1
|
Bleker C, Grady SK, Langston MA. A Comparative Study of Gene Co-Expression Thresholding Algorithms. J Comput Biol 2024; 31:539-548. [PMID: 38781420 DOI: 10.1089/cmb.2024.0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
The thresholding problem is studied in the context of graph theoretical analysis of gene co-expression data. A number of thresholding methodologies are described, implemented, and tested over a large collection of graphs derived from real high-throughput biological data. Comparative results are presented and discussed.
Collapse
Affiliation(s)
- Carissa Bleker
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Stephen K Grady
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Michael A Langston
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
2
|
A comparison of human and mouse gene co-expression networks reveals conservation and divergence at the tissue, pathway and disease levels. BMC Evol Biol 2015; 15:259. [PMID: 26589719 PMCID: PMC4654840 DOI: 10.1186/s12862-015-0534-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
Background A deeper understanding of differences and similarities in transcriptional regulation between species can uncover important information about gene functions and the role of genes in disease. Deciphering such patterns between mice and humans is especially important since mice play an essential role in biomedical research. Results Here, in order to characterize evolutionary changes between humans and mice, we compared gene co-expression maps to evaluate the conservation of co-expression. We show that the conservation of co-expression connectivity of homologous genes is negatively correlated with molecular evolution rates, as expected. Then we investigated evolutionary aspects of gene sets related to functions, tissues, pathways and diseases. Genes expressed in the testis, eye and skin, and those associated with regulation of transcription, olfaction, PI3K signalling, response to virus and bacteria were more divergent between mice and humans in terms of co-expression connectivity. Surprisingly, a deeper investigation of the PI3K signalling cascade revealed that its divergence is caused by the most crucial genes of this pathway, such as mTOR and AKT2. On the other hand, our analysis revealed that genes expressed in the brain and in the bone, and those associated with cell adhesion, cell cycle, DNA replication and DNA repair are most strongly conserved in terms of co-expression network connectivity as well as having a lower rate of duplication events. Genes involved in lipid metabolism and genes specific to blood showed a signature of increased co-expression connectivity in the mouse. In terms of diseases, co-expression connectivity of genes related to metabolic disorders is the most strongly conserved between mice and humans and tumor-related genes the most divergent. Conclusions This work contributes to discerning evolutionary patterns between mice and humans in terms of gene interactions. Conservation of co-expression is a powerful approach to identify gene targets and processes with potential similarity and divergence between mice and humans, which has implications for drug testing and other studies employing the mouse as a model organism. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0534-7) contains supplementary material, which is available to authorized users.
Collapse
|
3
|
Molineris I, Ala U, Provero P, Di Cunto F. Drug repositioning for orphan genetic diseases through Conserved Anticoexpressed Gene Clusters (CAGCs). BMC Bioinformatics 2013; 14:288. [PMID: 24088245 PMCID: PMC3851137 DOI: 10.1186/1471-2105-14-288] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/24/2013] [Indexed: 12/12/2022] Open
Abstract
Background The development of new therapies for orphan genetic diseases represents an extremely important medical and social challenge. Drug repositioning, i.e. finding new indications for approved drugs, could be one of the most cost- and time-effective strategies to cope with this problem, at least in a subset of cases. Therefore, many computational approaches based on the analysis of high throughput gene expression data have so far been proposed to reposition available drugs. However, most of these methods require gene expression profiles directly relevant to the pathologic conditions under study, such as those obtained from patient cells and/or from suitable experimental models. In this work we have developed a new approach for drug repositioning, based on identifying known drug targets showing conserved anti-correlated expression profiles with human disease genes, which is completely independent from the availability of ‘ad hoc’ gene expression data-sets. Results By analyzing available data, we provide evidence that the genes displaying conserved anti-correlation with drug targets are antagonistically modulated in their expression by treatment with the relevant drugs. We then identified clusters of genes associated to similar phenotypes and showing conserved anticorrelation with drug targets. On this basis, we generated a list of potential candidate drug-disease associations. Importantly, we show that some of the proposed associations are already supported by independent experimental evidence. Conclusions Our results support the hypothesis that the identification of gene clusters showing conserved anticorrelation with drug targets can be an effective method for drug repositioning and provide a wide list of new potential drug-disease associations for experimental validation.
