1
|
Jülich D, Holley SA. Live imaging of Fibronectin 1a-mNeonGreen and Fibronectin 1b-mCherry knock-in alleles during early zebrafish development. Cells Dev 2024; 177:203900. [PMID: 38218338 PMCID: PMC10947920 DOI: 10.1016/j.cdev.2024.203900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Within the developing embryo, cells assemble and remodel their surrounding extracellular matrix during morphogenesis. Fibronectin is an extracellular matrix glycoprotein and is a ligand for several members of the Integrin adhesion receptor family. Here, we compare the expression pattern and loss of function phenotypes of the two zebrafish fibronectin paralogs fn1a and fn1b. We engineered two fluorescently tagged knock-in alleles to facilitate live in vivo imaging of the Fibronectin matrix. Genetic complementation experiments indicate that the knock-in alleles are fully functional. Fn1a-mNeonGreen and Fn1b-mCherry are co-localized in ECM fibers on the surface of the paraxial mesoderm and myotendinous junction. In 5-days old zebrafish larvae, Fn1a-mNeonGreen predominantly localizes to the branchial arches, heart ventricle, olfactory placode and within the otic capsule while Fn1b-mCherry is deposited at the pericardium, proximal convoluted tubule, posterior hindgut and at the ventral mesoderm/cardinal vein. We examined Fn1a-mNeonGreen and Fn1b-mCherry in maternal zygotic integrin α5 mutants and integrin β1a; β1b double mutants and find distinct requirements for these Integrins in assembling the two Fibronectins into ECM fibers in different tissues. Rescue experiments via mRNA injection indicate that the two fibronectins are not fully inter-changeable. Lastly, we examined cross-regulation between the two Fibronectins and find fn1a is necessary for normal Fn1b fibrillogenesis in the presomitic mesoderm, but fn1b is dispensable for the normal pattern of Fn1a deposition.
Collapse
Affiliation(s)
- Dörthe Jülich
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Scott A Holley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Martínez R, Navarro-Martín L, Luccarelli C, Codina AE, Raldúa D, Barata C, Tauler R, Piña B. Unravelling the mechanisms of PFOS toxicity by combining morphological and transcriptomic analyses in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:462-471. [PMID: 31022537 DOI: 10.1016/j.scitotenv.2019.04.200] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Exposure to PFOS (perfluorooctanesulfonate) has been related to toxic effects on lipid metabolism, immunological response, and different endocrine systems. We present here a transcriptomic analysis of zebrafish embryos exposed to different concentrations of PFOS (0.03-1.0 mg/L) from 48 to 120 hpf. No major survival or morphological alterations (swimming bladder inflation, kyphosis, eye separation and size…) were observed below the 1.0 mg/L mark. Conversely, we observed significant increase in transcripts related to lipid transport and metabolism even at the lowest used concentration. In addition, we observed a general decrease on transcripts related to natural immunity and defense again infections, which adds to the recent concerns about PFOS as immunotoxicant, particularly in humans. Derived PoD (Point of Departure) values for transcriptional changes (0.011 mg/L) were about 200-fold lower than the corresponding PoD values for morphometric effects (2.53 mg/L), and close to levels observed in human blood serum or bird eggs. Our data suggest that currently applicable tolerable levels of PFOS in commercial goods should be re-evaluated, taking into account its potential effects on lipid metabolism and the immune system.
Collapse
Affiliation(s)
- Rubén Martínez
- IDAEA-CSIC, Jordi Girona, 18, 08034 Barcelona, Spain; Universitat de Barcelona (UB), Barcelona 08007, Spain.
| | | | | | - Anna E Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.
| | | | - Carlos Barata
- IDAEA-CSIC, Jordi Girona, 18, 08034 Barcelona, Spain.
| | - Romà Tauler
- IDAEA-CSIC, Jordi Girona, 18, 08034 Barcelona, Spain.
| | - Benjamin Piña
- IDAEA-CSIC, Jordi Girona, 18, 08034 Barcelona, Spain.
