1
|
Nicol B, Estermann MA, Yao HHC, Mellouk N. Becoming female: Ovarian differentiation from an evolutionary perspective. Front Cell Dev Biol 2022; 10:944776. [PMID: 36158204 PMCID: PMC9490121 DOI: 10.3389/fcell.2022.944776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
Differentiation of the bipotential gonadal primordium into ovaries and testes is a common process among vertebrate species. While vertebrate ovaries eventually share the same functions of producing oocytes and estrogens, ovarian differentiation relies on different morphogenetic, cellular, and molecular cues depending on species. The aim of this review is to highlight the conserved and divergent features of ovarian differentiation through an evolutionary perspective. From teleosts to mammals, each clade or species has a different story to tell. For this purpose, this review focuses on three specific aspects of ovarian differentiation: ovarian morphogenesis, the evolution of the role of estrogens on ovarian differentiation and the molecular pathways involved in granulosa cell determination and maintenance.
Collapse
Affiliation(s)
- Barbara Nicol
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States,*Correspondence: Barbara Nicol,
| | - Martin A. Estermann
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Namya Mellouk
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy en Josas, France
| |
Collapse
|
2
|
Sun X, Liswaniso S, Shan X, Zhao J, Chimbaka IM, Xu R, Qin N. The opposite effects of VGLL1 and VGLL4 genes on granulosa cell proliferation and apoptosis of hen ovarian prehierarchical follicles. Theriogenology 2022; 181:95-104. [PMID: 35074718 DOI: 10.1016/j.theriogenology.2022.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/26/2022]
Abstract
Transcription cofactors Vestigial like family (VGLL) members consisting of four homologs (VGLL1-4) are associated with cell growth and metastasis in mammals, among which VGLL1 gene has been documented to possess tumorigenic functions in various types of tumor, and VGLL4 acts as a new tumor suppressor; likewise several studies indicated that they potentially play a role in the regulation of ovary growth and function. However, the biological effects of chicken VGLL1 and VGLL4 on the proliferation, apoptosis, and steroidogenesis of the granulosa cells (GCs) during ovarian follicle development remain unknown now. This study found that VGLL1 and VGLL4 genes present divergent expression patterns of the transcripts in the GCs of various sized prehierarchical follicles (PFs) before follicle selection. Specific small interfering RNA (siRNA) was employed to elucidate the exact roles of VGLL1 and VGLL4 in regulating the PF development of the hen ovary. The results demonstrated that the mRNA expression levels of the steroidogenic-related enzyme steroidogenic acute regulatory protein (STAR) gene and the cell proliferation-related factors B-cell lymphoma-2 (BCL2), and cyclin D1 (CCND1) genes were significantly down-regulated in the cells with VGLL1 silence but remarkably up-regulated in the cells lacking VGLL4. Whereas the expression level of the cell apoptosis biomarker caspase-3 (CASP3) transcript was noticeably enhanced in the GCs without VGLL1 but significantly decreased in the GCs deprived of VGLL4. Further results showed that the siRNA-mediated silence of VGLL1 caused a significant increase in apoptosis with a reduction in the proliferation of GCs. Nevertheless, knockdown of VGLL4 resulted in a remarkable decrement in apoptosis but a memorable augment in proliferation of the GCs. Taken together, this study proved that VGLL1 promotes cell proliferation and steroidogenesis but inhibits apoptosis. In contrast, VGLL4 stimulates GC apoptosis while suppressing the GC proliferation and steroidogenesis in the hen ovarian follicles. We conluded that VGLL1 and VGLL4 affect oppositely the ovarian prehierarchical follicle development by the different regulatory manner in the GC proliferation and apoptosis of chicken ovary.
