1
|
Ota F, Minowa H, Miura R, Murase T, Yamamoto T, Himaki T. Effect of bovine oviductal epithelial cell lysate on the developmental competence and quality of bovine in vitro fertilized embryos. Theriogenology 2025; 236:96-104. [PMID: 39922122 DOI: 10.1016/j.theriogenology.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
In vitro fertilization (IVF) technology for embryo production has been applied in basic research, animal husbandry and medicine. However, the developmental efficiency and quality of embryos produced by IVF are inferior to those produced in vivo. In this study, we investigated the effects of supplementing bovine oviductal epithelial cells (BOEC) lysate during the in vitro culture period on the developmental competence and quality of bovine embryos. IVF embryos were cultured for 4 days post-IVF in medium supplemented with 10 % BOEC lysate at various concentrations (1.0 × 105, 2.0 × 105, and 4.0 × 105 cells/mL) or 10 % PBS (-), which was used to adjust the lysate concentration (control). BOEC lysate at 2.0 × 105 cells/mL significantly increased the blastocyst formation rate compared to that in the control group. Blastocysts from BOEC lysate supplemented groups showed significantly lower apoptosis rate than that in the control group. The ratio of inner cell mass cell number in blastocysts was significantly higher in all BOEC lysate supplemented groups than in the control group. The survival rate after vitrification/thawing was improved in the 1.0 × 105 and 2.0 × 105 cells/mL BOEC lysate supplemented groups. In addition, gene expression analysis of blastocysts showed that 2.0 × 105 cells/mL of BOEC lysate supplementation significantly enhanced the expression of anti-apoptotic genes (BCL2 and BIRC5), antioxidant-related genes (GPX1 and SOD2), and cell differentiation-related genes (SOX2 and OCT4). In conclusion, supplementation with 2.0 × 105 cells/mL BOEC lysate during early in vitro culture improved the developmental competence and quality of bovine IVF embryos.
Collapse
Affiliation(s)
- Funa Ota
- Graduate School of Natural Sciences and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hayato Minowa
- Graduate School of Natural Sciences and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Rina Miura
- Department of Agricultural and Environmental Science, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Tetsuma Murase
- Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Tokunori Yamamoto
- Clinical Research Support Center, Asahikawa Medical University Hospital, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan; Department of Urology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan
| | - Takehiro Himaki
- Graduate School of Natural Sciences and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Department of Agricultural and Environmental Science, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
2
|
Geiselmann A, Micouin A, Vandormael-Pournin S, Laville V, Chervova A, Mella S, Navarro P, Cohen-Tannoudji M. PI3K/AKT signaling controls ICM maturation and proper epiblast and primitive endoderm specification in mice. Dev Cell 2025; 60:204-219.e6. [PMID: 39461340 DOI: 10.1016/j.devcel.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 05/07/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
The inner cell mass (ICM) of early mouse embryos is specified into epiblast (Epi) and primitive endoderm (PrE) lineages during blastocyst formation. The antagonistic transcription factors (TFs) NANOG and GATA-binding protein 6 (GATA6) in combination with fibroblast growth factor (FGF)/extracellular-signal-regulated kinase (ERK) signaling are central actors in ICM fate choice. However, what initiates the specification of ICM progenitors into Epi or PrE and whether other factors are involved in this process has not been fully understood yet. Here, we show that phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) is constitutively active during preimplantation development. Using pharmacological inhibition, we demonstrate that PI3K/AKT enables the formation of a functional ICM capable of giving rise to both the Epi and the PrE: it maintains the expression of the TF NANOG, which specifies the Epi, and confers responsiveness to FGF4, which is essential for PrE specification. Our work thus identifies PI3K/AKT signaling as an upstream regulator controlling the molecular events required for both Epi and PrE specification.
Collapse
Affiliation(s)
- Anna Geiselmann
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Sorbonne Université, Complexité du Vivant, 75005 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France
| | - Adèle Micouin
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France; Université Paris Cité, BioSPC, 75013 Paris, France
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France
| | - Vincent Laville
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 75015 Paris, France; Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Almira Chervova
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France
| | - Sébastien Mella
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Pablo Navarro
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France
| | - Michel Cohen-Tannoudji
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France.
| |
Collapse
|
3
|
Segura-Benítez M, Carbajo-García MC, Quiñonero A, De Los Santos MJ, Pellicer A, Cervelló I, Ferrero H. Endometrial extracellular vesicles regulate processes related to embryo development and implantation in human blastocysts. Hum Reprod 2025; 40:56-68. [PMID: 39576620 DOI: 10.1093/humrep/deae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/26/2024] [Indexed: 01/07/2025] Open
Abstract
STUDY QUESTION What is the transcriptomic response of human blastocysts following internalization of extracellular vesicles (EVs) secreted by the human endometrium? SUMMARY ANSWER EVs secreted by the maternal endometrium induce a transcriptomic response in human embryos that modulates molecular mechanisms related to embryo development and implantation. WHAT IS KNOWN ALREADY EVs mediate intercellular communication by transporting various molecules, and endometrial EVs have been postulated to be involved in the molecular regulation of embryo implantation. Our previous studies showed that endometrial EVs carry miRNAs and proteins associated with implantation events that can be taken up by human blastocysts; however, no studies have yet investigated the transcriptomic response of human embryos to this EV uptake, which is crucial to demonstrate the functional significance of this communication system. STUDY DESIGN, SIZE, DURATION A prospective descriptive study was performed. Primary human endometrial epithelial cells (pHEECs), derived from endometrial biopsies collected from fertile oocyte donors (n = 20), were cultured in vitro to isolate secreted EVs. Following EV characterization, Day 5 human blastocysts (n = 24) were cultured in the presence or absence of the EVs for 24 h and evaluated by RNA-sequencing. PARTICIPANTS/MATERIALS, SETTING, METHODS EVs were isolated from the conditioned culture media using ultracentrifugation, and characterization was performed using western blot, nanoparticle tracking analysis, and transmission electron microscopy. Human blastocysts were devitrified, divided into two groups (n = 12/group), and cultured in vitro for 24 h with or without previously isolated EVs. RNA-sequencing analysis was performed, and DESeq2 was used to identify differentially expressed genes (DEGs) (FDR < 0.05). QIAGEN Ingenuity Pathway Analysis was used to perform the functional enrichment analysis and integration with our recently published data from the pHEECs' EV-miRNA cargo. MAIN RESULTS AND THE ROLE OF CHANCE Characterization confirmed the isolation of EVs from pHEECs' conditioned culture media. Among the DEGs in blastocysts co-cultured with EVs, we found 519 were significantly upregulated and 395 were significantly downregulated. These DEGs were significantly enriched in upregulated functions related to embryonic development, cellular invasion and migration, cell cycle, cellular organization and assembly, gene expression, and cell viability; and downregulated functions related to cell death and DNA fragmentation. Further, the intracellular signaling pathways regulated by the internalization of endometrial EVs were previously related to early embryo development and implantation potential, for their role in pluripotency, cellular homeostasis, early embryogenesis, and implantation-related processes. Finally, integrating data from miRNA cargo of EVs, we found that the miRNAs carried by endometrial EVs targeted nearly 80% of the DEGs in human blastocysts. LIMITATIONS, REASONS FOR CAUTION This is an in vitro study in which conditions of endometrial cell culture could not mimic the intrauterine environment. WIDER IMPLICATIONS OF THE FINDINGS This study provides novel insights into the functional relevance of EVs secreted by the human endometrium, and particularly the role of EV-miRNA regulation on global transcriptome behavior of human blastocysts during early embryogenesis and embryo implantation. It provides potential biomarkers that could become useful diagnostic targets for predicting implantation success. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Spanish Ministry of Education through FPU awarded to M.S.-B. (FPU18/03735), Generalitat Valenciana through VALi+d Programme awarded to M.C.C.-G. (ACIF/2019/139), and Instituto de Salud Carlos III and cofounded by the European Social Fund (ESF) "Investing in your future" through the Miguel Servet Program (CP20/00120 [H.F.]; CP19/00149 [I.C.]). The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Marina Segura-Benítez
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Maria Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Alicia Quiñonero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María José De Los Santos
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Valencia, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Rome, Rome, Italy
| | - Irene Cervelló
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
4
|
Iyer DP, Khoei HH, van der Weijden VA, Kagawa H, Pradhan SJ, Novatchkova M, McCarthy A, Rayon T, Simon CS, Dunkel I, Wamaitha SE, Elder K, Snell P, Christie L, Schulz EG, Niakan KK, Rivron N, Bulut-Karslioğlu A. mTOR activity paces human blastocyst stage developmental progression. Cell 2024; 187:6566-6583.e22. [PMID: 39332412 PMCID: PMC7617234 DOI: 10.1016/j.cell.2024.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/24/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
Many mammals can temporally uncouple conception from parturition by pacing down their development around the blastocyst stage. In mice, this dormant state is achieved by decreasing the activity of the growth-regulating mTOR signaling pathway. It is unknown whether this ability is conserved in mammals in general and in humans in particular. Here, we show that decreasing the activity of the mTOR signaling pathway induces human pluripotent stem cells (hPSCs) and blastoids to enter a dormant state with limited proliferation, developmental progression, and capacity to attach to endometrial cells. These in vitro assays show that, similar to other species, the ability to enter dormancy is active in human cells around the blastocyst stage and is reversible at both functional and molecular levels. The pacing of human blastocyst development has potential implications for reproductive therapies.