| |
Collapse
|
3
|
Iida A, Wang Z, Hirata H, Sehara-Fujisawa A. Integrin β1 activity is required for cardiovascular formation in zebrafish. Genes Cells 2018; 23:938-951. [PMID: 30151851 DOI: 10.1111/gtc.12641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022]
Abstract
Integrins are transmembrane molecules that facilitate cell-to-cell and cell-to-extracellular matrix (ECM) interactions. Integrin molecules are heterodimers that consist of α- and β-subunits. The integrin β1 gene is widely expressed in vivo and is the major β molecule in many tissues; however, tissue-specific roles of integrin β1 are still elusive. In this study, we investigated integrin β1 function in endothelial cells of zebrafish. An integrin β1b mutant zebrafish exhibited morphological abnormalities in blood vessel formation, cephalic hemorrhage and a decreased responsiveness to tactile stimulation during development. To determine the role of integrin β1b in vascular formation, we developed a Gal4/UAS-mediated conditional inactivation of integrin β1 by expressing the cytoplasmic region of integrin β1 that acts as a dominant-negative (DN) isoform. Expression of integrin β1 DN in endothelial cells induced blood vessel abnormalities as in integrin β1b mutants. These results show that endothelial cells require integrin activity for the formation and/or maintenance of blood vessels in zebrafish. Furthermore, our time-lapse recording visualized the breakpoint of cephalic vessels and the hemorrhage onset. Taken together, our tissue-specific inactivation of integrin β1 in zebrafish is powerful tools for functional analysis of integrin β1 in developing tissues.
Collapse
Affiliation(s)
- Atsuo Iida
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Zi Wang
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, Graduate School of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Atsuko Sehara-Fujisawa
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Wang X, Yuan W, Wang X, Qi J, Qin Y, Shi Y, Zhang J, Gong J, Dong Z, Liu X, Sun C, Chai R, Le Noble F, Liu D. The somite-secreted factor Maeg promotes zebrafish embryonic angiogenesis. Oncotarget 2018; 7:77749-77763. [PMID: 27780917 PMCID: PMC5363618 DOI: 10.18632/oncotarget.12793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/12/2016] [Indexed: 01/06/2023] Open
Abstract
MAM and EGF containing gene (MAEG), also called Epidermal Growth Factor-like domain multiple 6 (EGFL6), belongs to the epidermal growth factor repeat superfamily. The role of Maeg in zebrafish angiogenesis remains unclear. It was demonstrated that maeg was dynamically expressed in zebrafish developing somite during a time window encompassing many key steps in embryonic angiogenesis. Maeg loss-of-function embryos showed reduced endothelial cell number and filopodia extensions of intersegmental vessels (ISVs). Maeg gain-of-function induced ectopic sprouting evolving into a hyperbranched and functional perfused vasculature. Mechanistically we demonstrate that Maeg promotes angiogenesis dependent on RGD domain and stimulates activation of Akt and Erk signaling in vivo. Loss of Maeg or Itgb1, augmented expression of Notch receptors, and inhibiting Notch signaling or Dll4 partially rescued angiogenic phenotypes suggesting that Notch acts downstream of Itgb1. We conclude that Maeg acts as a positive regulator of angiogenic cell behavior and formation of functional vessels.
Collapse
Affiliation(s)
- Xin Wang
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Wei Yuan
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Xueqian Wang
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Jialing Qi
- Medical College, Nantong University, Nantong, China
| | - Yinyin Qin
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Yunwei Shi
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Jie Zhang
- Medical College, Nantong University, Nantong, China
| | - Jie Gong
- School of life science, Nantong University, Nantong, China
| | - Zhangji Dong
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoyu Liu
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Chen Sun
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Renjie Chai
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Ferdinand Le Noble
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dong Liu
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
5
|
