1
|
Yin W, Mai W, Cui D, Zhao T, Song J, Zhang W, Chang Y, Zhan Y. Dynamic responses during early development of the sea urchin Strongylocentrotus intermedius to CO 2-driven ocean acidification: A microRNA-mRNA integrated analysis. MARINE POLLUTION BULLETIN 2025; 212:117514. [PMID: 39755060 DOI: 10.1016/j.marpolbul.2024.117514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
To explore the dynamic molecular responses to CO2-driven ocean acidification (OA) during the early developmental stages of sea urchins, gametes of Strongylocentrotus intermedius were fertilized and developed to the four-armed larva stage in either natural seawater (as a control; pHNBS = 7.99 ± 0.01) or acidified conditions (ΔpHNBS = -0.3, -0.4, and - 0.5 units) according to the prediction for ocean pH by the end of this century. Specimens from five developmental stages (fertilization, cleavage, blastula, prism, and four-armed larva) were collected and comparative microRNA (miRNA) and mRNA transcriptome analyses were performed. The results showed that 1) a total of 22,224 differentially expressed genes (DEGs) and 51 differentially expressed miRNAs (DEMs) were identified in the OA-treated groups compared with the control group. 2) The numbers of both DEGs and DEMs were the largest at the blastula stage, indicating dramatic changes in gene expression. 3) Five "miR-1/DEG" modules were identified as potential biomarkers reflecting the response of sea urchins to OA during the early developmental period. 4) The PI3K/Akt signaling pathway was a key pathway involved in the response of S. intermedius to OA in its early developmental stages. This study deepens our understanding of the dynamic molecular regulatory mechanisms underlying sea urchin responses to CO2-driven OA.
Collapse
Affiliation(s)
- Wenlu Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Wenhong Mai
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Dongyao Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China; College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Tanjun Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China; College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, PR China
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Weijie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China; College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China; College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, PR China.
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
2
|
Wong KW, Zeng Y, Tay E, Teo JHJ, Cipta NO, Hamashima K, Yi Y, Liu H, Warrier T, Le MTN, Ng SC, Li QJ, Li H, Loh YH. Nuclear receptor-SINE B1 network modulates expanded pluripotency in blastoids and blastocysts. Nat Commun 2024; 15:10011. [PMID: 39562549 PMCID: PMC11577042 DOI: 10.1038/s41467-024-54381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Embryonic stem cells possess the remarkable ability to self-organize into blastocyst-like structures upon induction. These stem cell-based embryo models serve as invaluable platforms for studying embryogenesis and therapeutic developments. Nevertheless, the specific intrinsic regulators that govern this potential for blastoid formation remain unknown. Here we demonstrate an intrinsic program that plays a crucial role in both blastoids and blastocysts across multiple species. We first establish metrics for grading the resemblance of blastoids to mouse blastocysts, and identify the differential activation of gene regulons involved in lineage specification among various blastoid grades. Notably, abrogation of nuclear receptor subfamily 1, group H, member 2 (Nr1h2) drastically reduces blastoid formation. Nr1h2 activation alone is sufficient to rewire conventional ESC into a distinct pluripotency state, enabling them to form blastoids with enhanced implantation capacity in the uterus and contribute to both embryonic and extraembryonic lineages in vivo. Through integrative multi-omics analyses, we uncover the broad regulatory role of Nr1h2 in the transcriptome, chromatin accessibility and epigenome, targeting genes associated with embryonic lineage and the transposable element SINE-B1. The Nr1h2-centred intrinsic program governs and drives the development of both blastoids and early embryos.
Collapse
Grants
- R03 OD038392 NIH HHS
- U19 AG074879 NIA NIH HHS
- P30 CA015083 NCI NIH HHS
- P30 DK084567 NIDDK NIH HHS
- P50 CA136393 NCI NIH HHS
- National Research Foundation, Singapore (NRF) Investigatorship award [NRFI2018- 02]; National Medical Research Council [NMRC/OFIRG21nov-0088]; Singapore Food Story (SFS) R&D Programme [W22W3D0007]; A*STAR Biomedical Research Council, Central Research Fund, Use-Inspired Basic Research (CRF UIBR); Competitive Research Programme (CRP) [NRF-CRP29-2022-0005]; Industry Alignment Fund - Prepositioning (IAF-PP) [H23J2a0095, H23J2a0097].