Collapse
Affiliation(s)
- Xue Sun
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Simushi Liswaniso
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xuesong Shan
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jinghua Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ignatius Musenge Chimbaka
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Rifu Xu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Ning Qin
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
3
|
Abedini A, Sayed C, Carter LE, Boerboom D, Vanderhyden BC. Non-canonical WNT5a regulates Epithelial-to-Mesenchymal Transition in the mouse ovarian surface epithelium. Sci Rep 2020; 10:9695. [PMID: 32546756 PMCID: PMC7298016 DOI: 10.1038/s41598-020-66559-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/22/2020] [Indexed: 01/06/2023] Open
Abstract
The ovarian surface epithelium (OSE) is a monolayer that covers the ovarian surface and is involved in ovulation by rupturing and enabling release of a mature oocyte and by repairing the wound after ovulation. Epithelial-to-mesenchymal transition (EMT) is a mechanism that may promote wound healing after ovulation. While this process is poorly understood in the OSE, in other tissues wound repair is known to be under the control of the local microenvironment and different growth factors such as the WNT signaling pathway. Among WNT family members, WNT4 and WNT5a are expressed in the OSE and are critical for the ovulatory process. The objective of this study was to determine the potential roles of WNT4 and WNT5a in regulating the OSE layer. Using primary cultures of mouse OSE cells, we found WNT5a, but not WNT4, promotes EMT through a non-canonical Ca2+-dependent pathway, up-regulating the expression of Vimentin and CD44, enhancing cell migration, and inhibiting the CTNNB1 pathway and proliferation. We conclude that WNT5a is a stimulator of the EMT in OSE cells, and acts by suppressing canonical WNT signaling activity and inducing the non-canonical Ca2+ pathway.
Collapse
Affiliation(s)
- Atefeh Abedini
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Céline Sayed
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Lauren E Carter
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Derek Boerboom
- Département de Biomédecine Vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
4
|
The transcriptional regulator CBX2 and ovarian function: A whole genome and whole transcriptome approach. Sci Rep 2019; 9:17033. [PMID: 31745224 PMCID: PMC6864077 DOI: 10.1038/s41598-019-53370-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/30/2019] [Indexed: 12/26/2022] Open
Abstract
The chromobox homolog 2 (CBX2) was found to be important for human testis development, but its role in the human ovary remains elusive. We conducted a genome-wide analysis based on DNA adenine methyltransferase identification (DamID) and RNA sequencing strategies to investigate CBX2 in the human granulosa cells. Functional analysis revealed that CBX2 was upstream of genes contributing to ovarian function like folliculogenesis and steroidogenesis (i.e. ESR1, NRG1, AKR1C1, PTGER2, BMP15, BMP2, FSHR and NTRK1/2). We identified CBX2 regulated genes associated with polycystic ovary syndrome (PCOS) such as TGFβ, MAP3K15 and DKK1, as well as genes implicated in premature ovarian failure (POF) (i.e. POF1B, BMP15 and HOXA13) and the pituitary deficiency (i.e. LHX4 and KISS1). Our study provided an excellent opportunity to identify genes surrounding CBX2 in the ovary and might contribute to the understanding of ovarian physiopathology causing infertility in women.
Collapse
|
5
|
Procr-expressing progenitor cells are responsible for murine ovulatory rupture repair of ovarian surface epithelium. Nat Commun 2019; 10:4966. [PMID: 31672973 PMCID: PMC6823351 DOI: 10.1038/s41467-019-12935-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/10/2019] [Indexed: 12/22/2022] Open
Abstract
Ovarian surface epithelium (OSE) undergoes recurring ovulatory rupture and repair. The OSE replenishing mechanism post ovulation remains unclear. Here we report that the expression of Protein C Receptor (Procr) marks a progenitor population in adult mice that is responsible for OSE repair post ovulation. Procr+ cells are the major cell source for OSE repair. The mechanism facilitating the rapid re-epithelialization is through the immediate expansion of Procr+ cells upon OSE rupture. Targeted ablation of Procr+ cells impedes the repairing process. Moreover, Procr+ cells displayed robust colony-formation capacity in culture, which we harnessed and established a long-term culture and expansion system of OSE cells. Finally, we show that Procr+ cells and previously reported Lgr5+ cells have distinct lineage tracing behavior in OSE homeostasis. Our study suggests that Procr marks progenitor cells that are critical for OSE ovulatory rupture and homeostasis, providing insight into how adult stem cells respond upon injury. The ovary is covered by a surface epithelium (OSE) and cells mediating its repair post ovulation are unclear. Here, the authors identify the Protein C Receptor (Procr) as marking progenitor cells, distinct from Lgr5+ stem cells, on the murine surface epithelium that repair the OSE post ovulation.