Zhang K, Tan J, Su J, Liang H, Shen L, Li C, Pan G, Yang L, Cui H. Integrin β3 plays a novel role in innate immunity in silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:307-317. [PMID: 28826989 DOI: 10.1016/j.dci.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Integrins are transmembrane receptors that play essential roles in many physiological and pathological processes through cell-to-cell and cell-to-extracellular matrix (ECM) interactions. In the current study, a 2653-bp full-length cDNA of a novel integrin β subunit (designated Bmintegrin β3) was obtained from silkworm hemocytes. Bmintegrin β3 has the typical conserved structure of the integrin β family. The qRT-PCR results showed that Bmintegrin β3 was specifically expressed in the hematological system and that its expression was significantly increased after challenge with different types of PAMPs and bacteria. The recombinant Bmintegrin β3 protein displayed increased aggregation with S. aureus, suggesting that Bmintegrin β3 might directly bind to PAMPs. Interestingly, Bmintegrin β3 knockdown promoted PPO1, PPO2, BAEE, SPH78, SPH125, and SPH127 expression and accelerated the melanization process. Unexpectedly, the expression of genes related to phagocytosis, the Toll pathway, and the IMD pathway was also up-regulated after Bmintegrin β3 knockdown. Thus, Bmintegrin β3 might be a pattern recognition protein (PRP) for PAMPs and might directly bind to bacteria and enhance the phagocytosis activity of hemocytes. Moreover, Bmintegrin β3 and its ligand might negatively regulate the expression of immune-related genes through an unknown mechanism. In summary, our studies provide new insights into the immune functions of Bmintegrin β3 from the silkworm, Bombyx mori.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Juan Tan
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Jingjing Su
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Hanghua Liang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Li Shen
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
6
|
Wu Q, Zhang J, Koh W, Yu Q, Zhu X, Amsterdam A, Davis GE, Arnaout MA, Xiong JW. Talin1 is required for cardiac Z-disk stabilization and endothelial integrity in zebrafish. FASEB J 2015; 29:4989-5005. [PMID: 26310270 DOI: 10.1096/fj.15-273409] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/13/2015] [Indexed: 01/20/2023]
Abstract
Talin (tln) binds and activates integrins to couple extracellular matrix-bound integrins to the cytoskeleton; however, its role in heart development is not well characterized. We identified the defective gene and the resulting cardiovascular phenotypes in zebrafish tln1(fl02k) mutants. The ethylnitrosourea-induced fl02k mutant showed heart failure, brain hemorrhage, and diminished cardiac and vessel lumens at 52 h post fertilization. Positional cloning revealed a nonsense mutation of tln1 in this mutant. tln1, but neither tln2 nor -2a, was dominantly expressed in the heart and vessels. Unlike tln1 and -2 in the mouse heart, the unique tln1 expression in the heart enabled us, for the first time, to determine the critical roles of Tln1 in the maintenance of cardiac sarcomeric Z-disks and endothelial/endocardial cell integrity, partly through regulating F-actin networks in zebrafish. The similar expression profiles of tln1 and integrin β1b (itgb1b) and synergistic function of the 2 genes revealed that itgb1b is a potential partner for tln1 in the stabilization of cardiac Z-disks and vessel lumens. Taken together, the results of this work suggest that Tln1-mediated Itgβ1b plays a crucial role in maintaining cardiac sarcomeric Z-disks and endothelial/endocardial cell integrity in zebrafish and may also help to gain molecular insights into congenital heart diseases.
Collapse
Affiliation(s)
- Qing Wu
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jiaojiao Zhang
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Wonshill Koh
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Qingming Yu
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Xiaojun Zhu
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adam Amsterdam
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - George E Davis
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - M Amin Arnaout
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jing-Wei Xiong
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Wang X, Wang X, Yuan W, Chai R, Liu D. Egfl6 is involved in zebrafish notochord development. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:961-969. [PMID: 25952972 DOI: 10.1007/s10695-015-0061-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/23/2015] [Indexed: 06/04/2023]
Abstract
The epidermal growth factor (EGF) repeat motif defines a superfamily of diverse protein involved in regulating a variety of cellular and physiological processes, such as cell cycle, cell adhesion, proliferation, migration, and neural development. Egfl6, an EGF protein, also named MAGE was first cloned in human tissue. Up to date, the study of zebrafish Egfl6 expression pattern and functional analysis of Egfl6 involved in embryonic development of vertebrate in vivo is thus far lacking. Here we reported that Egfl6 was involved in zebrafish notochord development. It was shown that Egfl6 mRNA was expressed in zebrafish, developing somites, fin epidermis, pharyngeal arches, and hindbrain region. Particularly the secreted Egfl6 protein was significantly accumulated in notochord. Loss of Egfl6 function in zebrafish embryos resulted in curved body with distorted notochord in the posterior trunk. It was observed that expression of all Notch ligand and receptors in notochord of 28 hpf Egfl6 morphants was not affected, except notch2, which was up-regulated. We found that inhibition of Notch signaling by DAPT efficiently rescued notochord developmental defect of Egfl6 deficiency embryos.