- NMRC grant MOH-000937-00 and A*STAR grant C210812003
- M.T.N.L. was supported by the Industry Alignment Fund - Prepositioning (IAF-PP) [H23J2a0097].
- H.L. was supported by grants from the Mayo Clinic Center for Biomedical Discovery, Center for Individualized Medicine, the Mayo Clinic Comprehensive Cancer Center (NIH; P30CA015083), the Mayo Clinic Center for Cell Signaling in Gastroenterology (NIH: P30DK084567), the Mayo Clinic Nutrition Obesity Research Program, the Glenn Foundation for Medical Research, the Eric & Wendy Schmidt Fund for AI Research & Innovation and the National Institutes of Health (NIH; U19AG74879, P50CA136393, R03OD038392).
Collapse
Affiliation(s)
- Ka Wai Wong
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yingying Zeng
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Edison Tay
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jia Hao Jackie Teo
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Nadia Omega Cipta
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Kiyofumi Hamashima
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yao Yi
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Haijun Liu
- Endangered Species Conservation via Assisted Reproduction (ESCAR) Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Tushar Warrier
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Minh T N Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Soon Chye Ng
- Endangered Species Conservation via Assisted Reproduction (ESCAR) Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Sincere Healthcare Group, Singapore, Republic of Singapore
| | - Qi-Jing Li
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Republic of Singapore
| | - Hu Li
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Yuin-Han Loh
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Endangered Species Conservation via Assisted Reproduction (ESCAR) Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore.
- NUS Graduate School's Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Republic of Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
3
|
Pandya DV, Parikh RV, Gena RM, Kothari NR, Parekh PS, Chorawala MR, Jani MA, Yadav MR, Shah PA. The scaffold protein disabled 2 (DAB2) and its role in tumor development and progression. Mol Biol Rep 2024; 51:701. [PMID: 38822973 DOI: 10.1007/s11033-024-09653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Disabled 2 (DAB2) is a multifunctional protein that has emerged as a critical component in the regulation of tumor growth. Its dysregulation is implicated in various types of cancer, underscoring its importance in understanding the molecular mechanisms underlying tumor development and progression. This review aims to unravel the intricate molecular mechanisms by which DAB2 exerts its tumor-suppressive functions within cancer signaling pathways. METHODS AND RESULTS We conducted a comprehensive review of the literature focusing on the structure, expression, physiological functions, and tumor-suppressive roles of DAB2. We provide an overview of the structure, expression, and physiological functions of DAB2. Evidence supporting DAB2's role as a tumor suppressor is explored, highlighting its ability to inhibit cell proliferation, induce apoptosis, and modulate key signaling pathways involved in tumor suppression. The interaction between DAB2 and key oncogenes is examined, elucidating the interplay between DAB2 and oncogenic signaling pathways. We discuss the molecular mechanisms underlying DAB2-mediated tumor suppression, including its involvement in DNA damage response and repair, regulation of cell cycle progression and senescence, and modulation of epithelial-mesenchymal transition (EMT). The review explores the regulatory networks involving DAB2, covering post-translational modifications, interactions with other tumor suppressors, and integration within complex signaling networks. We also highlight the prognostic significance of DAB2 and its role in pre-clinical studies of tumor suppression. CONCLUSION This review provides a comprehensive understanding of the molecular mechanisms by which DAB2 exerts its tumor-suppressive functions. It emphasizes the significance of DAB2 in cancer signaling pathways and its potential as a target for future therapeutic interventions.
Collapse
Affiliation(s)
- Disha V Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Rajsi V Parikh
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Ruhanahmed M Gena
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nirjari R Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet S Parekh
- Pharmacy Practice Division, AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India.