Collapse
Affiliation(s)
- Ivan Molineris
- Molecular Biotechnology Centre, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.
| | | | | | | |
Collapse
|
4
|
Bianchi FT, Camera P, Ala U, Imperiale D, Migheli A, Boda E, Tempia F, Berto G, Bosio Y, Oddo S, LaFerla FM, Taraglio S, Dotti CG, Di Cunto F. The collagen chaperone HSP47 is a new interactor of APP that affects the levels of extracellular beta-amyloid peptides. PLoS One 2011; 6:e22370. [PMID: 21829458 PMCID: PMC3145648 DOI: 10.1371/journal.pone.0022370] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/27/2011] [Indexed: 01/08/2023] Open
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder characterized by progressive decline of cognitive function that represents one of the most dramatic medical challenges for the aging population. Aβ peptides, generated by processing of the Amyloid Precursor Protein (APP), are thought to play a central role in the pathogenesis of AD. However, the network of physical and functional interactions that may affect their production and deposition is still poorly understood. The use of a bioinformatic approach based on human/mouse conserved coexpression allowed us to identify a group of genes that display an expression profile strongly correlated with APP. Among the most prominent candidates, we investigated whether the collagen chaperone HSP47 could be functionally correlated with APP. We found that HSP47 accumulates in amyloid deposits of two different mouse models and of some AD patients, is capable to physically interact with APP and can be relocalized by APP overexpression. Notably, we found that it is possible to reduce the levels of secreted Aβ peptides by reducing the expression of HSP47 or by interfering with its activity via chemical inhibitors. Our data unveil HSP47 as a new functional interactor of APP and imply it as a potential target for preventing the formation and/or growth amyloid plaques.
Collapse
Affiliation(s)
- Federico T. Bianchi
- Department of Genetics, Biology and Biochemistry, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Paola Camera
- Department of Genetics, Biology and Biochemistry, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Ugo Ala
- Department of Genetics, Biology and Biochemistry, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | | | | | - Enrica Boda
- Department of Neurosciences, University of Torino, Torino, Italy
| | - Filippo Tempia
- Department of Neurosciences, University of Torino, Torino, Italy
| | - Gaia Berto
- Department of Genetics, Biology and Biochemistry, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Ylenia Bosio
- Department of Genetics, Biology and Biochemistry, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Salvatore Oddo
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Frank M. LaFerla
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, California, United States of America
| | | | - Carlos G. Dotti
- VIB Department of Molecular and Developmental Genetics and Katholieke Universiteit Leuven, Department of Human Genetics, Leuven, Belgium
| | - Ferdinando Di Cunto
- Department of Genetics, Biology and Biochemistry, Molecular Biotechnology Center, University of Torino, Torino, Italy
- * E-mail:
| |
Collapse
|
5
|
An atlas of tissue-specific conserved coexpression for functional annotation and disease gene prediction. Eur J Hum Genet 2011; 19:1173-80. [PMID: 21654723 DOI: 10.1038/ejhg.2011.96] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Gene coexpression relationships that are phylogenetically conserved between human and mouse have been shown to provide important clues about gene function that can be efficiently used to identify promising candidate genes for human hereditary disorders. In the past, such approaches have considered mostly generic gene expression profiles that cover multiple tissues and organs. The individual genes of multicellular organisms, however, can participate in different transcriptional programs, operating at scales as different as single-cell types, tissues, organs, body regions or the entire organism. Therefore, systematic analysis of tissue-specific coexpression could be, in principle, a very powerful strategy to dissect those functional relationships among genes that emerge only in particular tissues or organs. In this report, we show that, in fact, conserved coexpression as determined from tissue-specific and condition-specific data sets can predict many functional relationships that are not detected by analyzing heterogeneous microarray data sets. More importantly, we find that, when combined with disease networks, the simultaneous use of both generic (multi-tissue) and tissue-specific conserved coexpression allows a more efficient prediction of human disease genes than the use of generic conserved coexpression alone. Using this strategy, we were able to identify high-probability candidates for 238 orphan disease loci. We provide proof of concept that this combined use of generic and tissue-specific conserved coexpression can be very useful to prioritize the mutational candidates obtained from deep-sequencing projects, even in the case of genetic disorders as heterogeneous as XLMR.