Collapse
Affiliation(s)
- Dhanur P Iyer
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heidar Heidari Khoei
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Vera A van der Weijden
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Harunobu Kagawa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Saurabh J Pradhan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Afshan McCarthy
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Teresa Rayon
- Epigenetics & Signalling Programmes, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Claire S Simon
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Ilona Dunkel
- Systems Epigenetics, Otto-Warburg-Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sissy E Wamaitha
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Edda G Schulz
- Systems Epigenetics, Otto-Warburg-Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Kathy K Niakan
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| | - Aydan Bulut-Karslioğlu
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
5
|
Annes K, de Lima CB, Ispada J, dos Santos ÉC, Fontes PK, Nichi M, Nogueira MFG, Sudano MJ, Milazzotto MP. Insulin-like growth factor-1 (IGF-1) selectively modulates the metabolic and lipid profile of bovine embryos according to their kinetics of development. Theriogenology 2023; 204:1-7. [PMID: 37030172 DOI: 10.1016/j.theriogenology.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/12/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Supplementation of culture media with IGF-1 during in vitro culture of embryos has had controversial results over the years. In the present study, we show that differences previously observed in response to IGF addition might be related to intrinsic heterogeneity of the embryos. In other words, the effects exerted by IGF-1 are dependent on the characteristics of the embryos and their ability to modulate metabolism and overcome stressful conditions, such as the ones found in a non-optimized in vitro culture system. To test this hypothesis, in vitro produced bovine embryos with distinct morphokinetics (fast- and slow-cleavage) were submitted to treatment with IGF-1 and then evaluated for embryo production rates, total cell number, gene expression and lipid profile. Our results show that remarkable differences were found when fast and slow embryos treated with IGF-1 were compared. Fast embryos respond by upregulating genes related to mitochondrial function, stress response, and lipid metabolism, whereas slow embryos presented lower mitochondrial efficiency and lipid accumulation. We conclude that indeed the treatment with IGF-1 selectively affects embryonic metabolism according to early morphokinetics phenotypes, and this information is relevant for decision-making in the design of more appropriate in vitro culture systems.
Collapse
|
6
|
Arias ME, Vargas T, Gallardo V, Aguila L, Felmer R. Simple and Efficient Chemically Defined In Vitro Maturation and Embryo Culture System for Bovine Embryos. Animals (Basel) 2022; 12:3057. [PMID: 36359181 PMCID: PMC9654503 DOI: 10.3390/ani12213057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 09/19/2023] Open
Abstract
Supplementation of the culture media for in vitro production (IVP) of bovine embryos with fetal bovine serum (FBS) is associated with inconsistent outcomes. The present study sought to replace FBS and BSA by insulin-like growth factor 1 (IGF1), fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF). In Experiment 1, absence of FBS from maturation medium (MM) did not affect the rate of in vitro maturation, as assessed by the extrusion of the first polar body. However, when gonadotropins and FBS were removed from the MM, the maturation rate was significantly reduced even in the presence of growth factors. Therefore, gonadotropin-supplemented MM medium was established as the base medium for the defined maturation condition. In Experiment 2, the addition of growth factors to gonadotropin-supplemented MM medium supported similar maturation (~90%) compared to the undefined condition (FBS-carrying). In Experiment 3, the addition of growth factors to embryo culture medium showed similar in vitro competence compared to the undefined (FBS) control. In Experiment 4, completely defined conditions (absence of FBS and BSA during in vitro maturation and embryo culture) were tested. A higher cleavage was observed with FGF2 (86%) compared to EGF (77%) and the FBS control (77%), but similar blastocyst rates were observed for FGF2 (24%), EGF (19%) and the FBS control (25%). Embryo quality was similar among groups. Finally, post-thawing survival was higher for FGF2 (94%) compared to the FBS control (77%). Thus, we report a simple defined IVP system for bovine species that generates developmental outcomes and embryos of similar quality than those produced under conditions containing FBS.
Collapse
Affiliation(s)
- María Elena Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile
- Department of Agricultural Production, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco 4811322, Chile
| | - Tamara Vargas
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile
| | - Victor Gallardo
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile
| | - Luis Aguila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco 4811322, Chile
| |
Collapse
|
7
|
Comparative Analyses of Single-Cell Transcriptomic Profiles between In Vitro Totipotent Blastomere-like Cells and In Vivo Early Mouse Embryonic Cells. Cells 2021; 10:cells10113111. [PMID: 34831338 PMCID: PMC8621967 DOI: 10.3390/cells10113111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 01/23/2023] Open
Abstract
The developmental potential within pluripotent cells in the canonical model is restricted to embryonic tissues, whereas totipotent cells can differentiate into both embryonic and extraembryonic tissues. Currently, the ability to culture in vitro totipotent cells possessing molecular and functional features like those of an early embryo in vivo has been a challenge. Recently, it was reported that treatment with a single spliceosome inhibitor, pladienolide B (plaB), can successfully reprogram mouse pluripotent stem cells into totipotent blastomere-like cells (TBLCs) in vitro. The TBLCs exhibited totipotency transcriptionally and acquired expanded developmental potential with the ability to yield various embryonic and extraembryonic tissues that may be employed as novel mouse developmental cell models. However, it is disputed whether TBLCs are ‘true’ totipotent stem cells equivalent to in vivo two-cell stage embryos. To address this question, single-cell RNA sequencing was applied to TBLCs and cells from early mouse embryonic developmental stages and the data were integrated using canonical correlation analyses. Differential expression analyses were performed between TBLCs and multi-embryonic cell stages to identify differentially expressed genes. Remarkably, a subpopulation within the TBLCs population expressed a high level of the totipotent-related genes Zscan4s and displayed transcriptomic features similar to mouse two-cell stage embryonic cells. This study underscores the subtle differences between in vitro derived TBLCs and in vivo mouse early developmental cell stages at the single-cell transcriptomic level. Our study has identified a new experimental model for stem cell biology, namely ‘cluster 3’, as a subpopulation of TBLCs that can be molecularly defined as near totipotent cells.
Collapse
|
8
|
Fernandez-Gonzalez L, Kozhevnikova V, Brusentsev E, Jänsch S, Amstislavsky S, Jewgenow K. IGF-I Medium Supplementation Improves Singly Cultured Cat Oocyte Maturation and Embryo Development In Vitro. Animals (Basel) 2021; 11:ani11071909. [PMID: 34198979 PMCID: PMC8300187 DOI: 10.3390/ani11071909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022] Open
Abstract
Embryo production is a routine procedure in several species. However, in felids, the effectiveness of this approach is far behind that in the majority of laboratory species. The development of a suitable environment starts with the proper composition of culture media. Therefore, for the improvement of assisted reproduction techniques and their outcome in cats, this is an urgent task. As the addition of insulin-like growth factors (IGF-I, IGF-II) or granulocyte-macrophage colony-stimulating factor (GM-CSF) was beneficial in other mammalian species, this study aims to check whether these components, combined with other factors (such as type of fertilisation or type of culture) can provide a benefit in the felid culture system in current use. Thus, these supplements, in different concentrations and combinations, were merged with the use of two fertilisation techniques and randomly assigned to single or group culturing. The results showed that the addition of IGF-I and/or GM-CSF produced an increase in morula and blastocyst rate in a single culture system. In particular, the supplementation with 20 ng/mL of IGF-I incremented the maturation rate by 10% and significantly increased the morula and blastocyst rates in single culturing. This result is especially remarkable for wild felids, where only a few oocytes and/or embryos are available.
Collapse
Affiliation(s)
- Lorena Fernandez-Gonzalez
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany; (S.J.); (K.J.)
- Correspondence:
| | - Valeria Kozhevnikova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prosp. Lavrent’eva 10, 630090 Novosibirsk, Russia; (V.K.); (E.B.); (S.A.)
| | - Eugeny Brusentsev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prosp. Lavrent’eva 10, 630090 Novosibirsk, Russia; (V.K.); (E.B.); (S.A.)
| | - Stefanie Jänsch
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany; (S.J.); (K.J.)
| | - Sergei Amstislavsky
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prosp. Lavrent’eva 10, 630090 Novosibirsk, Russia; (V.K.); (E.B.); (S.A.)
| | - Katarina Jewgenow
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany; (S.J.); (K.J.)
| |
Collapse
|
9
|
Brusentsev EY, Kizilova EA, Igonina TN, Ranneva SV, Amstislavsky SY. Effects of Insulin-Like Growth Factor 1 on the In Vitro Development of Mouse Embryos after Cryopreservation. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421020028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Pisko J, Špirková A, Čikoš Š, Olexiková L, Kovaříková V, Šefčíková Z, Fabian D. Apoptotic cells in mouse blastocysts are eliminated by neighbouring blastomeres. Sci Rep 2021; 11:9228. [PMID: 33927296 PMCID: PMC8085119 DOI: 10.1038/s41598-021-88752-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 04/16/2021] [Indexed: 02/02/2023] Open
Abstract
Apoptosis is a physiological process that occurs commonly during the development of the preimplantation embryo. The present work examines the ability of apoptotic embryonic cells to express a signal promoting their phagocytosis, and quantifies the ability of neighbouring, normal embryonic cells to perform that task. Microscopic analysis of mouse blastocysts revealed phosphatidylserine externalization to be 10 times less common than incidence of apoptotic cells (as detected by TUNEL). In spite of the low frequency of phosphatidylserine-flipping (in inner cell mass, no annexin V staining was recorded), fluorescence staining of the plasma membrane showed more than 20% of apoptotic cells to have been engulfed by neighbouring blastomeres. The mean frequency of apoptotic cells escaping phagocytosis by their extrusion into blastocyst cavities did not exceed 10%. Immunochemically visualised RAC1 (an enzyme important in actin cytoskeleton rearrangement) was seen in phagosome-like structures containing a nucleus with a condensed morphology. Gene transcript analysis showed that the embryonic cells expressed 12 receptors likely involved in phagocytic process (Scarf1, Msr1, Cd36, Itgav, Itgb3, Cd14, Scarb1, Cd44, Stab1, Adgrb1, Cd300lf, Cd93). In conclusion, embryonic cells possess all the necessary mechanisms for recognising, engulfing and digesting apoptotic cells, ensuring the clearance of most dying blastomeres.