Collapse
Affiliation(s)
- Xueqian Wang
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Qixiu Road 19, 226001, Nantong, China
| | | | | | | | | |
Collapse
|
8
|
Burczyk M, Burkhalter MD, Blätte T, Matysik S, Caron MG, Barak LS, Philipp M. Phenotypic regulation of the sphingosine 1-phosphate receptor miles apart by G protein-coupled receptor kinase 2. Biochemistry 2015; 54:765-75. [PMID: 25555130 PMCID: PMC4310627 DOI: 10.1021/bi501061h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The evolutionarily conserved DRY
motif at the end of the third
helix of rhodopsin-like, class-A G protein-coupled receptors (GPCRs)
is a major regulator of receptor stability, signaling activity, and
β-arrestin-mediated internalization. Substitution of the DRY
arginine with histidine in the human vasopressin receptor results
in a loss-of-function phenotype associated with diabetes insipidus.
The analogous R150H substitution of the DRY motif in zebrafish sphingosine-1
phosphate receptor 2 (S1p2) produces a mutation, miles apart m93 (milm93), that not only disrupts signaling but
also impairs heart field migration. We hypothesized that constitutive
S1p2 desensitization is the underlying cause of this strong zebrafish
developmental defect. We observed in cell assays that the wild-type
S1p2 receptor is at the cell surface whereas in distinct contrast
the S1p2 R150H receptor is found in intracellular vesicles, blocking
G protein but not arrestin signaling activity. Surface S1p2 R150H
expression could be restored by inhibition of G protein-coupled receptor
kinase 2 (GRK2). Moreover, we observed that β-arrestin 2 and
GRK2 colocalize with S1p2 in developing zebrafish embryos and depletion
of GRK2 in the S1p2 R150H miles apart zebrafish partially rescued
cardia bifida. The ability of reduced GRK2 activity to reverse a developmental
phenotype associated with constitutive desensitization supports efforts
to genetically or pharmacologically target this kinase in diseases
involving biased GPCR signaling.
Collapse
Affiliation(s)
- Martina Burczyk
- Institute for Biochemistry and Molecular Biology, Ulm University , 89081 Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Wang X, Li L, Liu D. Expression analysis of integrin β1 isoforms during zebrafish embryonic development. Gene Expr Patterns 2014; 16:86-92. [PMID: 25305346 DOI: 10.1016/j.gep.2014.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/11/2014] [Accepted: 10/01/2014] [Indexed: 11/19/2022]
Abstract
Integrins are a superfamily of the major metazoan receptors for cell-cell and cell-extracellular matrix adhesion. Integrins and their ligands play critical roles in a variety of fundamental cellular processes. Integrins are heterodimeric cell surface glycoproteins comprised of non-covalently bound α- and β-subunits. A variety of integrin subunits have been identified in mouse, chicken, zebrafish, Xenopus laevis and other vertebrates. In zebrafish multiple integrin β1 homologs have been identified. However, zebrafish embryo is a largely untapped model for analyzing integrin β1 isoforms temporal-spatial expression pattern, function and its relevance to human disease in whole animal level. Currently, we systematically analyzed the expression pattern of zebrafish integrin β1 including integrin beta 1a (itgb1a), integrin beta 1b (itgb1b), integrin beta 1b.1 (itgb1b.1), and integrin beta 1b.2 (itgb1b.2) at embryo stage using whole amount in situ hybridization. We show itgb1a, itgb1b and itgb1b.1 were maternally expressed in zygote, cleavage and blastula periods, while itgb1b.2 was not detectable in the corresponding stages. A more tissue specific pattern emerges during organogenesis, including heart expression for itgb1a, myotome borders for itgb1b, intestinal epithelium for itgb1b.1, and branchial arch for itgb1b.2. All are similarly expressed in the early embryonic epidermis and notochord. Additionally, itgb1a, itgb1b and itgb1b.2 shared the common expression in otic vesicle. Our study provides new insight into the integrin β1 expression and the use of this model organism to tackle future studies on the role of integrin β1 in embryo development.
Collapse
Affiliation(s)
- Xin Wang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Liping Li
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Dong Liu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
10
|
Webb AB, Soroldoni D, Oswald A, Schindelin J, Oates AC. Generation of dispersed presomitic mesoderm cell cultures for imaging of the zebrafish segmentation clock in single cells. J Vis Exp 2014. [PMID: 25078855 PMCID: PMC4511270 DOI: 10.3791/50307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Segmentation is a periodic and sequential morphogenetic process in vertebrates. This rhythmic formation of blocks of tissue called somites along the body axis is evidence of a genetic oscillator patterning the developing embryo. In zebrafish, the intracellular clock driving segmentation is comprised of members of the Her/Hes transcription factor family organized into negative feedback loops. We have recently generated transgenic fluorescent reporter lines for the cyclic gene her1 that recapitulate the spatio-temporal pattern of oscillations in the presomitic mesoderm (PSM). Using these lines, we developed an in vitro culture system that allows real-time analysis of segmentation clock oscillations within single, isolated PSM cells. By removing PSM tissue from transgenic embryos and then dispersing cells from oscillating regions onto glass-bottom dishes, we generated cultures suitable for time-lapse imaging of fluorescence signal from individual clock cells. This approach provides an experimental and conceptual framework for direct manipulation of the segmentation clock with unprecedented single-cell resolution, allowing its cell-autonomous and tissue-level properties to be distinguished and dissected.