Collapse
|
6
|
A symphony of regulations centered on p63 to control development of ectoderm-derived structures. J Biomed Biotechnol 2011; 2011:864904. [PMID: 21716671 PMCID: PMC3118300 DOI: 10.1155/2011/864904] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 01/25/2011] [Accepted: 03/16/2011] [Indexed: 12/27/2022] Open
Abstract
The p53-related transcription factor p63 is critically important for basic cellular functions during development of the ectoderm and derived structure and tissues, including skin, limb, palate, and hair. On the one side, p63 is required to sustain the proliferation of keratinocyte progenitors, while on the other side it is required for cell stratification, commitment to differentiate, cell adhesion, and epithelial-mesenchymal signaling. Molecules that are components or regulators of the p63 pathway(s) are rapidly being identified, and it comes with no surprise that alterations in the p63 pathway lead to congenital conditions in which the skin and other ectoderm-derived structures are affected. In this paper, we summarize the current knowledge of the molecular and cellular regulations centered on p63, derived from the comprehension of p63-linked human diseases and the corresponding animal models, as well as from cellular models and high-throughput molecular approaches. We point out common themes and features, that allow to speculate on the possible role of p63 downstream events and their potential exploitation in future attempts to correct the congenital defect in preclinical studies.
Collapse
|
7
|
Wnt5a is a transcriptional target of Dlx homeogenes and promotes differentiation of interneuron progenitors in vitro and in vivo. J Neurosci 2011; 31:2675-87. [PMID: 21325536 DOI: 10.1523/jneurosci.3110-10.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During brain development, neurogenesis, migration, and differentiation of neural progenitor cells are regulated by an interplay between intrinsic genetic programs and extrinsic cues. The Dlx homeogene transcription factors have been proposed to directly control the genesis and maturation of GABAergic interneurons of the olfactory bulb (OB), subpallium, and cortex. Here we provide evidence that Dlx genes promote differentiation of olfactory interneurons via the signaling molecule Wnt5a. Dlx2 and Dlx5 interact with homeodomain binding sequences within the Wnt5a locus and activate its transcription. Exogenously provided Wnt5a promotes GABAergic differentiation in dissociated OB neurons and in organ-type brain cultures. Finally, we show that the Dlx-mutant environment is unfavorable for GABA differentiation, in vivo and in vitro. We conclude that Dlx genes favor interneuron differentiation also in a non-cell-autonomous fashion, via expression of Wnt5a.
Collapse
|
8
|
Miozzi L, Provero P, Accotto GP. ORTom: a multi-species approach based on conserved co-expression to identify putative functional relationships among genes in tomato. PLANT MOLECULAR BIOLOGY 2010; 73:519-532. [PMID: 20411302 DOI: 10.1007/s11103-010-9638-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 04/11/2010] [Indexed: 05/29/2023]
Abstract
Co-expressed genes are often expected to be functionally related and many bioinformatics approaches based on co-expression have been developed to infer their biological role. However, such annotations may be unreliable, whereas the evolutionary conservation of gene co-expression among species may form a basis for more confident predictions. The huge amount of expression data (microarrays, SAGE, ESTs) has already allowed functional studies based on conserved co-expression in animals. Up to now, the implementation of analogous tools for plants has been strongly limited probably by the paucity and heterogeneity of data. Here we present ORTom, a tomato-centred EST data-mining approach based on conserved co-expression in the Solanaceae family. ORTom can be used to predict functional relationships among genes and to prioritize candidate genes for targeted studies. The method consists in ranking ESTs co-expressed with a gene of interest according to the level of expression pattern conservation in phylogenetically-related plants (potato, tobacco and pepper) to obtain lists of putative functionally-related genes. The lists are then analyzed for Gene Ontology keyword enrichment. The web server ORTom has been implemented to make the results publicly-available and searchable. Few biological examples on how the tool can be used are presented.