| | - Maharsh A Jani
- Pharmacy Practice Division, Anand Niketan, Shilaj, Ahmedabad, Gujarat, 380059, India
| | - Mayur R Yadav
- Department of Pharmacy Practice and Administration, Western University of Health Science, 309 E Second St, Pomona, CA, 91766, USA
| | - Palak A Shah
- Department of Pharmacology and Pharmacy Practice, K. B. Institute of Pharmaceutical Education and Research, Gandhinagar, Gujarat, 382023, India
| |
Collapse
|
4
|
Šustić I, Racetin A, Vukojević K, Benzon B, Tonkić A, Šundov Ž, Puljiz M, Glavina Durdov M, Filipović N. Expression Pattern of DAB Adaptor Protein 2 in Left- and Right-Side Colorectal Carcinoma. Genes (Basel) 2023; 14:1306. [PMID: 37510211 PMCID: PMC10379130 DOI: 10.3390/genes14071306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Left-sided and right-sided colorectal cancer (L-CRC and R-CRC) have relatively different clinical pictures and pathophysiological backgrounds. The aim of this study was to investigate the presence of DAB adapter protein 2 (DAB2) as a potential molecular mechanism that contributes to this diversity in terms of malignancy and responses to therapy. The expression of the suppressor gene DAB2 in colon cancer has already been analyzed, but its significance has not been fully elucidated. Archived samples from 34 patients who underwent colon cancer surgery were included in this study, with 13 patients with low-grade CRC and 21 with high-grade CRC. Twenty of the tumors were R-CRC, while 14 were L-CRC. DAB2 expression was analyzed immunohistochemically in the tumor tissue and the colon resection margin was used as a control. Tumors were divided into L-CRC and R-CRC, with splenic flexure as the cutoff point for each side. The results showed that R-CRC had lower DAB2 protein expression compared to L-CRC (p = 0.01). High-grade tumors had reduced DAB2 expression compared to low-grade tumors (p = 0.02). These results are consistent with the analysis of DAB2 gene expression data that we exported from the TCGA Colon and Rectal Cancer Study (COADREAD). In 736 samples of colon cancer, lower DAB2 gene expression was found in R-CRC compared to L-CRC (p < 0.0001). DAB2 gene expression was significantly higher in the sigmoid colon than in the cecum and ascending colon (p < 0.01). The analysis confirmed a lower expression of the DAB2 in tumors with positive microsatellite instability (p < 0.001). In conclusion, DAB2 has a role in the biological differences between R-CRC and L-CRC and its therapeutic and diagnostic potential needs to be further examined.
Collapse
Affiliation(s)
- Ivan Šustić
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Ante Tonkić
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
- University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Željko Šundov
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Mario Puljiz
- Clinical Department of Gynaecologic Oncology, University Hospital for Tumours, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia
| | - Merica Glavina Durdov
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, University of Split School of Medicine, Spinčićeva 1, 21000 Split, Croatia
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
- Laboratory for Experimental Neurocardiology, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| |
Collapse
|
5
|
The LDL receptor: Traffic and function in trophoblast cells under normal and pathological conditions. Placenta 2022; 127:12-19. [DOI: 10.1016/j.placenta.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/18/2022]
|
6
|
Mayya C, Naveena AH, Sinha P, Wunder C, Johannes L, Bhatia D. The roles of dynein and myosin VI motor proteins in endocytosis. J Cell Sci 2022; 135:274777. [DOI: 10.1242/jcs.259387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
ABSTRACT
Endocytosis is indispensable for multiple cellular processes, including signalling, cell adhesion, migration, as well as the turnover of plasma membrane lipids and proteins. The dynamic interplay and regulation of different endocytic entry routes requires multiple cytoskeletal elements, especially motor proteins that bind to membranes and transport vesicles along the actin and microtubule cytoskeletons. Dynein and kinesin motor proteins transport vesicles along microtubules, whereas myosins drive vesicles along actin filaments. Here, we present a brief overview of multiple endocytic pathways and our current understanding of the involvement of these motor proteins in the regulation of the different cellular entry routes. We particularly focus on structural and mechanistic details of the retrograde motor proteins dynein and myosin VI (also known as MYO6), along with their adaptors, which have important roles in the early events of endocytosis. We conclude by highlighting the key challenges in elucidating the involvement of motor proteins in endocytosis and intracellular membrane trafficking.