Collapse
|
6
|
Wnt Signaling in Ovarian Cancer Stemness, EMT, and Therapy Resistance. J Clin Med 2019; 8:jcm8101658. [PMID: 31614568 PMCID: PMC6832489 DOI: 10.3390/jcm8101658] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancers represent the deadliest among gynecologic malignancies and are characterized by a hierarchical structure with cancer stem cells (CSCs) endowed with self-renewal and the capacity to differentiate. The Wnt/β-catenin signaling pathway, known to regulate stemness in a broad spectrum of stem cell niches including the ovary, is thought to play an important role in ovarian cancer. Importantly, Wnt activity was shown to correlate with grade, epithelial to mesenchymal transition, chemotherapy resistance, and poor prognosis in ovarian cancer. This review will discuss the current knowledge of the role of Wnt signaling in ovarian cancer stemness, epithelial to mesenchymal transition (EMT), and therapy resistance. In addition, the alleged role of exosomes in the paracrine activation of Wnt signaling and pre-metastatic niche formation will be reviewed. Finally, novel potential treatment options based on Wnt inhibition will be highlighted.
Collapse
|
7
|
Sills ES, Wood SH. Autologous activated platelet-rich plasma injection into adult human ovary tissue: molecular mechanism, analysis, and discussion of reproductive response. Biosci Rep 2019; 39:BSR20190805. [PMID: 31092698 PMCID: PMC6549090 DOI: 10.1042/bsr20190805] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 01/19/2023] Open
Abstract
In clinical infertility practice, one intractable problem is low (or absent) ovarian reserve which in turn reflects the natural oocyte depletion associated with advancing maternal age. The number of available eggs has been generally thought to be finite and strictly limited, an entrenched and largely unchallenged tenet dating back more than 50 years. In the past decade, it has been suggested that renewable ovarian germline stem cells (GSCs) exist in adults, and that such cells may be utilized as an oocyte source for women seeking to extend fertility. Currently, the issue of whether mammalian females possess such a population of renewable GSCs remains unsettled. The topic is complex and even agreement on a definitive approach to verify the process of 'ovarian rescue' or 're-potentiation' has been elusive. Similarities have been noted between wound healing and ovarian tissue repair following capsule rupture at ovulation. In addition, molecular signaling events which might be necessary to reverse the effects of reproductive ageing seem congruent with changes occurring in tissue injury responses elsewhere. Recently, clinical experience with such a technique based on autologous activated platelet-rich plasma (PRP) treatment of the adult human ovary has been reported. This review summarizes the present state of understanding of the interaction of platelet-derived growth factors with adult ovarian tissue, and the outcome of human reproductive potential following PRP treatment.
Collapse
Affiliation(s)
- E Scott Sills
- Gen 5 Fertility Center, Office for Reproductive Research, Center for Advanced Genetics; San Diego, CA, U.S.A.
- Applied Biotechnology Research Group, University of Westminster; London W1B 2HW, U.K
| | - Samuel H Wood
- Gen 5 Fertility Center, Office for Reproductive Research, Center for Advanced Genetics; San Diego, CA, U.S.A
| |
Collapse
|
8
|
Schindler AJ, Watanabe A, Howell SB. LGR5 and LGR6 in stem cell biology and ovarian cancer. Oncotarget 2017; 9:1346-1355. [PMID: 29416699 PMCID: PMC5787443 DOI: 10.18632/oncotarget.20178] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
Wnt signaling plays a fundamental role in patterning of the embryo and maintenance of stem cells in numerous epithelia. Epithelial stem cells are closeted in niches created by surrounding differentiated cells that express secreted Wnt and R-spondin proteins that influence proliferation rate and fate determination of stem cell daughters. R-spondins act through the LGR receptors to enhance Wnt signaling. This close association of stem cells with more differentiated regulatory cells expressing Wnt-pathway ligands is a feature replicated in all of the epithelial stem cell systems thus far examined. How the stem cell niche operates through these short-range interactions is best understood for the crypts of the gastrointestinal epithelium and skin. Less well understood are the stem cells that function in the ovarian surface epithelium (OSE) and fallopian tube epithelium (FTE). While the cuboidal OSE appears to be made up of a single cell type, the cells of the FTE progress through a life cycle that involves differentiation into ciliated and secretory subtypes that are eventually shed into the lumen in a manner similar to the gastrointestinal epithelium. Available evidence suggests that high grade serous ovarian carcinoma (HGSOC) originates most often from stem cells in the FTE and that Wnt signaling augmented by LGR6 supports tumor development and progression. This review summarizes current information on LGR5 and LGR6 in the OSE and FTE and how their niches are organized relative to that of the gastrointestinal epithelium and skin.