Collapse
Affiliation(s)
- Laura Miozzi
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135 Turin, Italy.
| | | | | |
Collapse
|
9
|
Forlani G, Giarda E, Ala U, Di Cunto F, Salani M, Tupler R, Kilstrup-Nielsen C, Landsberger N. The MeCP2/YY1 interaction regulates ANT1 expression at 4q35: novel hints for Rett syndrome pathogenesis. Hum Mol Genet 2010; 19:3114-23. [PMID: 20504995 DOI: 10.1093/hmg/ddq214] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rett syndrome is a severe neurodevelopmental disorder mainly caused by mutations in the transcriptional regulator MeCP2. Although there is no effective therapy for Rett syndrome, the recently discovered disease reversibility in mice suggests that there are therapeutic possibilities. Identification of MeCP2 targets or modifiers of the phenotype can facilitate the design of curative strategies. To identify possible novel MeCP2 interactors, we exploited a bioinformatic approach and selected Ying Yang 1 (YY1) as an interesting candidate. We demonstrate that MeCP2 interacts in vitro and in vivo with YY1, a ubiquitous zinc-finger epigenetic factor regulating the expression of several genes. We show that MeCP2 cooperates with YY1 in repressing the ANT1 gene encoding a mitochondrial adenine nucleotide translocase. Importantly, ANT1 mRNA levels are increased in human and mouse cell lines devoid of MeCP2, in Rett patient fibroblasts and in the brain of Mecp2-null mice. We further demonstrate that ANT1 protein levels are upregulated in Mecp2-null mice. Finally, the identified MeCP2-YY1 interaction, together with the well-known involvement of YY1 in the regulation of D4Z4-associated genes at 4q35, led us to discover the anomalous depression of FRG2, a subtelomeric gene of unknown function, in Rett fibroblasts. Collectively, our data indicate that mutations in MeCP2 might cause the aberrant overexpression of genes located at a specific locus, thus providing new candidates for the pathogenesis of Rett syndrome. As both ANT1 mutations and overexpression have been associated with human diseases, we consider it highly relevant to address the consequences of ANT1 deregulation in Rett syndrome.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Structural and Functional Biology, University of Insubria, 21052 Busto Arsizio, VA, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
The RhoU/Wrch1 Rho GTPase gene is a common transcriptional target of both the gp130/STAT3 and Wnt-1 pathways. Biochem J 2009; 421:283-92. [PMID: 19397496 DOI: 10.1042/bj20090061] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
STAT3 (signal transducer and activator of transcription 3) is a transcription factor activated by cytokines, growth factors and oncogenes, whose activity is required for cell survival/proliferation of a wide variety of primary tumours and tumour cell lines. Prominent among its multiple effects on tumour cells is the stimulation of cell migration and metastasis, whose functional mechanisms are however not completely characterized. RhoU/Wrch1 (Wnt-responsive Cdc42 homologue) is an atypical Rho GTPase thought to be constitutively bound to GTP. RhoU was first identified as a Wnt-1-inducible mRNA and subsequently shown to act on the actin cytoskeleton by stimulating filopodia formation and stress fibre dissolution. It was in addition recently shown to localize to focal adhesions and to Src-induced podosomes and enhance cell migration. RhoU overexpression in mammary epithelial cells stimulates quiescent cells to re-enter the cell cycle and morphologically phenocopies Wnt-1-dependent transformation. In the present study we show that Wnt-1-mediated RhoU induction occurs at the transcriptional level. Moreover, we demonstrate that RhoU can also be induced by gp130 cytokines via STAT3, and we identify two functional STAT3-binding sites on the mouse RhoU promoter. RhoU induction by Wnt-1 is independent of beta-catenin, but does not involve STAT3. Rather, it is mediated by the Wnt/planar cell polarity pathway through the activation of JNK (c-Jun N-terminal kinase). Both the so-called non-canonical Wnt pathway and STAT3 are therefore able to induce RhoU, which in turn may be involved in mediating their effects on cell migration.