Collapse
Affiliation(s)
- Chaithra Mayya
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, 382355 Gandhinagar, India
| | - A. Hema Naveena
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, 382355 Gandhinagar, India
| | - Pankhuri Sinha
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, 382355 Gandhinagar, India
| | - Christian Wunder
- Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, 26 rue d'Ulm, 75248 Paris CEDEX 05, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, 26 rue d'Ulm, 75248 Paris CEDEX 05, France
| | - Dhiraj Bhatia
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, 382355 Gandhinagar, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, 382355 Gandhinagar, India
| |
Collapse
|
7
|
Kozyraki R, Verroust P, Cases O. Cubilin, the intrinsic factor-vitamin B12 receptor. VITAMINS AND HORMONES 2022; 119:65-119. [PMID: 35337634 DOI: 10.1016/bs.vh.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cubilin (CUBN), the intrinsic factor-vitamin B12 receptor is a large endocytic protein involved in various physiological functions: vitamin B12 uptake in the gut; reabsorption of albumin and maturation of vitamin D in the kidney; nutrient delivery during embryonic development. Cubilin is an atypical receptor, peripherally associated to the plasma membrane. The transmembrane proteins amnionless (AMN) and Lrp2/Megalin are the currently known molecular partners contributing to plasma membrane transport and internalization of Cubilin. The role of Cubilin/Amn complex in the handling of vitamin B12 in health and disease has extensively been studied and so is the role of the Cubilin-Lrp2 tandem in renal pathophysiology. Accumulating evidence strongly supports a role of Cubilin in some developmental defects including impaired closure of the neural tube. Are these defects primarily caused by the dysfunction of a specific Cubilin ligand or are they secondary to impaired vitamin B12 or protein uptake? We will present the established Cubilin functions, discuss the developmental data and provide an overview of the emerging implications of Cubilin in the field of cardiovascular disease and cancer pathogenesis.
Collapse
Affiliation(s)
- Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France.
| | - Pierre Verroust
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| |
Collapse
|
8
|
Taher L, Israel S, Drexler HCA, Makalowski W, Suzuki Y, Fuellen G, Boiani M. The proteome, not the transcriptome, predicts that oocyte superovulation affects embryonic phenotypes in mice. Sci Rep 2021; 11:23731. [PMID: 34887460 PMCID: PMC8660899 DOI: 10.1038/s41598-021-03054-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022] Open
Abstract
Superovulation is the epitome for generating oocytes for molecular embryology in mice, and it is used to model medically assisted reproduction in humans. However, whether a superovulated oocyte is normal, is an open question. This study establishes for the first time that superovulation is associated with proteome changes that affect phenotypic traits in mice, whereas the transcriptome is far less predictive. The proteins that were differentially expressed in superovulated mouse oocytes and embryos compared to their naturally ovulated counterparts were enriched in ontology terms describing abnormal mammalian phenotypes: a thinner zona pellucida, a smaller oocyte diameter, increased frequency of cleavage arrest, and defective blastocyst formation, which could all be verified functionally. Moreover, our findings indicate that embryos with such abnormalities are negatively selected during preimplantation, and ascribe these abnormalities to incomplete ovarian maturation during the time of the conventional superovulation, since they could be corrected upon postponement of the ovulatory stimulus by 24 h. Our data place constraints on the common view that superovulated oocytes are suitable for drawing general conclusions about developmental processes, and underscore the importance of including the proteins in a modern molecular definition of oocyte quality.
Collapse
Affiliation(s)
- Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16/I, 8010, Graz, Austria.
| | - Steffen Israel
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Hannes C A Drexler
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Wojciech Makalowski
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Niels Stensen Str. 14, 48149, Münster, Germany
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Rostock University Medical Center, Ernst-Heydemann-Strasse 8, 18057, Rostock, Germany.
| | - Michele Boiani
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany.
| |
Collapse
|
9
|
Ling H, Luo L, Dai X, Chen H. Fallopian tubal infertility: the result of Chlamydia trachomatis-induced fallopian tubal fibrosis. Mol Cell Biochem 2021; 477:205-212. [PMID: 34652537 DOI: 10.1007/s11010-021-04270-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Chlamydia trachomatis is one of the most common pathogens of sexually transmitted diseases, and its incidence in genital tract infections is now 4.7% in south China. Infertility is the end result of C. trachomatis-induced fallopian tubal fibrosis and is receiving intense attention from scientists worldwide. To reduce the incidence of infertility, it is important to understand the pathology-related changes of the genital tract where C. trachomatis infection is significant, especially the mechanism of fibrosis formation. During fibrosis development, the fallopian tube becomes sticky and occluded, which will eventually lead to tubal infertility. At present, the mechanism of fallopian tubal fibrosis induced by C. trachomatis infection is unclear. Our study attempted to summarize the possible mechanisms of fibrosis caused by C. trachomatis infection in the fallopian tube by reviewing published studies and further providing potential therapeutic targets to reduce the occurrence of infertility. This study also provides ideas for future research. Factors leading to fallopian tube fibrosis include inflammatory factors, miRNA, ECT, cHSP, and host factors. We hypothesized that C. trachomatis mediates the transcription and translation of EMT and ECM via upregulating TGF signaling pathway, which leads to the formation of fallopian tube fibrosis and ultimately to tubal infertility.