Collapse
Affiliation(s)
- Alexis B Webb
- Max Planck Institute of Molecular Cell Biology and Genetics;
| | | | - Annelie Oswald
- Max Planck Institute of Molecular Cell Biology and Genetics
| | | | - Andrew C Oates
- Max Planck Institute of Molecular Cell Biology and Genetics
| |
Collapse
|
11
|
Huang Y, Xia J, Zheng J, Geng B, Liu P, Yu F, Liu B, Zhang H, Xu M, Ye P, Zhu Y, Xu Q, Wang X, Kong W. Deficiency of cartilage oligomeric matrix protein causes dilated cardiomyopathy. Basic Res Cardiol 2013; 108:374. [DOI: 10.1007/s00395-013-0374-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 01/08/2023]
|
12
|
Plexin A3 and turnout regulate motor axonal branch morphogenesis in zebrafish. PLoS One 2013; 8:e54071. [PMID: 23349787 PMCID: PMC3549987 DOI: 10.1371/journal.pone.0054071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/10/2012] [Indexed: 02/01/2023] Open
Abstract
During embryogenesis motor axons navigate to their target muscles, where individual motor axons develop complex branch morphologies. The mechanisms that control axonal branching morphogenesis have been studied intensively, yet it still remains unclear when branches begin to form or how branch locations are determined. Live cell imaging of individual zebrafish motor axons reveals that the first axonal branches are generated at the ventral extent of the myotome via bifurcation of the growth cone. Subsequent branches are generated by collateral branching restricted to their synaptic target field along the distal portion of the axon. This precisely timed and spatially restricted branching process is disrupted in turnout mutants we identified in a forward genetic screen. Molecular genetic mapping positioned the turnout mutation within a 300 kb region encompassing eight annotated genes, however sequence analysis of all eight open reading frames failed to unambiguously identify the turnout mutation. Chimeric analysis and single cell labeling reveal that turnout function is required cell non-autonomously for intraspinal motor axon guidance and peripheral branch formation. turnout mutant motor axons form the first branch on time via growth cone bifurcation, but unlike wild-type they form collateral branches precociously, when the growth cone is still navigating towards the ventral myotome. These precocious collateral branches emerge along the proximal region of the axon shaft typically devoid of branches, and they develop into stable, permanent branches. Furthermore, we find that null mutants of the guidance receptor plexin A3 display identical motor axon branching defects, and time lapse analysis reveals that precocious branch formation in turnout and plexin A3 mutants is due to increased stability of otherwise short-lived axonal protrusions. Thus, plexin A3 dependent intrinsic and turnout dependent extrinsic mechanisms suppress collateral branch morphogenesis by destabilizing membrane protrusions before the growth cone completes navigation into the synaptic target field.
Collapse
|
13
|
Extracellular Matrix Remodeling in Zebrafish Development. EXTRACELLULAR MATRIX IN DEVELOPMENT 2013. [DOI: 10.1007/978-3-642-35935-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Ablooglu AJ, Tkachenko E, Kang J, Shattil SJ. Integrin alphaV is necessary for gastrulation movements that regulate vertebrate body asymmetry. Development 2010; 137:3449-58. [PMID: 20843856 DOI: 10.1242/dev.045310] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Integrin αV can form heterodimers with several β subunits to mediate cell-cell and cell-extracellular matrix interactions. During zebrafish gastrulation, αV is expressed maternally and zygotically. Here, we used a morpholino-mediated αV knockdown strategy to study αV function. Although αV morphants displayed vascular defects, they also exhibited left-right body asymmetry defects affecting multiple visceral organs. This was preceded by mislocalization of dorsal forerunner cells (DFCs) and malformation of the Kupffer's vesicle (KV) laterality organ. These defects were rescued with morpholino-resistant αV mRNA. Like αV, integrin β1b was expressed in DFCs, and β1b knockdown largely recapitulated the laterality phenotype of αV morphants. When tracked in real-time, individual DFCs of both morphants showed defects in DFC migration, preventing them from organizing into a KV of normal shape and size. Thus, we propose that αVβ1b mediates cellular interactions that are necessary for DFC clustering and movements necessary for Kupffer's vesicle formation, uncovering an early contribution of integrins to the regulation of vertebrate laterality.