Collapse
|
11
|
Lelandais G, Tanty V, Geneix C, Etchebest C, Jacq C, Devaux F. Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata. Genome Biol 2008; 9:R164. [PMID: 19025642 PMCID: PMC2614496 DOI: 10.1186/gb-2008-9-11-r164] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 11/24/2008] [Indexed: 12/21/2022] Open
Abstract
Comparative transcriptomics of Saccharomyces cerevisiae and Candida glabrata revealed a remarkable conservation of response to drug-induced stress, despite underlying differences in the regulatory networks. Background Recent technical and methodological advances have placed microbial models at the forefront of evolutionary and environmental genomics. To better understand the logic of genetic network evolution, we combined comparative transcriptomics, a differential clustering algorithm and promoter analyses in a study of the evolution of transcriptional networks responding to an antifungal agent in two yeast species: the free-living model organism Saccharomyces cerevisiae and the human pathogen Candida glabrata. Results We found that although the gene expression patterns characterizing the response to drugs were remarkably conserved between the two species, part of the underlying regulatory networks differed. In particular, the roles of the oxidative stress response transcription factors ScYap1p (in S. cerevisiae) and Cgap1p (in C. glabrata) had diverged. The sets of genes whose benomyl response depends on these factors are significantly different. Also, the DNA motifs targeted by ScYap1p and Cgap1p are differently represented in the promoters of these genes, suggesting that the DNA binding properties of the two proteins are slightly different. Experimental assays of ScYap1p and Cgap1p activities in vivo were in accordance with this last observation. Conclusions Based on these results and recently published data, we suggest that the robustness of environmental stress responses among related species contrasts with the rapid evolution of regulatory sequences, and depends on both the coevolution of transcription factor binding properties and the versatility of regulatory associations within transcriptional networks.
Collapse
Affiliation(s)
- Gaëlle Lelandais
- Equipe de Bioinformatique Génomique et Moléculaire, INSERM UMR S726, Université Paris 7, INTS, 6 rue Alexandre Cabanel, 75015 Paris, France.
| | | | | | | | | | | |
Collapse
|
12
|
The mammalian CHORD-containing protein melusin is a stress response protein interacting with Hsp90 and Sgt1. FEBS Lett 2008; 582:1788-94. [DOI: 10.1016/j.febslet.2008.04.058] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/27/2008] [Accepted: 04/14/2008] [Indexed: 11/20/2022]
|
13
|
Ala U, Piro RM, Grassi E, Damasco C, Silengo L, Oti M, Provero P, Di Cunto F. Prediction of human disease genes by human-mouse conserved coexpression analysis. PLoS Comput Biol 2008; 4:e1000043. [PMID: 18369433 PMCID: PMC2268251 DOI: 10.1371/journal.pcbi.1000043] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 02/20/2008] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene expression data may represent a very important resource to identify the best candidates for sequencing. However, so far, gene coexpression has not been used very successfully to prioritize positional candidates. METHODOLOGY/PRINCIPAL FINDINGS We show that it is possible to reliably identify disease-relevant relationships among genes from massive microarray datasets by concentrating only on genes sharing similar expression profiles in both human and mouse. Moreover, we show systematically that the integration of human-mouse conserved coexpression with a phenotype similarity map allows the efficient identification of disease genes in large genomic regions. Finally, using this approach on 850 OMIM loci characterized by an unknown molecular basis, we propose high-probability candidates for 81 genetic diseases. CONCLUSION Our results demonstrate that conserved coexpression, even at the human-mouse phylogenetic distance, represents a very strong criterion to predict disease-relevant relationships among human genes.