Collapse
Affiliation(s)
- Adam J Schindler
- Moores Cancer Center, University of California, San Diego, CA, USA
| | - Arisa Watanabe
- Moores Cancer Center, University of California, San Diego, CA, USA
| | - Stephen B Howell
- Moores Cancer Center, University of California, San Diego, CA, USA
| |
Collapse
|
9
|
Lerario AM, Finco I, LaPensee C, Hammer GD. Molecular Mechanisms of Stem/Progenitor Cell Maintenance in the Adrenal Cortex. Front Endocrinol (Lausanne) 2017; 8:52. [PMID: 28386245 PMCID: PMC5362593 DOI: 10.3389/fendo.2017.00052] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/03/2017] [Indexed: 01/10/2023] Open
Abstract
The adrenal cortex is characterized by three histologically and functionally distinct zones: the outermost zona glomerulosa (zG), the intermediate zona fasciculata, and the innermost zona reticularis. Important aspects of the physiology and maintenance of the adrenocortical stem/progenitor cells have emerged in the last few years. Studies have shown that the adrenocortical cells descend from a pool of progenitors that are localized in the subcapsular region of the zG. These cells continually undergo a process of centripetal displacement and differentiation, which is orchestrated by several paracrine and endocrine cues, including the pituitary-derived adrenocorticotrophic hormone, and angiotensin II. However, while several roles of the endocrine axes on adrenocortical function are well established, the mechanisms coordinating the maintenance of an undifferentiated progenitor cell pool with self-renewal capacity are poorly understood. Local factors, such as the composition of the extracellular matrix (ECM) with embedded signaling molecules, and the activity of major paracrine effectors, including ligands of the sonic hedgehog and Wnt signaling pathways, are thought to play a major role. Particularly, the composition of the ECM, which exhibits substantial differences within each of the three histologically distinct concentric zones, has been shown to influence the differentiation status of adrenocortical cells. New data from other organ systems and different experimental paradigms strongly support the conclusion that the interactions of ECM components with cell-surface receptors and secreted factors are key determinants of cell fate. In this review, we summarize established and emerging data on the paracrine and autocrine regulatory loops that regulate the biology of the progenitor cell niche and propose a role for bioengineered ECM models in further elucidating this biology in the adrenal.
Collapse
Affiliation(s)
- Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Isabella Finco
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Christopher LaPensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Gary Douglas Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Center for Organogenesis, University of Michigan, Ann Arbor, MI, USA
- *Correspondence: Gary Douglas Hammer,
| |
Collapse
|
10
|
Patel AK, Park KK, Hackam AS. Wnt signaling promotes axonal regeneration following optic nerve injury in the mouse. Neuroscience 2016; 343:372-383. [PMID: 28011153 DOI: 10.1016/j.neuroscience.2016.12.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 02/08/2023]
Abstract
Adult mammalian CNS axons generally do not regenerate, creating an obstacle to effective repair and recovery after neuronal injury. The canonical Wnt/β-catenin signaling pathway is an essential signal transduction cascade that regulates axon growth and neurite extension in the developing mammalian embryo. In this study, we investigated whether a Wnt/β-catenin signaling activator could be repurposed to induce regeneration in the adult CNS after axonal injury. We used a retinal ganglion cell (RGC) axon crush injury model in a transgenic Wnt reporter mouse, and intravitreal injections were used to deliver Wnt3a or saline to the RGC cell bodies within the retina. Our findings demonstrated that Wnt3a induced Wnt signaling in RGCs and resulted in significant axonal regrowth past the lesion site when measured at two and four weeks post-injury. Furthermore, Wnt3a-injected eyes showed increased survival of RGCs and significantly higher pattern electroretinography (PERG) amplitudes compared to the control. Additionally, Wnt3a-induced axonal regeneration and RGC survival were associated with elevated activation of the transcription factor Stat3, and reducing expression of Stat3 using a conditional Stat3 knock-out mouse line led to diminished Wnt3a-dependent axonal regeneration and RGC survival. Therefore, these findings reveal a novel role for retinal Wnt signaling in axonal regrowth and RGC survival following axonal injury, which may lead to the development of novel therapies for axonal regeneration.