Collapse
Affiliation(s)
- Ararat J Ablooglu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0726, USA
| | | | | | | |
Collapse
|
15
|
A role for Rho GTPases and cell–cell adhesion in single-cell motility in vivo. Nat Cell Biol 2009; 12:47-53; sup pp 1-11. [DOI: 10.1038/ncb2003] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 11/06/2009] [Indexed: 12/12/2022]
|
16
|
Mould AP, Koper E, Byron A, Zahn G, Humphries MJ. Mapping the ligand-binding pocket of integrin alpha5beta1 using a gain-of-function approach. Biochem J 2009; 424:179-89. [PMID: 19747169 PMCID: PMC3329623 DOI: 10.1042/bj20090992] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Integrin alpha5beta1 is a key receptor for the extracellular matrix protein fibronectin. Antagonists of human integrin alpha5beta1 have therapeutic potential as anti-angiogenic agents in cancer and diseases of the eye. However, the structure of the integrin is unsolved and the atomic basis of fibronectin and antagonist binding by integrin alpha5beta1 is poorly understood. In the present study, we demonstrate that zebrafish alpha5beta1 integrins do not interact with human fibronectin or the human alpha5beta1 antagonists JSM6427 and cyclic peptide CRRETAWAC. Zebrafish alpha5beta1 integrins do bind zebrafish fibronectin-1, and mutagenesis of residues on the upper surface and side of the zebrafish alpha5 subunit beta-propeller domain shows that these residues are important for the recognition of the Arg-Gly-Asp (RGD) motif and the synergy sequence [Pro-His-Ser-Arg-Asn (PHSRN)] in fibronectin. Using a gain-of-function analysis involving swapping regions of the zebrafish integrin alpha5 subunit with the corresponding regions of human alpha5 we show that blades 1-4 of the beta-propeller are required for human fibronectin recognition, suggesting that fibronectin binding involves a broad interface on the side and upper face of the beta-propeller domain. We find that the loop connecting blades 2 and 3 of the beta-propeller, the D3-A3 loop, contains residues critical for antagonist recognition, with a minor role played by residues in neighbouring loops. A new homology model of human integrin alpha5beta1 supports an important function for D3-A3 loop residues Trp157 and Ala158 in the binding of antagonists. These results will aid the development of reagents that block integrin alpha5beta1 functions in vivo.
Collapse
Affiliation(s)
- A. Paul Mould
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ewa Koper
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Adam Byron
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
17
|
Arrington CB, Yost HJ. Extra-embryonic syndecan 2 regulates organ primordia migration and fibrillogenesis throughout the zebrafish embryo. Development 2009; 136:3143-52. [PMID: 19700618 DOI: 10.1242/dev.031492] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
One of the first steps in zebrafish heart and gut organogenesis is the migration of bilateral primordia to the midline to form cardiac and gut tubes. The mechanisms that regulate this process are poorly understood. Here we show that the proteoglycan syndecan 2 (Sdc2) expressed in the extra-embryonic yolk syncytial layer (YSL) acts locally at the YSL-embryo interface to direct organ primordia migration, and is required for fibronectin and laminin matrix assembly throughout the embryo. Surprisingly, neither endogenous nor exogenous sdc2 expressed in embryonic cells can compensate for knockdown of sdc2 in the YSL, indicating that Sdc2 expressed in extra-embryonic tissues is functionally distinct from Sdc2 in embryonic cells. The effects of sdc2 knockdown in the YSL can be rescued by extra-embryonic Sdc2 lacking an extracellular proteolytic cleavage (shedding) site, but not by extra-embryonic Sdc2 lacking extracellular glycosaminoglycan (GAG) addition sites, suggesting that distinct GAG chains on extra-embryonic Sdc2 regulate extracellular matrix assembly, cell migration and epithelial morphogenesis of multiple organ systems throughout the embryo.
