi G, Zollino M. Utility and Challenges of Next Generation Sequencing in Pediatric Disorders. CURRENT PEDIATRICS REPORTS 2014. [DOI: 10.1007/s40124-014-0039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Fromer M, Purcell SM. Using XHMM Software to Detect Copy Number Variation in Whole-Exome Sequencing Data. CURRENT PROTOCOLS IN HUMAN GENETICS 2014; 81:7.23.1-7.23.21. [PMID: 24763994 PMCID: PMC4065038 DOI: 10.1002/0471142905.hg0723s81] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Copy number variation (CNV) has emerged as an important genetic component in human diseases, which are increasingly being studied for large numbers of samples by sequencing the coding regions of the genome, i.e., exome sequencing. Nonetheless, detecting this variation from such targeted sequencing data is a difficult task, involving sorting out signal from noise, for which we have recently developed a set of statistical and computational tools called XHMM. In this unit, we give detailed instructions on how to run XHMM and how to use the resulting CNV calls in biological analyses.
Collapse
Affiliation(s)
- Menachem Fromer
- Division of Psychiatric Genomics and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA,Stanley Center for Psychiatric Research and Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA,Analytic and Translational Genetics Unit, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Shaun M. Purcell
- Division of Psychiatric Genomics and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA,Stanley Center for Psychiatric Research and Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA,Analytic and Translational Genetics Unit, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| |
Collapse
|
19
|
Lango Allen H, Caswell R, Xie W, Xu X, Wragg C, Turnpenny PD, Turner CLS, Weedon MN, Ellard S. Next generation sequencing of chromosomal rearrangements in patients with split-hand/split-foot malformation provides evidence for DYNC1I1 exonic enhancers of DLX5/6 expression in humans. J Med Genet 2014; 51:264-7. [PMID: 24459211 PMCID: PMC3963551 DOI: 10.1136/jmedgenet-2013-102142] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective Split-hand/foot malformation type 1 is an autosomal dominant condition with reduced penetrance and variable expression. We report three individuals from two families with split-hand/split-foot malformation (SHFM) in whom next generation sequencing was performed to investigate the cause of their phenotype. Methods and results The first proband has a de novo balanced translocation t(2;7)(p25.1;q22) identified by karyotyping. Whole genome sequencing showed that the chromosome 7 breakpoint is situated within the SHFM1 locus on chromosome 7q21.3. This separates the DYNC1I1 exons recently identified as limb enhancers in mouse studies from their target genes, DLX5 and DLX6. In the second family, X-linked recessive inheritance was suspected and exome sequencing was performed to search for a mutation in the affected proband and his uncle. No coding mutation was found within the SHFM2 locus at Xq26 or elsewhere in the exome, but a 106 kb deletion within the SHFM1 locus was detected through copy number analysis. Genome sequencing of the deletion breakpoints showed that the DLX5 and DLX6 genes are disomic but the putative DYNC1I1 exon 15 and 17 enhancers are deleted. Conclusions Exome sequencing identified a 106 kb deletion that narrows the SHFM1 critical region from 0.9 to 0.1 Mb and confirms a key role of DYNC1I1 exonic enhancers in normal limb formation in humans.
Collapse
Affiliation(s)
- Hana Lango Allen
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liang WS, Aldrich J, Tembe W, Kurdoglu A, Cherni I, Phillips L, Reiman R, Baker A, Weiss GJ, Carpten JD, Craig DW. Long insert whole genome sequencing for copy number variant and translocation detection. Nucleic Acids Res 2013; 42:e8. [PMID: 24071583 PMCID: PMC3902897 DOI: 10.1093/nar/gkt865] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
As next-generation sequencing continues to have an expanding presence in the clinic, the identification of the most cost-effective and robust strategy for identifying copy number changes and translocations in tumor genomes is needed. We hypothesized that performing shallow whole genome sequencing (WGS) of 900–1000-bp inserts (long insert WGS, LI-WGS) improves our ability to detect these events, compared with shallow WGS of 300–400-bp inserts. A priori analyses show that LI-WGS requires less sequencing compared with short insert WGS to achieve a target physical coverage, and that LI-WGS requires less sequence coverage to detect a heterozygous event with a power of 0.99. We thus developed an LI-WGS library preparation protocol based off of Illumina’s WGS library preparation protocol and illustrate the feasibility of performing LI-WGS. We additionally applied LI-WGS to three separate tumor/normal DNA pairs collected from patients diagnosed with different cancers to demonstrate our application of LI-WGS on actual patient samples for identification of somatic copy number alterations and translocations. With the evolution of sequencing technologies and bioinformatics analyses, we show that modifications to current approaches may improve our ability to interrogate cancer genomes.
Collapse
Affiliation(s)
- Winnie S Liang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA, Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA and Cancer Treatment Centers of America, Medical Oncology, Goodyear, AZ, 85338, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Increased CNV-region deletions in mild cognitive impairment (MCI) and Alzheimer's disease (AD) subjects in the ADNI sample. Genomics 2013; 102:112-22. [PMID: 23583670 DOI: 10.1016/j.ygeno.2013.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/22/2013] [Accepted: 04/03/2013] [Indexed: 11/22/2022]
Abstract
We investigated the genome-wide distribution of CNVs in the Alzheimer's disease (AD) Neuroimaging Initiative (ADNI) sample (146 with AD, 313 with Mild Cognitive Impairment (MCI), and 181 controls). Comparison of single CNVs between cases (MCI and AD) and controls shows overrepresentation of large heterozygous deletions in cases (p-value<0.0001). The analysis of CNV-Regions identifies 44 copy number variable loci of heterozygous deletions, with more CNV-Regions among affected than controls (p=0.005). Seven of the 44 CNV-Regions are nominally significant for association with cognitive impairment. We validated and confirmed our main findings with genome re-sequencing of selected patients and controls. The functional pathway analysis of the genes putatively affected by deletions of CNV-Regions reveals enrichment of genes implicated in axonal guidance, cell-cell adhesion, neuronal morphogenesis and differentiation. Our findings support the role of CNVs in AD, and suggest an association between large deletions and the development of cognitive impairment.
Collapse
|