Collapse
Affiliation(s)
- Jozef Pisko
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovak Republic
| | - Alexandra Špirková
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovak Republic
| | - Štefan Čikoš
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovak Republic
| | - Lucia Olexiková
- Research Institute for Animal Production Nitra, National Agricultural and Food Centre (NPPC), Hlohovecká 2, 951 41, Lužianky, Slovak Republic
| | - Veronika Kovaříková
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovak Republic
| | - Zuzana Šefčíková
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovak Republic
| | - Dušan Fabian
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovak Republic.
| |
Collapse
|
11
|
Zhang S, Wu Z, Heng J, Tian M, Chen J, Chen F, Guan W. L-carnitine increases cell proliferation and amino acid transporter expression via the activation of insulin-like growth factor I signaling pathway in rat trophoblast cells. Food Sci Nutr 2020; 8:3298-3307. [PMID: 32724594 PMCID: PMC7382193 DOI: 10.1002/fsn3.1607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 11/24/2022] Open
Abstract
Early embryo implantation and development is primarily determined by the homeostasis between cellular apoptosis and proliferation as well as placental nutrient transporters. Recent studies showed that L-carnitine enhances female reproductive performance. However, the potential function of L-carnitine on placenta is largely unknown. In our study, primary rat trophoblast cells were separated and cultured for 12 hr in medium containing various concentrations of L-carnitine (0, 1, 10, and 50 mM). Placenta trophoblast cells treated with 50 mM L-carnitine increased the proportion of cells in S phase of the cell cycle (p < .05). In addition, live cell percentage was increased when treated with either 10 mM or 50 mM L-carnitine, which was accompanied with decreased necrotic cells, late apoptotic cells, and early apoptotic cells (p < .05). Compared with the control treatment, the mRNA expression of insulin-like growth factor I (IGF-1) and insulin-like growth factor I receptor (IGF-1R) was higher in rat placenta trophoblasts treated with either 10 mM or 50 mM L-carnitine (p < .05). Similarly, sodium-dependent neutral amino acid transporter (SNAT)-1 and SNAT2 were up-regulated in both mRNA and protein levels when trophoblast cells were treated with 50 mM L-carnitine (p < .05). Inhibiting downstream targets (Akt or ERK signaling pathways) of IGF-1 signaling pathway partially blocked the effect the L-carnitine-induced increase in protein abundances of SNAT1 and SNAT2. Collectively, our data showed protective role of L-carnitine on placenta trophoblast cells through the involvement of IGF-1 signaling pathway.
Collapse
Affiliation(s)
- Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| | - Zhihui Wu
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| | - Jinghui Heng
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| | - Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
12
|
Wilson Y, Morris ID, Kimber SJ, Brison DR. The role of Trp53 in the mouse embryonic response to DNA damage. Mol Hum Reprod 2020; 25:397-407. [PMID: 31227838 DOI: 10.1093/molehr/gaz029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 12/23/2022] Open
Abstract
Apoptosis occurs primarily in the blastocyst inner cell mass, cells of which go on to form the foetus. Apoptosis is likely to play a role in ensuring the genetic integrity of the foetus, yet little is known about its regulation. In this study, the role of the mouse gene, transformation-related protein 53 (Trp53) in the response of embryos to in vitro culture and environmentally induced DNA damage was investigated using embryos from a Trp53 knockout mouse model. In vivo-derived blastocysts were compared to control embryos X-irradiated at the two-cell stage and cultured to Day 5. An analysis of DNA by comet assay demonstrated that 1.5 Gy X-irradiation directly induced damage in cultured two-cell mouse embryos; this was correlated with retarded development to blastocyst stage and increased apoptosis at the blastocyst stage but not prior to this. Trp53 null embryos developed to blastocysts at a higher frequency and with higher cell numbers than wild-type embryos. Trp53 also mediates apoptosis in conditions of low levels of DNA damage, in vivo or in vitro in the absence of irradiation. However, following DNA damage induced by X-irradiation, apoptosis is induced by Trp53 independent as well as dependent mechanisms. These data suggest that Trp53 and apoptosis play important roles in normal mouse embryonic development both in vitro and in vivo and in response to DNA damage. Therefore, clinical ART practices that alter apoptosis in human embryos and/or select embryos for transfer, which potentially lack a functional Trp53 gene, need to be carefully considered.
Collapse
Affiliation(s)
- Yvonne Wilson
- Department of Reproductive Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9WL, UK
| | - Ian D Morris
- Hull York Medical School, University of York, Heslington, York YO10 5DD, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Daniel R Brison
- Department of Reproductive Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9WL, UK.,Maternal and Fetal Health Research, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
13
|
Bak DH, Choi MJ, Kim SR, Lee BC, Kim JM, Jeon ES, Oh W, Lim ES, Park BC, Kim MJ, Na J, Kim BJ. Human umbilical cord blood mesenchymal stem cells engineered to overexpress growth factors accelerate outcomes in hair growth. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:555-566. [PMID: 30181702 PMCID: PMC6115345 DOI: 10.4196/kjpp.2018.22.5.555] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/04/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022]
Abstract
Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) are used in tissue repair and regeneration; however, the mechanisms involved are not well understood. We investigated the hair growth-promoting effects of hUCB-MSCs treatment to determine whether hUCB-MSCs enhance the promotion of hair growth. Furthermore, we attempted to identify the factors responsible for hair growth. The effects of hUCB-MSCs on hair growth were investigated in vivo, and hUCB-MSCs advanced anagen onset and hair follicle neogeneration. We found that hUCB-MSCs co-culture increased the viability and up-regulated hair induction-related proteins of human dermal papilla cells (hDPCs) in vitro. A growth factor antibody array revealed that secretory factors from hUCB-MSCs are related to hair growth. Insulin-like growth factor binding protein-1 (IGFBP-1) and vascular endothelial growth factor (VEGF) were increased in co-culture medium. Finally, we found that IGFBP-1, through the co-localization of an IGF-1 and IGFBP-1, had positive effects on cell viability; VEGF secretion; expression of alkaline phosphatase (ALP), CD133, and β-catenin; and formation of hDPCs 3D spheroids. Taken together, these data suggest that hUCB-MSCs promote hair growth via a paracrine mechanism.
Collapse
Affiliation(s)
- Dong Ho Bak
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06973, Korea.,Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Korea
| | - Mi Ji Choi
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06973, Korea.,Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Korea
| | - Soon Re Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06973, Korea
| | - Byung Chul Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06973, Korea
| | - Jae Min Kim
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Korea
| | - Eun Su Jeon
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Seongnam 13494, Korea
| | - Wonil Oh
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Seongnam 13494, Korea
| | - Ee Seok Lim
- Thema Dermatologic Clinic, Seoul 06524, Korea
| | - Byung Cheol Park
- Department of Dermatology, Dankook Medical College, Cheonan 31116, Korea
| | | | - Jungtae Na
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06973, Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06973, Korea.,Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Korea
| |
Collapse
|
14
|
Tsai TC, Shih CC, Chien HP, Yang AH, Lu JK, Lu JH. Anti-apoptotic effects of IGF-I on mortality and dysmorphogenesis in tbx5-deficient zebrafish embryos. BMC DEVELOPMENTAL BIOLOGY 2018; 18:5. [PMID: 29506474 PMCID: PMC5836385 DOI: 10.1186/s12861-017-0161-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/05/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Tbx5 deficiency in zebrafish causes several abnormal phenotypes of the heart and pectoral fins. It has been reported that exogenous human growth hormone can enhance expression of downstream mediators in the growth hormone and insulin-like growth factor I (IGF-I) pathway and partially restore dysmorphogenesis in tbx5 morphants. This study aimed to further evaluate the effects of IGF-I on cell apoptosis and dysmorphogenesis in zebrafish embryos deficient for tbx5. RESULTS Among the five studied groups of zebrafish embryos (wild-type embryos [WT], tbx5 morphants [MO], mismatched tbx5 morpholino-treated wild-type embryos [MIS], IGF-I-treated wild-type embryos [WTIGF1], and IGF-I-treated tbx5 morphants [MOIGF1]), the expression levels of the ifg1, igf1-ra, ifg-rb, erk1, and akt2 genes as well as the ERK and AKT proteins were significantly reduced in the MO group, but were partially restored in the MOIGF1 group. These expression levels remained normal in the WT, MIS, and WTIGF1 groups. Exogenous human IGF-I also reduced the incidence of phenotypic anomalies, decreased the expression levels of apoptotic genes and proteins, suppressed cell apoptosis, and improved survival of the MOIGF1 group. CONCLUSIONS These results suggest that IGF-I has an anti-apoptotic protective effect in zebrafish embryos with tbx5 deficiency.