Collapse
Affiliation(s)
- Hua Ling
- The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, Chenzhou, 423000, People's Republic of China
| | - Lipei Luo
- The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, Chenzhou, 423000, People's Republic of China
| | - Xingui Dai
- The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, Chenzhou, 423000, People's Republic of China.
- The First People's Hospital of Chenzhou, Chenzhou, 423000, People's Republic of China.
- The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, People's Republic of China.
| | - Hongliang Chen
- The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, Chenzhou, 423000, People's Republic of China.
- The First People's Hospital of Chenzhou, Chenzhou, 423000, People's Republic of China.
- The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, People's Republic of China.
| |
Collapse
|
10
|
Ding R, Qiu Y, Zhuang Z, Ruan D, Wu J, Zhou S, Ye J, Cao L, Hong L, Xu Z, Zheng E, Li Z, Wu Z, Yang J. Genome-wide association studies reveals polygenic genetic architecture of litter traits in Duroc pigs. Theriogenology 2021; 173:269-278. [PMID: 34403972 DOI: 10.1016/j.theriogenology.2021.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
With continuous improvement of sow litter size, breeders are gradually paying more attention to the quality of litter traits that directly impact the production efficiency of pig companies, such as the rate of piglets born alive (RBA) and the rate of healthy births (RHB). The objectives of this study are to dissect the genetic basis of litter traits in pig and to identify valuable genes and genetic markers, especially pleiotropic, for pig breeding. Herein, 1140 Duroc pigs and 2046 reproduction records, 5 litter traits, including the number of healthy births (NHB), number of deformed fetuses (NDF), number of stillborn (NSB), RBA, and RHB, were used in this study. Subsequently, a genome-wide association study (GWAS) was performed for the five litter traits in the first two parities from two Duroc populations. A total of 76 significantly related SNPs and 10 potential candidate genes (CAV1, DAB2, FGF12, FHOD3, DYNC2H1, GRHL1, TCTN3, PYROXD2, MMP8, MMP13, and PGR) were detected, including 13 pleiotropic SNPs that affected more than one litter trait. Finally, the functional enrichment analysis of functional genes that were closest to these significant SNPs indicated that most of the significant pathways were associated with hormone secretion and embryo and organ development. This study advances our understanding of the genetic mechanisms of litter traits, especially the survival rate of piglets born, and provides an opportunity to increase the quality of litter using marker-assisted selection or genomic selection in pigs.
Collapse
Affiliation(s)
- Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China; Guangdong Wens Breeding Swine Technology Co., Ltd., Guangdong, 527400, PR China
| | - Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China
| | - Jian Ye
- Guangdong Wens Breeding Swine Technology Co., Ltd., Guangdong, 527400, PR China
| | - Lu Cao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China
| | - Linjun Hong
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China
| | - Zheng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, PR China
| | - Zicong Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, PR China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China; Guangdong Wens Breeding Swine Technology Co., Ltd., Guangdong, 527400, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, PR China.
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, PR China.