Collapse
Affiliation(s)
- Amit K Patel
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Kevin K Park
- Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
11
|
Germ cell specific overactivation of WNT/βcatenin signalling has no effect on folliculogenesis but causes fertility defects due to abnormal foetal development. Sci Rep 2016; 6:27273. [PMID: 27265527 PMCID: PMC4893675 DOI: 10.1038/srep27273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/17/2016] [Indexed: 01/09/2023] Open
Abstract
All the major components of the WNT signalling pathway are expressed in female germ cells and embryos. However, their functional relevance in oocyte biology is currently unclear. We examined ovaries collected from TCFGFP mice, a well-known Wnt reporter mouse model, and found dynamic changes in the Wnt/βcatenin signalling activity during different stages of oocyte development and maturation. To understand the functional importance of Wnt signalling in oocytes, we developed a mouse model with the germ cell-specific constitutive activation of βcatenin using cre recombinase driven by the DEAD (Asp-Glu-Ala-Asp) box protein 4 (Ddx4) gene promoter. Histopathological and functional analysis of ovaries from these mutant mice (Ctnnb1ex3cko) showed no defects in ovarian functions, oocytes, ovulation and early embryonic development. However, breeding of the Ctnnb1ex3cko female mice with males of known fertility never resulted in birth of mutant pups. Examination of uteri from time pregnant mutant females revealed defects in ectoderm differentiation leading to abnormal foetal development and premature death. Collectively, our work has established the role of active WNT/βcatenin signalling in oocyte biology and foetal development, and provides novel insights into the possible mechanisms of complications in human pregnancy such as repeated spontaneous abortion, sudden intrauterine unexpected foetal death syndrome and stillbirth.
Collapse
|
12
|
Abstract
The mammalian ovary is covered by a single-layered epithelium that undergoes rupture and remodelling following each ovulation. Although resident stem cells are presumed to be crucial for this cyclic regeneration, their identity and mode of action have been elusive. Surrogate stemness assays and in vivo fate-mapping studies using recently discovered stem cell markers have identified stem cell pools in the ovary and fimbria that ensure epithelial homeostasis. Recent findings provide insights into intrinsic mechanisms and local extrinsic cues that govern the function of ovarian and fimbrial stem cells. These discoveries have advanced our understanding of stem cell biology in the ovary and fimbria, and lay the foundations for evaluating the contribution of resident stem cells to the initiation and progression of human epithelial ovarian cancer.
Collapse
|
13
|
Edwards N, Farookhi R, Clarke HJ. Identification of a β-galactosidase transgene that provides a live-cell marker of transcriptional activity in growing oocytes and embryos. Mol Hum Reprod 2015; 21:583-93. [PMID: 25882542 PMCID: PMC4487448 DOI: 10.1093/molehr/gav020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/27/2015] [Accepted: 04/09/2015] [Indexed: 01/14/2023] Open
Abstract
Identifying the events and molecular mechanisms that regulate oocyte growth has emerged as a key objective of research in human fertility, fuelled by evidence from human and animal studies indicating that disease and environmental factors can act on oocytes to affect the health of the resulting individual and by efforts to grow oocytes in vitro to enable fertility preservation of cancer survivors. Techniques that monitor the development of growing oocytes would be valuable tools to assess the progression of growth under different conditions. Most methods used to assess oocytes grown in vitro are indirect, however, relying on characteristics of the somatic compartment of the follicle, or compromise the oocyte, preventing its subsequent culture or fertilization. We investigated the utility of T-cell factor/lymphoid enhancer-binding factor (TCF/Lef)-LacZ transgene expression as a predictor of global transcriptional activity in oocytes and early embryos. Using a fluorescent β-galactosidase substrate combined with live-cell imaging, we show that TCF/Lef-LacZ transgene expression is detectable in growing oocytes, lost in fully grown oocytes and resumes in late two-cell embryos. Transgene expression is likely regulated by a Wnt-independent mechanism. Using chromatin analysis, LacZ expression and methods to monitor and inhibit transcription, we show that TCF/Lef-LacZ expression mirrors transcriptional activity in oocytes and preimplantation embryos. Oocytes and preimplantation embryos that undergo live-cell imaging for TCF/Lef-LacZ expression are able to continue development in vitro. TCF/Lef-LacZ reporter expression in living oocytes and early embryos is thus a sensitive and faithful marker of transcriptional activity that can be used to monitor and optimize conditions for oocyte growth.