Collapse
Affiliation(s)
- Tzu-Chun Tsai
- Institutes of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Chun-Che Shih
- Institutes of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China.,Departments of Surgery, Pediatrics and Pathology, Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China
| | - Hsin-Ping Chien
- Laboratory of Molecular Biology, Institute of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - An-Hang Yang
- Institutes of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China.,Departments of Surgery, Pediatrics and Pathology, Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China
| | - Jenn-Kan Lu
- Laboratory of Molecular Biology, Institute of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, Republic of China. .,Department of Pediatrics, Veterans General Hospital-Taipei, No. 201, Shih-Pei Rd., Section 2, Beitou, Taipei, 112, Taiwan, Republic of China.
| | - Jen-Her Lu
- Institutes of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China. .,Departments of Surgery, Pediatrics and Pathology, Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China. .,Department of Pediatrics, Veterans General Hospital-Taipei, No. 201, Shih-Pei Rd., Section 2, Beitou, Taipei, 112, Taiwan, Republic of China.
| |
Collapse
|
15
|
Tríbulo P, Siqueira L, Oliveira L, Scheffler T, Hansen P. Identification of potential embryokines in the bovine reproductive tract. J Dairy Sci 2018; 101:690-704. [DOI: 10.3168/jds.2017-13221] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022]
|
16
|
Chen P, Pan Y, Cui Y, Wen Z, Liu P, He H, Li Q, Peng X, Zhao T, Yu S. Insulin-like growth factor I enhances the developmental competence of yak embryos by modulating aquaporin 3. Reprod Domest Anim 2017; 52:825-835. [DOI: 10.1111/rda.12985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/19/2017] [Indexed: 12/27/2022]
Affiliation(s)
- P Chen
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - Y Pan
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - Y Cui
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - Z Wen
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - P Liu
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - H He
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - Q Li
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - X Peng
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - T Zhao
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - S Yu
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| |
Collapse
|
17
|
Highet AR, Bianco-Miotto T, Pringle KG, Peura A, Bent S, Zhang J, Nottle MB, Thompson JG, Roberts CT. A novel embryo culture media supplement that improves pregnancy rates in mice. Reproduction 2017; 153:327-340. [DOI: 10.1530/rep-16-0517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/30/2016] [Accepted: 12/19/2016] [Indexed: 11/08/2022]
Abstract
The preimplantation embryoinvivois exposed to numerous growth factors in the female reproductive tract, which are not recapitulated in embryo culture mediain vitro. The IGF2 and plasminogen activator systems facilitate blastocyst development. We hypothesized that the addition of IGF2 in combination with urokinase plasminogen activator (uPA) and plasminogen could improve rates of blastocyst hatching and implantation in mice. B6BcF1 and CBAB6F2 mouse embryos were divided into one of four supplemented culture media treatment groups: (1) control (media only); (2) 12.5 nM IGF2; (3) 10 µg/mL uPA and 5 µg/mL plasminogen; or (4) a combination of IGF2, uPA and plasminogen treatments. Embryo development to blastocyst stage and hatching were assessed before transfer to pseudopregnant recipient females and implantation, pregnancy rates and postnatal growth were assessed. After 90.5 h of culture, IGF2 + U + P treatment increased the percentage of B6BcF1 embryos that were hatching/hatched and percentage developing to blastocyst stage compared with controls (P < 0.02). Following B6BcF1 embryo transfer, IGF2 + U + P treatment increased implantation sites at day 8 of pregnancy compared with controls (P < 0.05). Replication in the CBAB6F2 mouse strain showed significant improvements in pregnancy rates at days 8 and 18 but not in blastocyst development. No adverse effects were seen on gestational age, litter size or birthweight, or the reproductive capacity of offspring of IGF2 + U + P treated embryos. For embryos susceptible to detrimental effects ofin vitroculture, IGF2, uPA and plasminogen supplementation of culture media can improve pregnancy success, but the effect of treatment is dependent on the mouse strain.
Collapse
|
18
|
Kannampuzha-Francis J, Tribulo P, Hansen PJ. Actions of activin A, connective tissue growth factor, hepatocyte growth factor and teratocarcinoma-derived growth factor 1 on the development of the bovine preimplantation embryo. Reprod Fertil Dev 2017; 29:1329-1339. [DOI: 10.1071/rd16033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/20/2016] [Indexed: 12/24/2022] Open
Abstract
The reproductive tract secretes bioactive molecules collectively known as embryokines that can regulate embryonic growth and development. In the present study we tested four growth factors expressed in the endometrium for their ability to modify the development of the bovine embryo to the blastocyst stage and alter the expression of genes found to be upregulated (bone morphogenetic protein 15 (BMP15) and keratin 8, type II (KRT8)) or downregulated (NADH dehydrogenase 1 (ND1) and S100 calcium binding protein A10 (S100A10)) in embryos competent to develop to term. Zygotes were treated at Day 5 with 0.01, 0.1 or 1.0 nM growth factor. The highest concentration of activin A increased the percentage of putative zygotes that developed to the blastocyst stage. Connective tissue growth factor (CTGF) increased the number of cells in the inner cell mass (ICM), decreased the trophectoderm : ICM ratio and increased blastocyst expression of KRT8 and ND1. The lowest concentration of hepatocyte growth factor (HGF) reduced the percentage of putative zygotes becoming blastocysts. Teratocarcinoma-derived growth factor 1 increased total cell number at 0.01 nM and expression of S100A10 at 1.0 nM, but otherwise had no effects. Results confirm the prodevelopmental actions of activin A and indicate that CTGF may also function as an embryokine by regulating the number of ICM cells in the blastocyst and altering gene expression. Low concentrations of HGF were inhibitory to development.
Collapse
|
19
|
Yang S, Liu W, Li M, Wen J, Zhu M, Xu S. Insulin-Like Growth Factor-1 Modulates Polycomb Cbx8 Expression and Inhibits Colon Cancer Cell Apoptosis. Cell Biochem Biophys 2016; 71:1503-7. [PMID: 25398592 DOI: 10.1007/s12013-014-0373-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Colon cancer is one of the leading causes of death in human beings. The pathogenesis of colon cancer is unclear. Recent reports indicate that Chromobox protein homolog 8 (Cbx8) and insulin-like growth factor-1 (IGF1) are associated with the pathogenesis of cancer. This study aims to investigate the role of Cbx8 and IGF1 in facilitating colon cancer cell proliferation. In this study, human colon cancer cell line, HCT116 cells, was cultured using an in vitro study model. The expression of Cbx8 and IGF1R (IGF1 receptor) in HCT116 cells was observed with approaches of real-time RT-PCR, Western blotting, gene silencing, and gene overexpression. The results showed that HCT116 cells express both Cbx8 and IGF1R. Exposure of HCT116 cells to IGF1 increased the expression of Cbx8. Knockdown of Cbx8 induced HCT116 cell apoptosis. Overexpression of Cbx8 induced HCT116 cell proliferation. We conclude that IGF1 can promote the colon cancer cell line, HCT116 cell, proliferation via promoting Cbx8 expression.
Collapse
Affiliation(s)
- Shaobo Yang
- Department of Gastroenterology, Nan Lou Division, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenhui Liu
- Department of Gastroenterology, Nan Lou Division, Chinese PLA General Hospital, Beijing, 100853, China
| | - Mingyang Li
- Department of Digestive Endoscopy, Nan Lou Division, Chinese PLA General Hospital, Beijing, 100853, China
| | - Junbao Wen
- Department of Gastroenterology, Nan Lou Division, Chinese PLA General Hospital, Beijing, 100853, China
| | - Min Zhu
- Department of Gastroenterology, Nan Lou Division, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shiping Xu
- Department of Gastroenterology, Nan Lou Division, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
20
|
Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 2016; 73:3221-47. [PMID: 27100828 PMCID: PMC4967105 DOI: 10.1007/s00018-016-2223-0] [Citation(s) in RCA: 1801] [Impact Index Per Article: 200.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022]
Abstract
The multifunctional regulator nuclear factor erythroid 2-related factor (Nrf2) is considered not only as a cytoprotective factor regulating the expression of genes coding for anti-oxidant, anti-inflammatory and detoxifying proteins, but it is also a powerful modulator of species longevity. The vertebrate Nrf2 belongs to Cap 'n' Collar (Cnc) bZIP family of transcription factors and shares a high homology with SKN-1 from Caenorhabditis elegans or CncC found in Drosophila melanogaster. The major characteristics of Nrf2 are to some extent mimicked by Nrf2-dependent genes and their proteins including heme oxygenase-1 (HO-1), which besides removing toxic heme, produces biliverdin, iron ions and carbon monoxide. HO-1 and their products exert beneficial effects through the protection against oxidative injury, regulation of apoptosis, modulation of inflammation as well as contribution to angiogenesis. On the other hand, the disturbances in the proper HO-1 level are associated with the pathogenesis of some age-dependent disorders, including neurodegeneration, cancer or macular degeneration. This review summarizes our knowledge about Nrf2 and HO-1 across different phyla suggesting their conservative role as stress-protective and anti-aging factors.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Faculty of Biology and Earth Sciences, Jagiellonian University, Krakow, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Faculty of Biology and Earth Sciences, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
21
|
Qu P, Li Y, Deng T, Jia D, Qing S, Su J, Zhang Y, Wang Y. Effects of Insulin-like Growth Factor-1 on Development of Somatic Cell Cloned Bovine Embryos. Cell Reprogram 2016; 18:162-70. [DOI: 10.1089/cell.2015.0079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pengxiang Qu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, P.R. China
| | - Yanyan Li
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, P.R. China
- Qinyang Institute of Animal Health Inspection, Qinyang City, Henan Province
| | - Tengfei Deng
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, P.R. China
| | - Dan Jia
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, P.R. China
| | - Suzhu Qing
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, P.R. China
| | - Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, P.R. China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, P.R. China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, P.R. China
| |
Collapse
|
22
|
Ramer I, Kanninen TT, Sisti G, Witkin SS, Spandorfer SD. Association of in vitro fertilization outcome with circulating insulin-like growth factor components prior to cycle initiation. Am J Obstet Gynecol 2015; 213:356.e1-6. [PMID: 25935785 DOI: 10.1016/j.ajog.2015.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/13/2015] [Accepted: 04/23/2015] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Components of the insulin-like growth factor (IGF) system enhance in vitro embryo quality and implantation rates in both animal models and human in vitro fertilization (IVF). We evaluated whether differences in serum levels of these components in women prior to initiation of an IVF cycle would be predictive of subsequent outcome. STUDY DESIGN In this retrospective study sera from women obtained at day 2 of their IVF cycle (at baseline before stimulation) were assayed for IGF-I, IGF-II, and IGF binding protein (BP)-1 by enzyme-linked immunosorbent assay. Samples from 54 women with a live birth, 38 with a transient biochemical pregnancy, 45 with a spontaneous abortion, 54 who did not become pregnant, and 35 who had an ectopic pregnancy were available for analysis. Associations between the assays and outcome were evaluated by the Kruskal-Wallis test and receiver operating characteristic analysis. RESULTS There were no differences in the number of oocytes retrieved, oocyte quality, fertilization rates, or embryo grade between groups. Median concentrations of IGF-I were elevated in women with a live birth (29.1 ng/mL) as compared to women with a biochemical pregnancy (25.6 ng/mL), with spontaneous abortion (21.2 ng/mL), who were not pregnant (18.7 pg/mL), or who had an ectopic pregnancy (4.2 pg/mL) (P < .001). Conversely, median levels of IGF-II were reduced in women with a live birth (294.5 ng/mL) as opposed to 357.5, 393.6, 407.2, and 426.9 ng/mL in women with a biochemical pregnancy, with ectopic pregnancy, with spontaneous abortion, or who were not pregnant, respectively (P < .001). Median IGFBP-1 concentrations were markedly elevated in women with a live birth (23.6 ng/mL) compared to 18.3, 14.1, 13.8, and 9.5 ng/mL in women with a biochemical pregnancy, with spontaneous abortion, who were not pregnant, or with an ectopic pregnancy (P < .001). The combination of IGF-I and IGFBP-1 best predicted the occurrence of a live birth with an area under the curve of 0.892. CONCLUSION Maternal serum levels of IGF-I, IGF-II, and IGFBP-1 prior to initiation of an IVF cycle are correlated with the likelihood of a live birth. Alterations in maternal IGF system components may influence oocyte quality or the success of early postfertilization events and embryo implantation.