Collapse
Affiliation(s)
- Ugo Ala
- Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Rosario Michael Piro
- Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Elena Grassi
- Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Christian Damasco
- Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Lorenzo Silengo
- Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Martin Oti
- Department of Human Genetics and Centre for Molecular and Biomolecular Informatics, University Medical Centre Nijmegen, Nijmegen, The Netherlands
| | - Paolo Provero
- Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
- * E-mail: (PP); (FDC)
| | - Ferdinando Di Cunto
- Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
- * E-mail: (PP); (FDC)
| |
Collapse
|
14
|
Zanivan S, Cascone I, Peyron C, Molineris I, Marchio S, Caselle M, Bussolino F. A new computational approach to analyze human protein complexes and predict novel protein interactions. Genome Biol 2008; 8:R256. [PMID: 18053208 PMCID: PMC2246258 DOI: 10.1186/gb-2007-8-12-r256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 11/14/2007] [Accepted: 12/04/2007] [Indexed: 11/20/2022] Open
Abstract
A new approach to identifying interacting proteins based on gene-expression data uses hypergeometric distribution and Monte-Carlo simulations. We propose a new approach to identify interacting proteins based on gene expression data. By using hypergeometric distribution and extensive Monte-Carlo simulations, we demonstrate that looking at synchronous expression peaks in a single time interval is a high sensitivity approach to detect co-regulation among interacting proteins. Combining gene expression and Gene Ontology similarity analyses enabled the extraction of novel interactions from microarray datasets. Applying this approach to p21-activated kinase 1, we validated α-tubulin and early endosome antigen 1 as its novel interactors.
Collapse
Affiliation(s)
- Sara Zanivan
- Department of Oncological Sciences and Division of Molecular Angiogenesis, Institute for Cancer Research and Treatment (IRCC), University of Torino Medical School, Strada Provinciale, I-10060 Candiolo (Turin), Italy.
| | | | | | | | | | | | | |
Collapse
|
15
|
Costa C, Barberis L, Ambrogio C, Manazza AD, Patrucco E, Azzolino O, Neilsen PO, Ciraolo E, Altruda F, Prestwich GD, Chiarle R, Wymann M, Ridley A, Hirsch E. Negative feedback regulation of Rac in leukocytes from mice expressing a constitutively active phosphatidylinositol 3-kinase gamma. Proc Natl Acad Sci U S A 2007; 104:14354-9. [PMID: 17720808 PMCID: PMC1952139 DOI: 10.1073/pnas.0703175104] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Polarization of chemotaxing cells depends on positive feedback loops that amplify shallow gradients of chemoattractants into sharp intracellular responses. In particular, reciprocal activation of phosphatidylinositol 3-kinases (PI3Ks) and small GTPases like Rac leads to accumulation, at the leading edge, of the PI3K product phosphatidylinositol 3,4,5-trisphosphate (PIP3). Mice carrying a "knockin" allele of the G protein-coupled receptor (GPCR)-activated PI3Kgamma, encoding a plasma membrane-targeted protein appeared normal, but their leukocytes showed GPCR-uncoupled PIP3 accumulation. In vivo, the mutation increased proliferation and decreased apoptosis, leading to leukocytosis and delayed resolution of inflammation in wound healing. Mutant leukocytes showed significantly impaired directional cell migration in response to chemoattractants. Stimulated mutant macrophages did not polarize PIP3 and showed a shortened Rac activation because of enhanced PI3K-dependent activation of RacGAPs. Together with the finding that chemoattractants stimulate a PIP3-dependent GAP activation in wild-type macrophages, these results identify a molecular mechanism involving PI3K- and RacGAP-dependent negative control of Rac that limits and fine-tunes feedback loops promoting cell polarization and directional motility.