Collapse
Affiliation(s)
- Nicole Edwards
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada Department of Physiology, McGill University, Montreal, QC, Canada Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Riaz Farookhi
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada Department of Physiology, McGill University, Montreal, QC, Canada Research Institute of the McGill University Health Centre, Montreal, QC, Canada Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada Research Institute of the McGill University Health Centre, Montreal, QC, Canada Department of Experimental Medicine, McGill University, Montreal, QC, Canada Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Hummitzsch K, Anderson RA, Wilhelm D, Wu J, Telfer EE, Russell DL, Robertson SA, Rodgers RJ. Stem cells, progenitor cells, and lineage decisions in the ovary. Endocr Rev 2015; 36:65-91. [PMID: 25541635 PMCID: PMC4496428 DOI: 10.1210/er.2014-1079] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/15/2014] [Indexed: 01/05/2023]
Abstract
Exploring stem cells in the mammalian ovary has unleashed a Pandora's box of new insights and questions. Recent evidence supports the existence of stem cells of a number of the different cell types within the ovary. The evidence for a stem cell model producing mural granulosa cells and cumulus cells is strong, despite a limited number of reports. The recent identification of a precursor granulosa cell, the gonadal ridge epithelial-like cell, is exciting and novel. The identification of female germline (oogonial) stem cells is still very new and is currently limited to just a few species. Their origins and physiological roles, if any, are unknown, and their potential to produce oocytes and contribute to follicle formation in vivo lacks robust evidence. The precursor of thecal cells remains elusive, and more compelling data are needed. Similarly, claims of very small embryonic-like cells are also preliminary. Surface epithelial cells originating from gonadal ridge epithelial-like cells and from the mesonephric epithelium at the hilum of the ovary have also been proposed. Another important issue is the role of the stroma in guiding the formation of the ovary, ovigerous cords, follicles, and surface epithelium. Immune cells may also play key roles in developmental patterning, given their critical roles in corpora lutea formation and regression. Thus, while the cellular biology of the ovary is extremely important for its major endocrine and fertility roles, there is much still to be discovered. This review draws together the current evidence and perspectives on this topic.
Collapse
Affiliation(s)
- Katja Hummitzsch
- Discipline of Obstetrics and Gynaecology (K.H., D.L.R., S.A.R., R.J.R.), School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia 5005; Medical Research Council Centre for Reproductive Health (R.A.A.), The University of Edinburgh, The Queens Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom; Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton, Victoria, Australia 3800; Bio-X Institutes (J.W.), Shanghai Jiao Tong University, Shanghai 200240, China; and Institute of Cell Biology and Centre for Integrative Physiology (E.E.T), The University of Edinburgh, Edinburgh EH8 9XE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Lgr5, a marker of stem cells in many organs, is found expressed in cells scattered through the ovarian epithelium that expand to repair and regenerate the damaged ovarian surface after each ovulation. Lgr5-positive stem cells in the ovary and the fimbria of the oviduct may be critical cells of origin for ovarian cancer.