Collapse
Affiliation(s)
- Ilana Ramer
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY; Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY
| | - Tomi T Kanninen
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY
| | - Giovanni Sisti
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY
| | - Steven S Witkin
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY
| | - Steven D Spandorfer
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
23
|
Nair R, Singh VJ, Salian SR, Kalthur SG, D'Souza AS, Shetty PK, Mutalik S, Kalthur G, Adiga SK. Methyl parathion inhibits the nuclear maturation, decreases the cytoplasmic quality in oocytes and alters the developmental potential of embryos of Swiss albino mice. Toxicol Appl Pharmacol 2014; 279:338-350. [DOI: 10.1016/j.taap.2014.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
|
24
|
Fan X, Gay FP, Lim FW, Ang JM, Chu PP, Bari S, Hwang WY. Low-dose insulin-like growth factor binding proteins 1 and 2 and angiopoietin-like protein 3 coordinately stimulate ex vivo expansion of human umbilical cord blood hematopoietic stem cells as assayed in NOD/SCID gamma null mice. Stem Cell Res Ther 2014; 5:71. [PMID: 24886724 PMCID: PMC4076633 DOI: 10.1186/scrt460] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 05/21/2014] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Insulin-like growth factors (IGFs), IGF binding proteins (IGFBPs) and angiopoietin-like proteins (ANGPTLs) can enhance the ex vivo expansion of hematopoietic stem cells (HSCs) when used with a standard cytokine cocktail of stem cell factor (SCF), thrombopoietin (TPO) and FLT3 ligand (FL). In order to determine the optimal dose and combination of IGFs, IGFBPs and ANGPTLs, serial dilution and full permutation of IGFBP1, IGFBP2, IGF2 and ANGPTL3 were applied on a cryopreserved umbilical cord blood mononuclear cell (UCB-MNC) ex vivo expansion system. METHODS In this system, 4 × 105 cells/ml of UCB-MNCs were inoculated in serum-free Stemspan® medium (Stemcell technologies, vancouver, BC, Canada) supplied with standard basal cytokine combination of 100 ng/ml SCF, 50 ng/ml FL and 100 ng/ml TPO and supported by a bone marrow mesenchymal stromal cell layer. RESULTS Paradoxically, experiment results showed that the highest expansion of CD34+CD38-CD90+ primitive progenitor was stimulated by cytokine combination of SCF + TPO + FL + IGFBP1 + IGFBP2 + ANGPTL3 at a low dose of 15 ng/ml IGFBP1 and 20 ng/ml IGFBP2 and ANGPTL3. This ex vivo expansion was further validated in 8-week-old to 10-week-old nonobese diabetic/severe combined immunodeficiency interleukin 2 gamma chain null (NOD/SCID-IL2Rγ-/-) mice. Limiting dilution assay showed excellent correlation between the HSC ex vivo surface marker of CD34+CD38-CD90+ and the in vivo competitive repopulating unit (CRU) functional assay. CONCLUSION IGFBP1, IGFBP2, IGF2 and ANGPTL3 can stimulate the expansion of CD34+CD38-CD90+ primitive progenitor at low dose. The optimal combination comprises IGFBP1, IGFBP2 and ANGPTL3 together with the standard cytokine cocktail of SCF, FL and TPO. The CD34+CD38-CD90+ phenotype can serve as a surrogate ex vivo surface marker for HSCs due to consistency with the in vivo CRU functional assay.
Collapse
|
25
|
Kozakowska M, Szade K, Dulak J, Jozkowicz A. Role of heme oxygenase-1 in postnatal differentiation of stem cells: a possible cross-talk with microRNAs. Antioxid Redox Signal 2014; 20:1827-50. [PMID: 24053682 PMCID: PMC3961774 DOI: 10.1089/ars.2013.5341] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Heme oxygenase-1 (HO-1) converts heme to biliverdin, carbon monoxide, and ferrous ions, but its cellular functions are far beyond heme metabolism. HO-1 via heme removal and degradation products acts as a cytoprotective, anti-inflammatory, immunomodulatory, and proangiogenic protein, regulating also a cell cycle. Additionally, HO-1 can translocate to nucleus and regulate transcription factors, so it can also act independently of enzymatic function. RECENT ADVANCES Recently, a body of evidence has emerged indicating a role for HO-1 in postnatal differentiation of stem and progenitor cells. Maturation of satellite cells, skeletal myoblasts, adipocytes, and osteoclasts is inhibited by HO-1, whereas neurogenic differentiation and formation of cardiomyocytes perhaps can be enhanced. Moreover, HO-1 influences a lineage commitment in pluripotent stem cells and maturation of hematopoietic cells. It may play a role in development of osteoblasts, but descriptions of its exact effects are inconsistent. CRITICAL ISSUES In this review we discuss a role of HO-1 in cell differentiation, and possible HO-1-dependent signal transduction pathways. Among the potential mediators, we focused on microRNA (miRNA). These small, noncoding RNAs are critical for cell differentiation. Recently we have found that HO-1 not only influences expression of specific miRNAs but also regulates miRNA processing enzymes. FUTURE DIRECTIONS It seems that interplay between HO-1 and miRNAs may be important in regulating fates of stem and progenitor cells and needs further intensive studies.
Collapse
Affiliation(s)
- Magdalena Kozakowska
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow, Poland
| | | | | | | |
Collapse
|
26
|
Wasielak M, Fujii T, Ohsaki T, Hashizume T, Bogacki M, Sawai K. Transcript abundance and apoptosis in day-7 porcine blastocyst cultured with exogenous insulin-like growth factor-I. Reprod Biol 2013; 13:58-65. [DOI: 10.1016/j.repbio.2013.01.173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 10/16/2012] [Indexed: 01/10/2023]
|
27
|
Supeno NE, Pati S, Hadi RA, Ghani ARI, Mustafa Z, Abdullah JM, Idris FM, Han X, Jaafar H. IGF-1 acts as controlling switch for long-term proliferation and maintenance of EGF/FGF-responsive striatal neural stem cells. Int J Med Sci 2013; 10:522-31. [PMID: 23532711 PMCID: PMC3607237 DOI: 10.7150/ijms.5325] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/05/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Long-term maintenance of neural stem cells in vitro is crucial for their stage specific roles in neurogenesis. To have an in-depth understanding of optimal conditional microenvironmental niche for long-term maintenance of neural stem cells (NSCs), we imposed different combinatorial treatment of growth factors to EGF/FGF-responsive cells. We hypothesized, that IGF-1-treatment can provide an optimal niche for long-term maintenance and proliferation of EGF/FGF-responsive NSCs. OBJECTIVE This study was performed to investigate the cellular morphology and growth of rat embryonic striatal tissue derived-NSCs in long-term culture under the influence of different combinatorial effects of certain growth factors, such as EGF, bFGF, LIF and IGF-1. METHODS The NSCs were harvested and cultured from striatal tissue of 18 days old rat embryos. We have generated neurospheres from these NSCs and cultured them till passage 7 (28 days in vitro) under four different conditional microenvironments: (A) without growth factor, (B) EGF/bFGF, (C) EGF/bFGF/LIF, (D) EGF/bFGF/IGF-1 and (E) EGF/bFGF/LIF/IGF-1. Isolated NSCs were characterised by Immunoflouroscence for nestin expression. The cell growth and proliferation was evaluated at different time intervals (P1, P3, P5 & P7), assessing the metabolic activity based cell proliferation. Apoptosis was studied in each of these groups by In situ cell death assay. RESULTS Our results demonstrated certain important findings relevant to long-term culture and maintenance of striatal NSC-derived neurospheres. This suggested that IGF-1 can induce enhanced cell proliferation during early stages of neurogenesis, impose long-term maintenance (up to passage 7) to cultured NSCs and enhance survival efficiency in vitro, in the presence of EGF and FGF. CONCLUSIONS Our findings support the hypothesis that the enforcement of IGF-1 treatment to the EGF/FGF-responsive NSCs, can lead to enhanced cell proliferation during early stages of neurogenesis, and an extended life span in vitro. This information will be beneficial for improving future therapeutic implication of NSCs, by addressing improved in vitro production of NSCs.