Collapse
Affiliation(s)
- Cammon B Arrington
- Division of Pediatric Cardiology, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
18
|
San Antonio JD, Zoeller JJ, Habursky K, Turner K, Pimtong W, Burrows M, Choi S, Basra S, Bennett JS, DeGrado WF, Iozzo RV. A key role for the integrin alpha2beta1 in experimental and developmental angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1338-47. [PMID: 19700757 DOI: 10.2353/ajpath.2009.090234] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The alpha2beta1 integrin receptor plays a key role in angiogenesis. Here we investigated the effects of small molecule inhibitors (SMIs) designed to disrupt integrin alpha2 I or beta1 I-like domain function on angiogenesis. In unchallenged endothelial cells, fibrillar collagen induced robust capillary morphogenesis. In contrast, tube formation was significantly reduced by SMI496, a beta1 I-like domain inhibitor and by function-blocking anti-alpha2beta1 but not -alpha1beta1 antibodies. Endothelial cells bound fluorescein-labeled collagen I fibrils, an interaction specifically inhibited by SMI496. Moreover, SMI496 caused cell retraction and cytoskeletal collapse of endothelial cells as well as delayed endothelial cell wound healing. SMI activities were examined in vivo by supplementing the growth medium of zebrafish embryos expressing green fluorescent protein under the control of the vascular endothelial growth factor receptor-2 promoter. SMI496, but not a control compound, interfered with angiogenesis in vivo by reversibly inhibiting sprouting from the axial vessels. We further characterized zebrafish alpha2 integrin and discovered that this integrin is highly conserved, especially the I domain. Notably, a similar vascular phenotype was induced by morpholino-mediated knockdown of the integrin alpha2 subunit. By live videomicroscopy, we confirmed that the vessels were largely nonfunctional in the absence of alpha2beta1 integrin. Collectively, our results provide strong biochemical and genetic evidence of a central role for alpha2beta1 integrin in experimental and developmental angiogenesis.
Collapse
Affiliation(s)
- James D San Antonio
- Department of Pathology, Anatomy and Cell Biology, 1020 Locust Street, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jülich D, Mould AP, Koper E, Holley SA. Control of extracellular matrix assembly along tissue boundaries via Integrin and Eph/Ephrin signaling. Development 2009; 136:2913-21. [PMID: 19641014 DOI: 10.1242/dev.038935] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs) coat and subdivide animal tissues, but it is unclear how ECM formation is restricted to tissue surfaces and specific cell interfaces. During zebrafish somite morphogenesis, segmental assembly of an ECM composed of Fibronectin (FN) depends on the FN receptor Integrin alpha5beta1. Using in vivo imaging and genetic mosaics, our studies suggest that incipient Itgalpha5 clustering along the nascent border precedes matrix formation and is independent of FN binding. Integrin clustering can be initiated by Eph/Ephrin signaling, with Ephrin reverse signaling being sufficient for clustering. Prior to activation, Itgalpha5 expressed on adjacent cells reciprocally and non-cell-autonomously inhibits spontaneous Integrin clustering and assembly of an ECM. Surface derepression of this inhibition provides a self-organizing mechanism for the formation and maintenance of ECM along the tissue surface. Within the tissue, interplay between Eph/Ephrin signaling, ligand-independent Integrin clustering and reciprocal Integrin inhibition restricts de novo ECM production to somite boundaries.
Collapse
Affiliation(s)
- Dörthe Jülich
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
20
|
Integrins during evolution: evolutionary trees and model organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:779-89. [PMID: 19161977 DOI: 10.1016/j.bbamem.2008.12.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 12/03/2008] [Accepted: 12/23/2008] [Indexed: 11/23/2022]
Abstract
The integrins form a large family of cell adhesion receptors. All multicellular animals express integrins, indicating that the family evolved relatively early in the history of metazoans, and homologous sequences of the component domains of integrin alpha and beta subunits are seen in prokaryotes. Some integrins, however, seem to be much younger. For example, the alphaI domain containing integrins, including collagen receptors and leukocyte integrins, have been found in chordates only. Here, we will discuss what conclusions can be drawn about integrin function by studying the evolutionary conservation of integrins. We will also look at how studying integrins in organisms such as the fruit fly and mouse has helped our understanding of integrin evolution-function relationships. As an illustration of this, we will summarize the current understanding of integrin involvement in skeletal muscle formation.