Collapse
|
16
|
Garson K, Vanderhyden BC. Epithelial ovarian cancer stem cells: underlying complexity of a simple paradigm. Reproduction 2014; 149:R59-70. [PMID: 25301968 DOI: 10.1530/rep-14-0234] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lack of significant progress in the treatment of epithelial ovarian cancer (EOC) underscores the need to gain a better understanding of the processes that lead to chemoresistance and recurrence. The cancer stem cell (CSC) hypothesis offers an attractive explanation of how a subpopulation of cells within a patient's tumour might remain refractory to treatment and subsequently form the basis of recurrent chemoresistant disease. This review examines the literature defining somatic stem cells of the ovary and fallopian tube, two tissues that give rise to EOC. In addition, considerable research has been reviewed, that has identified subpopulations of EOC cells, based on marker expression (CD133, CD44, CD117, CD24, epithelial cell adhesion molecule, LY6A, ALDH1 and side population (SP)), which are enriched for tumour initiating cells (TICs). While many studies identified either CD133 or CD44 as markers useful for enriching for TICs, there is little consensus. This suggests that EOC cells may have a phenotypic plasticity that may preclude the identification of universal markers defining a CSC. The assay that forms the basis of quantifying TICs is the xenograft assay. Considerable controversy surrounds the xenograft assay and it is essential that some of the potential limitations be examined in this review. Highlighting such limitations or weaknesses is required to properly evaluate data and broaden our interpretation of potential mechanisms that might be contributing to the pathogenesis of ovarian cancer.
Collapse
Affiliation(s)
- Kenneth Garson
- Ottawa Hospital Research InstituteCentre for Cancer Therapeutics, Ottawa, Ontario, Canada K1H 8L6Department of Cellular and Molecular MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Barbara C Vanderhyden
- Ottawa Hospital Research InstituteCentre for Cancer Therapeutics, Ottawa, Ontario, Canada K1H 8L6Department of Cellular and Molecular MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5 Ottawa Hospital Research InstituteCentre for Cancer Therapeutics, Ottawa, Ontario, Canada K1H 8L6Department of Cellular and Molecular MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
17
|
Ng A, Tan S, Singh G, Rizk P, Swathi Y, Tan TZ, Huang RYJ, Leushacke M, Barker N. Lgr5 marks stem/progenitor cells in ovary and tubal epithelia. Nat Cell Biol 2014; 16:745-57. [DOI: 10.1038/ncb3000] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 05/29/2014] [Indexed: 12/19/2022]
|
18
|
Gauthier C, Ozvegy-Laczka C, Szakacs G, Sarkadi B, Di Pietro A. ABCG2 is not able to catalyze glutathione efflux and does not contribute to GSH-dependent collateral sensitivity. Front Pharmacol 2013; 4:138. [PMID: 24312054 PMCID: PMC3819521 DOI: 10.3389/fphar.2013.00138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/17/2013] [Indexed: 11/13/2022] Open
Abstract
ABCG2 is a key human ATP-binding cassette (ABC) transporter mediating cancer cell chemoresistance. In the case of ABCC1, another multidrug transporter, earlier findings documented that certain modulators greatly increase ABCC1-mediated glutathione (GSH) efflux and, upon depletion of intracellular GSH, induce "collateral sensitivity" leading to the apoptosis of multidrug resistant cells. Recently, it has been suggested that ABCG2 may mediate an active GSH transport. In order to explore if ABCG2-overexpressing cells may be similarly targeted, we first looked for the effects of ABCG2 expression on cellular GSH levels, and for an ABCG2-dependent GSH transport in HEK293 and MCF7 cells. We found that, while ABCG2 overexpression altered intracellular GSH levels in these transfected or drug-selected cells, ABCG2 inhibitors or transport modulators did not influence GSH efflux. We then performed direct measurements of drug-stimulated ATPase activity and (3)H-GSH transport in inside-out membrane vesicles of human ABC transporter-overexpressing Sf9 insect cells. Our results indicate that ABCG2-ATPase is not modulated by GSH and, in contrast to ABCC1, ABCG2 does not catalyze any significant GSH transport. Our data suggest no direct interaction between the ABCG2 transporter and GSH, although a long-term modulation of cellular GSH by ABCG2 cannot be excluded.