Collapse
Affiliation(s)
- Nor Entan Supeno
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Beckelmann J, Budik S, Helmreich M, Palm F, Walter I, Aurich C. Sex-dependent insulin like growth factor-1 expression in preattachment equine embryos. Theriogenology 2012; 79:193-9. [PMID: 23122604 DOI: 10.1016/j.theriogenology.2012.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 10/01/2012] [Accepted: 10/07/2012] [Indexed: 11/16/2022]
Abstract
An adjustment of sex ratio of offspring to the conditions present at conception is seen in many mammals including horses. This depends on preferential survival of male embryos under conditions of high energy intake. In several species, growth factors including insulin like growth factor (IGF)-1 have been shown to promote embryonic development by decreasing apoptosis and increasing cell proliferation. We hypothesized that sex-related differences in IGF-1 expression in equine embryos during the phase of maternal recognition of pregnancy might exist and thus contribute to preferential survival of embryos from either of both sexes under specific environmental conditions. Insulin like growth factor-1 mRNA expression of in vivo-produced equine embryos on different days of pregnancy (Day 8, N = 6; Day 10, N = 8; Day 12, N = 14) was analyzed. Insulin like growth factor-1 mRNA expression was evaluated by reverse transcription quantitative polymerase chain reaction. The sex of the embryo was determined by detection of X-inactivation specific transcript (Xist) RNA and equine sex determining region of the Y chromosome DNA. Embryos positive for Xist expression were classified as female, and Xist negative and equine sex determining region of the Y chromosome positive embryos were classified as male. From 28 embryos tested, 15 (54%) showed positive Xist expression and were thus classified as female. Insulin like growth factor-1 mRNA expression was influenced by sex (P = 0.01) but not by day of pregnancy (relative expression of IGF-1 in relation to β-actin, Day 8: male 5.1 ± 2.1, female 11.4; Day 10: male 5.2 ± 1.6, female 17.4 ± 6.7; Day 12: male 2.6 ± 0.3, female 11.6 ± 2.4). Results demonstrate an increased expression of IGF-1 in female equine embryos. Sex-related influences on expression of the IGF system are probably related to a gradual X chromosome inactivation.
Collapse
Affiliation(s)
- J Beckelmann
- Centre for Artificial Insemination and Embryo Transfer, University of Veterinary Sciences, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
29
|
Kashir J, Jones C, Child T, Williams SA, Coward K. Viability Assessment for Artificial Gametes: The Need for Biomarkers of Functional Competency1. Biol Reprod 2012; 87:114. [DOI: 10.1095/biolreprod.112.103853] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
30
|
Abstract
Ageing, also called as senescence, is one of the most complex, intrinsic, biological processes of growing older and resulting into reduced functional ability of the organism. Telomerase, environment, low calorie diets, free radicals, etc., are all believed to affect this ageing process. A number of genetic components of ageing have been identified using model organisms. Genes, mainly the sirtuins, regulate the ageing speed by indirection and controlling organism resistance to damages by exogenous and endogenous stresses. In higher organisms, ageing is likely to be regulated, in part, through the insulin/insulin-like growth factor 1 pathway. Besides this, the induction of apoptosis in stem and progenitor cells, increased p53 activity, and autophagy is also thought to trigger premature organismal ageing. Ageing has also been shown to upregulate expression of inflammatory mediators in mouse adipose tissue. The understanding of pathophysiology of ageing over the past few years has posed tremendous challenges for the development of anti-ageing medicine for targeted therapy. Future research areas must include targeted role of systemic inflammatory markers such as C-reactive protein and interleukin 6 and other biochemical and genetic studies including gene signaling pathways, gene microarray analysis, gene modulation, gene therapy, and development of animal/human models for potential therapeutic measures and evaluations.
Collapse
Affiliation(s)
- Anjana Nigam
- Department of Surgery, Pt. J. N. M. Medical College, Raipur, CG, India
| |
Collapse
|
31
|
Niakan KK, Han J, Pedersen RA, Simon C, Pera RAR. Human pre-implantation embryo development. Development 2012; 139:829-41. [PMID: 22318624 DOI: 10.1242/dev.060426] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding human pre-implantation development has important implications for assisted reproductive technology (ART) and for human embryonic stem cell (hESC)-based therapies. Owing to limited resources, the cellular and molecular mechanisms governing this early stage of human development are poorly understood. Nonetheless, recent advances in non-invasive imaging techniques and molecular and genomic technologies have helped to increase our understanding of this fascinating stage of human development. Here, we summarize what is currently known about human pre-implantation embryo development and highlight how further studies of human pre-implantation embryos can be used to improve ART and to fully harness the potential of hESCs for therapeutic goals.
Collapse
Affiliation(s)
- Kathy K Niakan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
32
|
Bedzhov I, Liszewska E, Kanzler B, Stemmler MP. Igf1r signaling is indispensable for preimplantation development and is activated via a novel function of E-cadherin. PLoS Genet 2012; 8:e1002609. [PMID: 22479204 PMCID: PMC3315466 DOI: 10.1371/journal.pgen.1002609] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/05/2012] [Indexed: 01/26/2023] Open
Abstract
Insulin-like growth factor I receptor (Igf1r) signaling controls proliferation, differentiation, growth, and cell survival in many tissues; and its deregulated activity is involved in tumorigenesis. Although important during fetal growth and postnatal life, a function for the Igf pathway during preimplantation development has not been described. We show that abrogating Igf1r signaling with specific inhibitors blocks trophectoderm formation and compromises embryo survival during murine blastocyst formation. In normal embryos total Igf1r is present throughout the membrane, whereas the activated form is found exclusively at cell contact sites, colocalizing with E-cadherin. Using genetic domain switching, we show a requirement for E-cadherin to maintain proper activation of Igf1r. Embryos expressing exclusively a cadherin chimera with N-cadherin extracellular and E-cadherin intracellular domains (NcEc) fail to form a trophectoderm and cells die by apoptosis. In contrast, homozygous mutant embryos expressing a reverse-structured chimera (EcNc) show trophectoderm survival and blastocoel cavitation, indicating a crucial and non-substitutable role of the E-cadherin ectodomain for these processes. Strikingly, blastocyst formation can be rescued in homozygous NcEc embryos by restoring Igf1r signaling, which enhances cell survival. Hence, perturbation of E-cadherin extracellular integrity, independent of its cell-adhesion function, blocked Igf1r signaling and induced cell death in the trophectoderm. Our results reveal an important and yet undiscovered function of Igf1r during preimplantation development mediated by a unique physical interaction between Igf1r and E-cadherin indispensable for proper receptor activation and anti-apoptotic signaling. We provide novel insights into how ligand-dependent Igf1r activity is additionally gated to sense developmental potential in utero and into a bifunctional role of adhesion molecules in contact formation and signaling. One of the most important steps during mammalian development is the formation of a blastocyst before implantation. Proper blastocyst development is fundamentally reliant on the function of the E-cadherin adhesion molecule, which cannot be replaced by another highly related member of the cadherin family. We have addressed the question of how E-cadherin unfolds its unique function during this central embryonic process. We generated mouse mutants that allow specific domain swapping of extra- and intracellular protein domains of E-cadherin with the corresponding portion of N-cadherin. Upon E-cadherin (Cdh1) depletion, apoptosis is induced in cells that are required to form the trophectoderm, the outer cells of a functional blastocyst. Uncoupling of the two E-cadherin domains demonstrated that specifically the presence of the extracellular domain is indispensable in providing essential survival cues. To establish a proper trophectoderm the insulin-like growth factor I receptor (Igf1r) is intimately connected to the E-cadherin–mediated suppression of apoptosis. By interaction of the two proteins Igf1r is efficiently activated to allow embryo survival, blastocyst formation, and implantation. This novel and adhesion-independent function of E-cadherin may serve as paradigm for bifunctionality of adhesion molecules and how they are particularly utilized to interpret signal transduction activities in specific cellular contexts.
Collapse
Affiliation(s)
| | | | | | - Marc P. Stemmler
- Department of Molecular Embryology, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- * E-mail:
| |
Collapse
|
33
|
Abstract
Despite the fact that the fundamental principle underlying the most common method of culture media constitution is that of mimicking the natural environment of the preimplantation embryo, one major difference that remains between current embryo culture media and in vivo conditions is the absence of growth factors in vitro. Numerous growth factors are known to be present in the in vivo environment of human and nonhuman preimplantation embryos, often with peak concentrations corresponding to when fertilization and preimplantation embryo growth would occur. Although these growth factors are found in very small concentrations, they have a profound effect on tissue growth and differentiation through attachment to factor-specific receptors on cell surfaces. Receptors for many different growth factors have also been detected in human preimplantation embryos. Preimplantation embryos themselves express many growth factors. The growth factors and receptors are metabolically costly to produce, and thus their presence in the environment of the preimplantation embryo and in the embryo respectively strongly implies that embryos are designed to encounter and respond to the corresponding factors. Studies of embryo coculture also indirectly suggest that growth factors can improve in vitro development. Several animal and human studies attest to a probable beneficial effect of addition of growth factors to culture media. However, there is still ambiguity regarding the exact role of growth factors in embryonic development, the optimal dose of growth factors to be added to culture media, the combinatorial effect and endocrine of growth factors in embryonic development.