Collapse
Affiliation(s)
- Carlotta Costa
- *Dipartimento di Genetica, Biologia e Biochimica, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Laura Barberis
- *Dipartimento di Genetica, Biologia e Biochimica, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Chiara Ambrogio
- Department of Biomedical Sciences and Human Oncology and Research Center on Experimental Medicine (CeRMS), University of Torino, Via Santena 7, 10126 Torino, Italy
| | - Andrea D. Manazza
- Department of Biomedical Sciences and Human Oncology and Research Center on Experimental Medicine (CeRMS), University of Torino, Via Santena 7, 10126 Torino, Italy
| | - Enrico Patrucco
- *Dipartimento di Genetica, Biologia e Biochimica, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Ornella Azzolino
- *Dipartimento di Genetica, Biologia e Biochimica, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Paul O. Neilsen
- Echelon Biosciences Incorporated, 675 Arapeen Drive, Suite 302, Salt Lake City, UT 84108
| | - Elisa Ciraolo
- *Dipartimento di Genetica, Biologia e Biochimica, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Fiorella Altruda
- *Dipartimento di Genetica, Biologia e Biochimica, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Glenn D. Prestwich
- Department of Medicinal Chemistry, University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108
| | - Roberto Chiarle
- Department of Biomedical Sciences and Human Oncology and Research Center on Experimental Medicine (CeRMS), University of Torino, Via Santena 7, 10126 Torino, Italy
| | - Matthias Wymann
- Institute of Biochemistry and Genetics, Department of Clinical and Biological Sciences, Centre of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland; and
| | - Anne Ridley
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, 91 Riding House Street, London W1W 7BS, United Kingdom
| | - Emilio Hirsch
- *Dipartimento di Genetica, Biologia e Biochimica, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
- Department of Biomedical Sciences and Human Oncology and Research Center on Experimental Medicine (CeRMS), University of Torino, Via Santena 7, 10126 Torino, Italy
- **To whom correspondence should be addressed: E-mail:
| |
Collapse
|
16
|
Chong A, Zhang Z, Choi KP, Choudhary V, Djamgoz MBA, Zhang G, Bajic VB. Promoter profiling and coexpression data analysis identifies 24 novel genes that are coregulated with AMPA receptor genes, GRIAs. Genomics 2007; 89:378-84. [PMID: 17208408 DOI: 10.1016/j.ygeno.2006.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 11/14/2006] [Accepted: 11/24/2006] [Indexed: 11/17/2022]
Abstract
We identified a set of transcriptional elements that are conserved and overrepresented within the promoters of human, mouse, and rat GRIAs by comparing these promoters against a collection of 10,741 gene promoters. Cells regulate functional groups of genes by coordinating the transcriptional and/or posttranscriptional mRNA levels of interacting genes. As such, it is expected that functional groups of genes share the same transcriptional features within their promoters. We found 47 genes whose promoters contain the same combination of transcriptional elements that are overrepresented within the promoters of the GRIA gene family. Coexpressed genes may be transcriptionally coregulated, which in turn suggests that these genes may play complementary roles within a particular functional context. Using microarray expression data, we found 24 (of the 47) genes that share not only a similar promoter profile with GRIAs but also a well-correlated gene expression profile and, thus, we believe these to be coregulated with GRIAs.
Collapse
Affiliation(s)
- Allen Chong
- Molecular Bioinformatics Group, Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613, Singapore.
| | | | | | | | | | | | | |
Collapse
|
17
|
Caldo RA, Nettleton D, Peng J, Wise RP. Stage-specific suppression of basal defense discriminates barley plants containing fast- and delayed-acting Mla powdery mildew resistance alleles. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:939-47. [PMID: 16941898 DOI: 10.1094/mpmi-19-0939] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nonspecific recognition of pathogen-derived general elicitors triggers the first line of plant basal defense, which in turn, preconditions the host towards resistance or susceptibility. To elucidate how basal defense responses influence the onset of Mla (mildew resistance locus a)-specified resistance, we performed a meta-analysis of GeneChip mRNA expression for 155 basal defense-related genes of barley (Hordeum vulgare) challenged with Blumeria graminis f. sp. hordei, the causal agent of powdery mildew disease. In plants containing the fast-acting Mla1, Mla6, or Mla13 alleles, transcripts hyper-accumulated from 0 to 16 h after inoculation (hai) in both compatible and incompatible interactions. Suppression of basal defense-related transcripts was observed after 16 hai only in compatible interactions, whereas these transcripts were sustained or increased in incompatible interactions. By contrast, in plants containing wild-type and mutants of the delayed-acting Mla12 allele, an early hyper-induction of transcripts from 0 to 8 hai was observed, but the expression of many of these genes is markedly suppressed from 8 to 16 hai. These results suggest that the inhibition of basal defense facilitates the development of haustoria by the pathogen, consequently delaying the onset of host resistance responses. Thus, we hypothesize that the regulation of basal defense influences host-cell accessibility to the fungal pathogen and drives allelic diversification of gene-specific resistance phenotypes.