Collapse
Affiliation(s)
- Charlotte Gauthier
- Drug Resistance Mechanism and Modulation Group, Ligue 2013 Certified, Bases Moléculaires et Structurales des Systèmes Infectieux, UMR5086, Centre National de la Recherche Scientifique, Université de Lyon, Institut de Biologie et Chimie des Protéines, University of Lyon Lyon, France
| | | | | | | | | |
Collapse
|
19
|
Pan WW, Yi FP, Cao LX, Liu XM, Shen ZF, Bu YQ, Xu Y, Fan HY, Song FZ. DAXX silencing suppresses mouse ovarian surface epithelial cell growth by inducing senescence and DNA damage. Gene 2013; 526:287-94. [DOI: 10.1016/j.gene.2013.03.103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/02/2013] [Accepted: 03/16/2013] [Indexed: 01/08/2023]
|
20
|
Condello S, Cao L, Matei D. Tissue transglutaminase regulates β-catenin signaling through a c-Src-dependent mechanism. FASEB J 2013; 27:3100-12. [PMID: 23640056 DOI: 10.1096/fj.12-222620] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tissue transglutaminase (TG2) is a multifunctional enzyme involved in protein cross-linking and cell adhesion to fibronectin (FN). In cancer, TG2 induces an epithelial to mesenchymal transition, contributing to metastasis. Because cadherins bind β-catenin at cell-cell junctions, disruption of adherens junctions destabilizes cadherin-catenin complexes. The goal of the present study was to analyze whether and how TG2 interacts with and regulates β-catenin signaling in ovarian cancer (OC) cells. We observed a significant correlation between TG2 and β-catenin expression levels in OC cells and tumors. TG2 augmented Wnt/β-catenin signaling, as evidenced by enhanced β-catenin transcriptional activity, inducing transcription of target genes cyclin D1 and c-Myc. By promoting integrin-mediated cell adhesion to FN, TG2 physically associates with and recruits c-Src, which in turn phosphorylates β-catenin at Tyr(654), releasing it from E-cadherin and rendering it available for transcriptional regulation. By interacting with FN and enhancing β-catenin signaling, complexed TG2 stimulates OC cell proliferation. In summary, our data demonstrate that TG2 regulates β-catenin expression and function in OC cells and define the c-Src-dependent mechanism through which this occurs.
Collapse
Affiliation(s)
- Salvatore Condello
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
21
|
Usongo M, Li X, Farookhi R. Activation of the canonical WNT signaling pathway promotes ovarian surface epithelial proliferation without inducing β-catenin/Tcf-mediated reporter expression. Dev Dyn 2013; 242:291-300. [PMID: 23239518 DOI: 10.1002/dvdy.23919] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/28/2012] [Accepted: 12/04/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND In response to activation of the canonical WNT signaling pathway, β-catenin cooperates with Lef/Tcf (lymphoid enhancer factor/T-cell factor) transcription factors to drive expression of Wnt target genes. The canonical WNT signaling pathway is involved in development, wound repair, and tumorigenesis. Studies examining the involvement of the canonical WNT signaling pathway in the development of ovarian surface epithelium (OSE) and ovarian carcinogenesis, however, have recently begun to emerge. In this study, we investigated the modulation of β-catenin and β-catenin/Tcf-signaling activity within the OSE using responsive transgenic mice and examined the response of primary OSE cells and ovarian cancer cell lines to activation of the canonical WNT signaling pathway. RESULTS β-catenin was localized to the lateral membrane of the ovarian epithelium. Stimulation of primary OSE cells in vitro with LiCl or Wnt3a led to GSK-3β inhibition and stabilization of β-catenin but failed to induce β-catenin/Tcf-mediated lacZ expression. Furthermore, E-cadherin expression was downregulated and the proliferative potency of OSE cells increased. Of four ovarian cancers cell lines screened, only the HEY cell line demonstrated induction of luciferase reporter upon canonical WNT stimulation. CONCLUSIONS These observations suggest that in ovarian adenocarcinoma, dysregulated WNT signaling may not always be indicative of β-catenin/Tcf-mediated transcriptional activity.
Collapse
Affiliation(s)
- Macalister Usongo
- Department of Experimental Medicine, McGill University, Montreal, Canada.
| | | | | |
Collapse
|
22
|
Yates R, Katugampola H, Cavlan D, Cogger K, Meimaridou E, Hughes C, Metherell L, Guasti L, King P. Adrenocortical Development, Maintenance, and Disease. Curr Top Dev Biol 2013; 106:239-312. [DOI: 10.1016/b978-0-12-416021-7.00007-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|