Collapse
Affiliation(s)
- Aparna Hegde
- Department of OB/GYN, Division of Reproductive Endocrinology and Infertility, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
34
|
Velazquez MA, Hermann D, Kues WA, Niemann H. Increased apoptosis in bovine blastocysts exposed to high levels of IGF1 is not associated with downregulation of the IGF1 receptor. Reproduction 2011; 141:91-103. [DOI: 10.1530/rep-10-0336] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The hypothesis that high concentrations of IGF1 can impair embryo development was investigated in a bovine in vitro model to reflect conditions in polycystic ovary syndrome (PCOS) patients. Embryos were either cultured in the absence or presence of a physiological (100 ng/ml) or supraphysiological (1000 ng/ml) IGF1 concentration. Cell allocation, apoptosis, transcript and protein expression of selected genes involved in apoptosis, glucose metabolism and the IGF system were analysed. Supraphysiological IGF1 concentration did not improve blastocyst formation over controls, but induced higher levels of apoptosis, decreased TP53 protein expression in the trophectoderm and increased the number of cells in the inner cell mass (ICM). The increase in ICM cells corresponded with an increase in IGF1 receptor (IGF1R) protein in the ICM. A small, but significant, percentage of blastocysts displayed a hypertrophic ICM, not observed in controls and virtually absent in embryos treated with physiological concentrations of IGF1. Physiological IGF1 concentrations increased total IGF1R protein expression and upregulated IGFBP3 transcripts leading to an increase in blastocyst formation with no effects on cell number or apoptosis. In conclusion, the results support the hypothesis of detrimental effects of supraphysiological IGF1 concentrations on early pregnancy. However, our results do not support the premise that increased apoptosis associated with high levels of IGF1 is mediated via downregulation of the IGF1R as previously found in preimplantation mouse embryos. This in vitro system with the bovine preimplantation embryo reflects critical features of fertility in PCOS patients and could thus serve as a useful model for in-depth mechanistic studies.
Collapse
|
35
|
Argente MJ, Merchán M, Peiró R, García ML, Santacreu MA, Folch JM, Blasco A. Candidate gene analysis for reproductive traits in two lines of rabbits divergently selected for uterine capacity1. J Anim Sci 2010; 88:828-36. [DOI: 10.2527/jas.2009-2324] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
Pei Y. Effect of nerve growth factor (NGF) on the development of preimplantation rabbit embryos in vitro. Vet Res Commun 2009; 34:11-8. [DOI: 10.1007/s11259-009-9325-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2009] [Indexed: 12/01/2022]
|
37
|
Velazquez MA, Zaraza J, Oropeza A, Webb R, Niemann H. The role of IGF1 in the in vivo production of bovine embryos from superovulated donors. Reproduction 2009; 137:161-80. [DOI: 10.1530/rep-08-0362] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
IGF1 plays an important role in bovine follicular growth, acquisition of oocyte competence and embryo viability. Current data also indicate a critical role for IGF1 in both the ovarian response and the embryo yield following the superovulatory treatments. IGF1 can have either positive or negative effects on embryo viability which is related to the concentration of IGF1 induced by superovulation treatment. These effects impact either on oocyte competence or directly on the embryo. Concentrations in the physiological range appear to result in the production of higher quality embryos, mainly due to the mitogenic and the anti-apoptotic activities of IGF1. However, high superovulatory responses are associated with decreased embryo viability and a concomitant increase in apoptosis. Studies in mice suggest that this increase in apoptosis is related to the downregulation of the IGF1 receptor in the embryo associated with high IGF1 concentrations. Strategies capable of controlling the IGF1 concentrations could be one approach to improve superovulation responses. A range of possible approaches for research within the IGF system in gonadotrophin-stimulated cattle is discussed in this review, including the possible use of superovulated female cattle as an alternative animal experimental model for research on reproductive disorders in humans associated with abnormal IGF1 concentrations.
Collapse
|
38
|
Effect of relaxin and IGF-I on the pre-implantation development of Mongolian gerbil ( Meriones unguiculatus) embryos in vitro. Reprod Med Biol 2009; 8:39-43. [PMID: 29699306 DOI: 10.1007/s12522-008-0007-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 11/20/2008] [Indexed: 10/21/2022] Open
Abstract
Purpose Both relaxin and insulin-like growth factor (IGF) are members of the insulin super family. This study aimed to investigate the effect of relaxin and IGF-I on the pre-implantation of Mongolian gerbil of blastocyst development in vitro. Methods Blastocysts and eight-cell stage embryos were collected from female gerbils. Eight-cell embryos and blastocysts were cultured in mM16 medium supplemented with or without relaxin or IGF-I for 24 h. Blastocysts were counted for total, inner cell mass (ICM) and trophectoderm (TE) cell numbers, and assessed apoptosis incidence. In addition, to measure incorporation of 3H-methionine, blastocysts were cultured for 3 h with relaxin or IGF-I, washed with trichloroacetic acid and measured by liquid scintiration counter. Results Relaxin (200 ng/ml) increased total, TE and ICM cell numbers of blastocyst (P < 0.05) when it was compared with the control. IGF-I (150 ng/ml) also has influence on total and ICM cell numbers of blastocyst when compared with control. Apoptosis incidence was relatively low, and a significant difference was not observed between each group. The effect of relaxin on incorporation of 3H-methionine was higher than the control group (P < 0.05). Relaxin increased the developmental rate from the eight-cell stage to blastocyst (P < 0.05). Conclusions In conclusion, relaxin and IGF-I stimulated protein synthesis and increased cell numbers of blastocysts, promoting development of the gerbil embryo in vitro culture.
Collapse
|
39
|
The importance of growth factors for preimplantation embryo development and in-vitro culture. Curr Opin Obstet Gynecol 2008; 20:292-304. [PMID: 18460945 DOI: 10.1097/gco.0b013e3282fe743b] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The present paper reviews evidence that preimplantation embryos are naturally exposed and designed to respond to growth factors during preimplantation development. RECENT FINDINGS Recent studies have demonstrated that in-vivo human preimplantation embryos are exposed to a mixture of many different growth factors, expressed by the follicles, oviducts and endometrium. Receptors for many of these growth factors have also been shown to be expressed by preimplantation embryos, suggesting a functional role during preimplantation development. Studies of in-vitro fertilization in both animals and humans indicate that in-vitro culture of embryos in conventional media lacking growth factors can result in suboptimal growth and a variety of short-term and long-term developmental abnormalities. Studies of embryo coculture indirectly suggest that growth factors can improve in-vitro development. Many studies of defined growth factor supplements demonstrate that their inclusion in culture media can substantially improve preimplantation development and efficacy of in-vitro fertilization, and may reduce long-term developmental abnormalities as well. SUMMARY Embryos are naturally exposed to a complex mixture of growth factors that play an important role in preimplantation embryo development and that are likely to be of substantial benefit if added to in-vitro culture media.
Collapse
|
40
|
Jiang W, Bai Z, Zhang D, Shi Y, Yong J, Chen S, Ding M, Deng H. Differentiation of mouse nuclear transfer embryonic stem cells into functional pancreatic beta cells. Diabetologia 2008; 51:1671-9. [PMID: 18581093 DOI: 10.1007/s00125-008-1065-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Accepted: 04/18/2008] [Indexed: 10/21/2022]
Abstract
AIMS/HYPOTHESIS Therapeutic cloning has been reported to have potential in the treatment of several degenerative diseases. However, it has yet to be determined whether mouse nuclear transfer-embryonic stem cells (NT-ESCs) can be differentiated into pancreatic beta cells and used to reverse diabetes in an animal model. METHODS We first used the somatic nuclear transfer technique to generate mouse NT-ESCs and then developed a chemically defined stepwise protocol to direct the NT-ESCs into functional pancreatic beta cells. We examined the gene expression pattern of the differentiated NT-ESCs and transplanted the NT-ESC-derived insulin-producing cells into recipient diabetic mice. RESULTS Four mouse NT-ESC lines were first established using an improved nuclear transfer technique and insulin-producing cells were efficiently generated from NT-ESCs by mimicking pancreatic in vivo development. Most of the insulin-producing cells that we generated co-produced pancreatic and duodenal homeobox 1, but not glucagon at the final stage of this differentiation method, which differed from the insulin and glucagon co-production reported by other groups. The differentiated NT-ESCs were able to release insulin in response to glucose stimuli and normalise the blood glucose level of diabetic mice for at least 2 months. CONCLUSIONS/INTERPRETATION These results demonstrate the potential of therapeutic cloning for cell therapy of type 1 diabetes in a mouse model.
Collapse
Affiliation(s)
- W Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Pakrasi PL, Jain AK. Cyclooxygenase-2-derived endogenous prostacyclin reduces apoptosis and enhances embryo viability in mouse. Prostaglandins Leukot Essent Fatty Acids 2008; 79:27-33. [PMID: 18771909 DOI: 10.1016/j.plefa.2008.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 07/21/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
Abstract
The role of prostaglandins (PGs) in apoptosis in preimplantation mice embryo development is reported in this study. It is known that apoptosis plays a very important role in normal mice embryo development. Very few reports are available on this subject. Embryos (6-8 cells) were cultured in the presence of a selective cyclooxygenase (COX)1 inhibitor (SC560), a selective COX2 inhibitor (NS398) and a selective prostacyclin synthase (PGIS) inhibitor (U51605) in a 48-h culture. In another experiment, culture media were supplemented with prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2 or prostacyclin) analogues. The apoptosis was evaluated by detection of active caspase-3. It was strongly detected in the presence of selective COX-2 and PGIS inhibitors, which can be decreased by a PGI2 analogue. In our embryo transfer experiment, the implantation rate decreased with exposure to either the COX2 or the PGIS inhibitor which is increased further after PGI2 supplementation. The level of PGI2 is also higher at the 8-16-cell stage, compaction and blastocyst stage than PGE2. All these results indicate that COX2-derived PGI2 plays an important role in preimplantation embryo development and acts as an antiapopetic factor in in vitro culture.