Collapse
|
21
|
Abstract
Directed cell movements during gastrulation establish the germ layers of the vertebrate embryo and coordinate their contributions to different tissues and organs. Anterior migration of the mesoderm and endoderm has largely been interpreted to result from epiboly and convergent-extension movements that drive body elongation. We show that the chemokine Cxcl12b and its receptor Cxcr4a restrict anterior migration of the endoderm during zebrafish gastrulation, thereby coordinating its movements with those of the mesoderm. Depletion of either gene product causes disruption of integrin-dependent cell adhesion, resulting in separation of the endoderm from the mesoderm; the endoderm then migrates farther anteriorly than it normally would, resulting in bilateral duplication of endodermal organs. This process may have relevance to human gastrointestinal bifurcations and other organ defects.
Collapse
Affiliation(s)
- Sreelaja Nair
- Department of Developmental and Cell Biology University of California, Irvine 92697-2300 USA
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology University of California, Irvine 92697-2300 USA
| |
Collapse
|
22
|
Marshall W, Katoh F, Main H, Sers N, Cozzi R. Focal adhesion kinase and β1 integrin regulation of Na+, K+, 2Cl− cotransporter in osmosensing ion transporting cells of killifish, Fundulus heteroclitus. Comp Biochem Physiol A Mol Integr Physiol 2008; 150:288-300. [DOI: 10.1016/j.cbpa.2008.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 03/13/2008] [Accepted: 03/17/2008] [Indexed: 12/31/2022]
|
23
|
|
24
|
Xiao T, Baier H. Lamina-specific axonal projections in the zebrafish tectum require the type IV collagen Dragnet. Nat Neurosci 2007; 10:1529-37. [PMID: 17982451 DOI: 10.1038/nn2002] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 09/25/2007] [Indexed: 12/13/2022]
Abstract
The mechanisms underlying the precise targeting of tectal layers by ingrowing retinal axons are largely unknown. In zebrafish, individual axons choose one of four retinorecipient layers upon entering the tectum and remain restricted to this layer, despite continual remodeling and shifting of their terminal arbors. In dragnet mutants, by contrast, a large fraction of retinal axons aberrantly trespass between layers or form terminal arbors that span two layers. The dragnet gene, drg, encodes collagen IV(alpha5) (Col4a5), a basement membrane component lining the surface of the tectum. Heparan sulfate proteoglycans (HSPGs) are normally associated with the tectal basement membrane but are dispersed in the dragnet mutant tectum. Zebrafish boxer (extl3) mutants, which are deficient in HSPG synthesis, show laminar targeting defects similar to those in dragnet. Our results show that the collagen IV sheet anchors secreted factors at the surface of the tectum, which serve as guidance cues for retinal axons.
Collapse
Affiliation(s)
- Tong Xiao
- Department of Physiology, Programs in Neuroscience, Genetics, and Developmental Biology, University of California, San Francisco, California 94158-2324, USA
| | | |
Collapse
|
25
|
Ablooglu AJ, Kang J, Handin RI, Traver D, Shattil SJ. The zebrafish vitronectin receptor: Characterization of integrinαVandβ3expression patterns in early vertebrate development. Dev Dyn 2007; 236:2268-76. [PMID: 17626277 DOI: 10.1002/dvdy.21229] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
alphaVbeta3 is a receptor for vitronectin and other extracellular matrix ligands, and it has been implicated in angiogenesis and osteoclast function in mammals. We have cloned full-length cDNAs of zebrafish integrin alphaV (itgalphaV), and two paralogous zebrafish beta3 integrins (itgbeta3.1 and itgbeta3.2). Whole-mount in situ hybridization analysis revealed that alphaV and beta3.1 share overlapping expression domains in apical ectodermal ridge, ventricular myocardium, hypothalamus, posterior tuberculum, medial tectal proliferation zone, and in the odontogenic field of the bilateral pharyngeal dentitions. In contrast to beta3.1, beta3.2 is transiently expressed throughout the developing embryo. In situ hybridization profiles and heterologous expression of proteins in tissue culture cells suggest that beta3.1 is the major beta3 paralog that associates with alphaV in zebrafish. Furthermore, when beta3.1 expression profiles are compared to those of other potential alphaV partners (beta1, beta5, and beta8), pharyngeal dentitions appear to represent a unique expression field for alphaV and beta3.1.
Collapse
Affiliation(s)
- Ararat J Ablooglu
- Division of Hematology-Oncology, Department of Medicine, University of California San Diego, La Jolla, California 92093-0726, USA.
| | | | | | | | | |
Collapse
|