Collapse
Affiliation(s)
- Rico A Caldo
- Department of Plant Pathology, Center for Plant Responses to Environmental Stresses, USDA-ARS, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
18
|
Olivero M, Ruggiero T, Saviozzi S, Rasola A, Coltella N, Crispi S, Di Cunto F, Calogero R, Di Renzo MF. Genes regulated by hepatocyte growth factor as targets to sensitize ovarian cancer cells to cisplatin. Mol Cancer Ther 2006; 5:1126-35. [PMID: 16731744 DOI: 10.1158/1535-7163.mct-06-0013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Advanced ovarian cancers are initially responsive to chemotherapy with platinum drugs but develop drug resistance in most cases. We showed recently that hepatocyte growth factor (HGF) enhances death of human ovarian cancer cell lines treated with cisplatin (CDDP) and that this effect is mediated by the p38 mitogen-activated protein kinase. In this work, we integrated genome-wide expression profiling, in silico data survey, and functional assays to identify transcripts regulated in SK-OV-3 ovarian cancer cells made more responsive to CDDP by HGF. Using oligonucleotide microarrays, we found that HGF pretreatment changes the transcriptional response to CDDP. Quantitative reverse transcription-PCR not only validated all the 15 most differentially expressed genes but also confirmed that they were primarily modulated by the combined treatment with HGF and CDDP and reversed by suppressing p38 mitogen-activated protein kinase activity. Among the differentially expressed genes, we focused functional analysis on two regulatory subunits of the protein phosphatase 2A, which were down-modulated by HGF plus CDDP. Decrease of each subunit by RNA interference made ovarian cancer cells more responsive to CDDP, mimicking the effect of HGF. In conclusion, we show that HGF and CDDP modulate transcription in ovarian cancer cells and that this transcriptional response is involved in apoptosis regulation. We also provide the proof-of-concept that the identified genes might be targeted to either increase the efficacy of chemotherapeutics or revert chemotherapy resistance.
Collapse
Affiliation(s)
- Martina Olivero
- Laboratory of Cancer Genetics, Institute for Cancer Research and Treatment, University of Torino School of Medicine, SP 142, KM 3.95, 10060, Candiolo (Torino), Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fagoonee S, Di Cunto F, Vozzi D, Volinia S, Pellegrino M, Gasparini P, Silengo L, Altruda F, Tolosano E. Microarray and Large-ScaleIn Silico–Based Identification of Genes Functionally Related to Haptoglobin and/or Hemopexin. DNA Cell Biol 2006; 25:323-30. [PMID: 16792502 DOI: 10.1089/dna.2006.25.323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Haptoglobin and Hemopexin are plasma acute phase proteins that bind with high-affinity hemoglobin and heme, respectively. They play a key role in the protection against oxidative stress and inflammation. To dissect in more detail the mechanism of action of Haptoglobin and Hemopexin, it is important to identify their downstream effectors as well as genes functionally related to them. To this end, we performed a cDNA microarray analysis to compare gene expression profiles of the liver of Haptoglobin and Hemopexin single and double null mice to that of wild-type controls. Then, to extract the best candidates considered to be functionally related to Haptoglobin and/or Hemopexin from microarray-derived gene lists, we used a bioinformatic approach consisting in the screening of published microarray data for genes showing coexpression with Haptoglobin or Hemopexin. This strategy allowed us to identify a group of genes coexpressed with Haptoglobin or Hemopexin and transcriptionally modulated by their lack. These genes present a high probability to be functionally related to Haptoglobin and Hemopexin. Based on literature data, we picked up from this group of genes the ras suppressor Rsu1, the member of the G-protein signal transduction family Gnai2, and the cytokine Mdk as the best candidates mediating the anti-inflammatory action of Haptoglobin and Hemopexin.
Collapse
Affiliation(s)
- Sharmila Fagoonee
- Department of Genetics, Biology, and Biochemistry, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|