1
|
Villette V, Chavarha M, Dimov IK, Bradley J, Pradhan L, Mathieu B, Evans SW, Chamberland S, Shi D, Yang R, Kim BB, Ayon A, Jalil A, St-Pierre F, Schnitzer MJ, Bi G, Toth K, Ding J, Dieudonné S, Lin MZ. Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice. Cell 2020; 179:1590-1608.e23. [PMID: 31835034 DOI: 10.1016/j.cell.2019.11.004] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 07/08/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Abstract
Optical interrogation of voltage in deep brain locations with cellular resolution would be immensely useful for understanding how neuronal circuits process information. Here, we report ASAP3, a genetically encoded voltage indicator with 51% fluorescence modulation by physiological voltages, submillisecond activation kinetics, and full responsivity under two-photon excitation. We also introduce an ultrafast local volume excitation (ULoVE) method for kilohertz-rate two-photon sampling in vivo with increased stability and sensitivity. Combining a soma-targeted ASAP3 variant and ULoVE, we show single-trial tracking of spikes and subthreshold events for minutes in deep locations, with subcellular resolution and with repeated sampling over days. In the visual cortex, we use soma-targeted ASAP3 to illustrate cell-type-dependent subthreshold modulation by locomotion. Thus, ASAP3 and ULoVE enable high-speed optical recording of electrical activity in genetically defined neurons at deep locations during awake behavior.
Collapse
Affiliation(s)
- Vincent Villette
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Mariya Chavarha
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Ivan K Dimov
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Bradley
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Lagnajeet Pradhan
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Benjamin Mathieu
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Stephen W Evans
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Simon Chamberland
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, QC G1J 2G3, Canada
| | - Dongqing Shi
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Renzhi Yang
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Biology PhD Program, Stanford University, Stanford, CA 94305, USA
| | - Benjamin B Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Annick Ayon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Abdelali Jalil
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Paris F-75006, France
| | - François St-Pierre
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark J Schnitzer
- CNC Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Guoqiang Bi
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 20031, China
| | - Katalin Toth
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, QC G1J 2G3, Canada
| | - Jun Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Stéphane Dieudonné
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France.
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Patrício D, Fardilha M. The mammalian two-hybrid system as a powerful tool for high-throughput drug screening. Drug Discov Today 2020; 25:764-771. [PMID: 32032707 DOI: 10.1016/j.drudis.2020.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions (PPIs) are the backbone of signaling pathways, responsible for the basis of cell communication and, when deregulated, several diseases. Consequently, identifying and modulating PPIs can unravel the pathophysiological mechanisms of diseases. The two-hybrid system, particularly the mammalian two-hybrid system (MTH), is an efficient technique to validate PPIs ex vivo. Combining MTH with high-throughput screening has a huge advantage in biomedical research. In this review, we describe methodologies developed from MTH and the role of these adaptations in PPI discovery. We also highlight the powerful contribution of MTH to the identification of disease-related PPIs and its use in the development of potential new drug screens.
Collapse
Affiliation(s)
- Daniela Patrício
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Nakamura M, Suzuki A, Akada J, Yarimizu T, Iwakiri R, Hoshida H, Akada R. A Novel Terminator Primer and Enhancer Reagents for Direct Expression of PCR-Amplified Genes in Mammalian Cells. Mol Biotechnol 2016; 57:767-80. [PMID: 25997599 DOI: 10.1007/s12033-015-9870-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Escherichia coli plasmids are commonly used for gene expression experiments in mammalian cells, while PCR-amplified DNAs are rarely used even though PCR is a much faster and easier method to construct recombinant DNAs. One difficulty may be the limited amount of DNA produced by PCR. For direct utilization of PCR-amplified DNA in transfection experiments, efficient transfection with a smaller amount of DNA should be attained. For this purpose, we investigated two enhancer reagents, polyethylene glycol and tRNA, for a chemical transfection method. The addition of the enhancers to a commercial transfection reagent individually and synergistically exhibited higher transfection efficiency applicable for several mammalian cell culture lines in a 96-well plate. By taking advantage of a simple transfection procedure using PCR-amplified DNA, SV40 and rabbit β-globin terminator lengths were minimized. The terminator length is short enough to design in oligonucleotides; thus, terminator primers can be used for the construction and analysis of numerous mutations, deletions, insertions, and tag-fusions at the 3'-terminus of any gene. The PCR-mediated gene manipulation with the terminator primers will transform gene expression by allowing for extremely simple and high-throughput experiments with small-scale, multi-well, and mammalian cell cultures.
Collapse
Affiliation(s)
- Mikiko Nakamura
- Innovation Center, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan,
| | | | | | | | | | | | | |
Collapse
|
4
|
Langer S, Kaminski MT, Lenzen S, Baltrusch S. Endogenous activation of glucokinase by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is glucose dependent. Mol Endocrinol 2010; 24:1988-97. [PMID: 20702580 DOI: 10.1210/me.2010-0115] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucokinase (GK) plays a crucial role as glucose sensor in glucose-induced insulin secretion in pancreatic β-cells. The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) acts as an endogenous GK activator. Therefore, the goal of this study was the analysis of GK-PFK-2/FBPase-2 complex formation and its effect on metabolic stimulus-secretion coupling in β-cells in dependence upon glucose. The interaction between GK and PFK-2/FBPase-2 was analyzed in insulin-secreting MIN6 cells with a new fluorescence-based mammalian two-hybrid system. In contrast to the commonly used mammalian two-hybrid systems that require sampling before detection, the system used allows monitoring of the effects of environmental changes on protein-protein interactions on the single-cell level. Increasing the glucose concentration in the cell culture medium from 3 to 10 and 25 mmol/liter amplified the interaction between the enzymes stepwise. Importantly, in line with these results, overexpression of PFK-2/FBPase-2 in MIN6 cells evoked only at 10 and 25 mmol/liter, an increase in insulin secretion. Furthermore, a PFK-2/FBPase-2 mutant with an abolished GK-binding motif neither showed a glucose-dependent GK binding nor was able to increase insulin secretion. The results obtained with the mammalian two-hybrid system could be confirmed by fluorescence resonance energy transfer experiments in COS cells. Furthermore, the established interaction between GK and the liver GRP served in all experiments as a control. Thus, this study clearly showed that binding and activation of GK by PFK-2/FBPase-2 in β-cells is promoted by glucose, resulting in an enhancement of insulin secretion at stimulatory glucose concentrations, without affecting basal insulin secretion.
Collapse
Affiliation(s)
- Sara Langer
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | | | | | | |
Collapse
|