Collapse
Affiliation(s)
- Pranab Lal Pakrasi
- Embryo Physiology Laboratory, Center of Advanced Study, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| | | |
Collapse
|
42
|
Mtango NR, Potireddy S, Latham KE. Oocyte quality and maternal control of development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:223-90. [PMID: 18703408 DOI: 10.1016/s1937-6448(08)00807-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The oocyte is a unique and highly specialized cell responsible for creating, activating, and controlling the embryonic genome, as well as supporting basic processes such as cellular homeostasis, metabolism, and cell cycle progression in the early embryo. During oogenesis, the oocyte accumulates a myriad of factors to execute these processes. Oogenesis is critically dependent upon correct oocyte-follicle cell interactions. Disruptions in oogenesis through environmental factors and changes in maternal health and physiology can compromise oocyte quality, leading to arrested development, reduced fertility, and epigenetic defects that affect long-term health of the offspring. Our expanding understanding of the molecular determinants of oocyte quality and how these determinants can be disrupted has revealed exciting new insights into the role of oocyte functions in development and evolution.
Collapse
Affiliation(s)
- Namdori R Mtango
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
43
|
Philonenko ES, Volchkov PY, Mufazalov IA, Kiselev SL, Lagarkova MA. Protein kinases predominately expressed in human ES cell lines during differentiation. CELL AND TISSUE BIOLOGY 2007. [DOI: 10.1134/s1990519x07050021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Prowse ABJ, McQuade LR, Bryant KJ, Marcal H, Gray PP. Identification of potential pluripotency determinants for human embryonic stem cells following proteomic analysis of human and mouse fibroblast conditioned media. J Proteome Res 2007; 6:3796-807. [PMID: 17655345 DOI: 10.1021/pr0702262] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unique pluripotential characteristic of human embryonic stem cells heralds their use in fields such as medicine, biotechnology, biopharmaceuticals, and developmental biology. However, the current availability of sufficient quantities of embryonic stem cells for such applications is limited, and generating sufficient numbers for downstream therapeutic applications is a key concern. In the absence of feeder layers or their conditioned media, human embryonic stem cells readily differentiate to form embryoid bodies, indicating that trophic factors secreted by the feeder layers are required for long-term proliferation and maintenance of pluripotency. Adding further complexity to the elucidation of the factors required for the maintenance of pluripotency is the variability of different fibroblast feeder layers (of mouse or human origin) to effectively support human embryonic stem cells. Currently, the deficiency of knowledge concerning the exact identity of factors within the pathways for self-renewal illustrates that a number of factors may be required to support pluripotent, undifferentiated growth of human embryonic stem cells. This study utilized a proteomic analysis (multidimensional chromatography coupled to tandem mass spectrometry) to isolate and identify proteins in the conditioned media of three mitotically inactivated fibroblast lines (human fetal, human neonatal, and mouse embryonic fibroblasts) used to support the undifferentiated growth of human embryonic stem cells. One-hundred seventy-five unique proteins were identified between the three cell lines using a </=1% false positive rate of identification. These proteins were organized into 17 categories. The differentiation and growth factor and extracellular matrix and remodeling categories contained proteins from many of the key pathways already implicated in the maintenance of human embryonic stem cell pluripotency including the Wnt, BMP/TGF-beta1, Activin/Inhibin, and insulin-like growth factor-1 pathways. The conditioned media of fibroblast feeder layers is a complex system, and this study assists in narrowing potential candidates responsible for the support of undifferentiated human embryonic stem cells.
Collapse
Affiliation(s)
- Andrew B J Prowse
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | | | | | | | | |
Collapse
|
45
|
Abstract
This commentary on the scientific basis of laboratory procedures in assisted conception discusses the origins of widespread discrepancies in 'standard' laboratory techniques experienced by patients and their embryos. The lack of direct evidence from clinical laboratory trials and the reasons for this will be highlighted using some examples drawn mainly from embryo culture. Inconsistencies and grey areas in the governance framework of this unique field could usefully be eliminated and attention focused on the need for a rational approach to procedural trials and pilot studies necessarily conducted in clinical laboratories. This may help progress towards a consensus on fundamental questions for which the evidence is currently lacking.
Collapse
|
46
|
Arsenijevic Y. Future perspectives: from stem cells and IGF biology to the clinic. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 567:385-412. [PMID: 16370146 DOI: 10.1007/0-387-26274-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Yvan Arsenijevic
- Unit of Oculogenetics, Eye Hosptial Jules Gonin, Lausanne, Switzerland
| |
Collapse
|
47
|
Kim S, Lee GS, Lee SH, Kim HS, Jeong YW, Kim JH, Kang SK, Lee BC, Hwang WS. Embryotropic effect of insulin-like growth factor (IGF)-I and its receptor on development of porcine preimplantation embryos produced by in vitro fertilization and somatic cell nuclear transfer. Mol Reprod Dev 2005; 72:88-97. [PMID: 15952216 DOI: 10.1002/mrd.20327] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Insulin-like growth factor (IGF)-I is a receptor-mediated autocrine/paracrine growth/survival factor for mammalian embryo development. The present study investigated the temporal expression and regulation of porcine IGF-I receptor (IGF-IR) mRNA and the role of IGF-I on development of porcine in vitro fertilized (IVF) and somatic cell nuclear transfer (SCNT) embryos. As assessed by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), the level of IGF-IR mRNA expression was high in unfertilized oocytes, 2-cell and 4-cell embryos and gradually decreased in 8-cell embryos, morulae, and blastocysts in both IVF and SCNT series. The IVF or SCNT embryos were cultured with 0, 1, 10, 50, or 100 ng/ml IGF-I for 168 hr. Supplementing with 50 ng/ml IGF-I increased blastocyst formation and the number of cells in inner cell masses (ICMs) in both IVF and SCNT embryos. In a second experiment, more blastocysts were obtained when IVF or SCNT embryos were cultured for the first 48 hr or for the entire 168 hr with 50 ng/ml IGF-I compared to culturing without IGF-I for 48 hr or with IGF-I for the last 120 hr or without IGF-I for the entire 168 hr. Treating IVF or SCNT embryos with 50 ng/ml IGF-I significantly up-regulated IGF-IR mRNA compared to untreated control embryos. In conclusion, the present study demonstrated that IGF-IR mRNA is expressed in porcine IVF and SCNT embryos, and that IGF-I improved the developmental competence of IVF and SCNT embryos through its specific receptors.
Collapse
Affiliation(s)
- Sue Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Most mammalian cells when placed in culture will undergo a limited number of cell divisions before entering an unresponsive non-proliferating state termed senescence. However, several pathways that are activated singly or in concert can allow cells to bypass senescence at least for limited periods. These include the telomerase pathway required to maintain telomere ends, the p53 and Rb pathways required to direct senescence in response to DNA damage, telomere shortening and mitogenic signals, and the insulin-like growth factor--Akt pathway that may regulate lifespan and cell proliferation. In this review, we summarize recent findings related to these pathways in embryonic stem (ES) cells and suggest that ES cells are immortal because these pathways are tightly regulated.
Collapse
Affiliation(s)
- Takumi Miura
- Stem Cell Biology Unit, Laboratory of Neurosciences, National Institute on Aging, Gerontology Research Center, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
49
|
Jousan FD, Hansen PJ. Insulin-like Growth Factor-I as a Survival Factor for the Bovine Preimplantation Embryo Exposed to Heat Shock1. Biol Reprod 2004; 71:1665-70. [PMID: 15253925 DOI: 10.1095/biolreprod.104.032102] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) is a survival factor for preimplantation mammalian embryos exposed to stress. One stress that compromises preimplantation embryonic development is elevated temperature (i.e., heat shock). Using bovine embryos produced in vitro as a model, it was hypothesized that IGF-I would protect preimplantation embryos by reducing the effects of heat shock on total cell number, the proportion of blastomeres that undergo apoptosis, and the percentage of embryos developing to the blastocyst stage. In experiment 1, embryos were cultured with or without IGF-I; on Day 5 after insemination, embryos >or=16 cells were cultured at 38.5 degrees C for 24 h or were subjected to 41 degrees C for 9 h followed by 38.5 degrees C for 15 h. Heat shock reduced the total cell number at 24 h after initiation of heat shock and increased the percentage of blastomeres that were apoptotic. Effects of heat shock were less for IGF-I-treated embryos. Experiment 2 was conducted similarly except that embryos were allowed to develop to Day 8 after insemination. The percentage reduction in blastocyst development for heat-shocked embryos compared with those maintained at 38.5 degrees C was less for embryos cultured with IGF-I than for control embryos. Heat shock reduced the total cell number in blastocysts and increased the percentage of blastomeres that were apoptotic, whereas IGF-I-treated embryos had increased total cell number and a reduced percentage of apoptosis. Taken together, these results demonstrate that IGF-I can serve as a survival factor for preimplantation bovine embryos exposed to heat shock by reducing the effects of heat shock on development and apoptosis.
Collapse
Affiliation(s)
- F D Jousan
- Department of Animal Sciences, University of Florida, Gainesville, Florida 32611-0910, USA
| | | |
Collapse
|
50
|
Abstract
Recent studies have revealed asymmetries in the mouse zygote and preimplantation embryo, well before the establishment of anterior-posterior polarity after implantation. Whether these asymmetries are causally related to embryonic patterning or are coincidental outcomes of the topology of normal development remains uncertain.
Collapse
Affiliation(s)
- Janet Rossant
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, 600 University Avenue, Ontario M5G 1X5, Canada.
| | | |
Collapse
|