| |
Collapse
|
11
|
Schwab N, Ju Y, Hazrati LN. Early onset senescence and cognitive impairment in a murine model of repeated mTBI. Acta Neuropathol Commun 2021; 9:82. [PMID: 33964983 PMCID: PMC8106230 DOI: 10.1186/s40478-021-01190-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
Mild traumatic brain injury (mTBI) results in broad neurological symptoms and an increased risk of being diagnosed with a neurodegenerative disease later in life. While the immediate oxidative stress response and post-mortem pathology of the injured brain has been well studied, it remains unclear how early pathogenic changes may drive persistent symptoms and confer susceptibility to neurodegeneration. In this study we have used a mouse model of repeated mTBI (rmTBI) to identify early gene expression changes at 24 h or 7 days post-injury (7 dpi). At 24 h post-injury, gene expression of rmTBI mice shows activation of the DNA damage response (DDR) towards double strand DNA breaks, altered calcium and cell–cell signalling, and inhibition of cell death pathways. By 7 dpi, rmTBI mice had a gene expression signature consistent with induction of cellular senescence, activation of neurodegenerative processes, and inhibition of the DDR. At both timepoints gliosis, microgliosis, and axonal damage were evident in the absence of any gross lesion, and by 7 dpi rmTBI also mice had elevated levels of IL1β, p21, 53BP1, DNA2, and p53, supportive of DNA damage-induced cellular senescence. These gene expression changes reflect establishment of processes usually linked to brain aging and suggests that cellular senescence occurs early and most likely prior to the accumulation of toxic proteins. These molecular changes were accompanied by spatial learning and memory deficits in the Morris water maze. To conclude, we have identified DNA damage-induced cellular senescence as a repercussion of repeated mild traumatic brain injury which correlates with cognitive impairment. Pathways involved in senescence may represent viable treatment targets of post-concussive syndrome. Senescence has been proposed to promote neurodegeneration and appears as an effective target to prevent long-term complications of mTBI, such as chronic traumatic encephalopathy and other related neurodegenerative pathologies.
Collapse
|
12
|
Tse JD, Moore R, Meng Y, Tao W, Smith ER, Xu XX. Dynamic conversion of cell sorting patterns in aggregates of embryonic stem cells with differential adhesive affinity. BMC DEVELOPMENTAL BIOLOGY 2021; 21:2. [PMID: 33407086 PMCID: PMC7788919 DOI: 10.1186/s12861-020-00234-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Mammalian early development comprises the proliferation, differentiation, and self-assembly of the embryonic cells. The classic experiment undertaken by Townes and Holtfreter demonstrated the ability of dissociated embryonic cells to sort and self-organize spontaneously into the original tissue patterns. Here, we further explored the principles and mechanisms underlying the phenomenon of spontaneous tissue organization by studying aggregation and sorting of mouse embryonic stem (ES) cells with differential adhesive affinity in culture. RESULTS As observed previously, in aggregates of wild-type and E-cadherin-deficient ES cells, the cell assemblies exhibited an initial sorting pattern showing wild-type cells engulfed by less adhesive E-cadherin-deficient ES cells, which fits the pattern predicted by the differential adhesive hypothesis proposed by Malcom Steinberg. However, in further study of more mature cell aggregates, the initial sorting pattern reversed, with the highly adhesive wild-type ES cells forming an outer shell enveloping the less adhesive E-cadherin-deficient cells, contradicting Steinberg's sorting principle. The outer wild-type cells of the more mature aggregates did not differentiate into endoderm, which is known to be able to sort to the exterior from previous studies. In contrast to the naive aggregates, the mature aggregates presented polarized, highly adhesive cells at the outer layer. The surface polarity was observed as an actin cap contiguously spanning across the apical surface of multiple adjacent cells, though independent of the formation of tight junctions. CONCLUSIONS Our experimental findings suggest that the force of differential adhesive affinity can be overcome by even subtle polarity generated from strong bilateral ligation of highly adhesive cells in determining cell sorting patterns.
Collapse
Affiliation(s)
- Jeffrey D. Tse
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Robert Moore
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Yue Meng
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Wensi Tao
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Elizabeth R. Smith
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| |
Collapse
|
13
|
Io S, Kondoh E, Chigusa Y, Kawasaki K, Mandai M, Yamada AS. New era of trophoblast research: integrating morphological and molecular approaches. Hum Reprod Update 2020; 26:611-633. [PMID: 32728695 DOI: 10.1093/humupd/dmaa020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/24/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
Many pregnancy complications are the result of dysfunction in the placenta. The pathogenic mechanisms of placenta-mediated pregnancy complications, however, are unclear. Abnormal placental development in these conditions begins in the first trimester, but no symptoms are observed during this period. To elucidate effective preventative treatments, understanding the differentiation and development of human placenta is crucial. This review elucidates the uniqueness of the human placenta in early development from the aspect of structural characteristics and molecular markers. We summarise the morphogenesis of human placenta based on human specimens and then compile molecular markers that have been clarified by immunostaining and RNA-sequencing data across species. Relevant studies were identified using the PubMed database and Google Scholar search engines up to March 2020. All articles were independently screened for eligibility by the authors based on titles and abstracts. In particular, the authors carefully examined literature on human placentation. This review integrates the development of human placentation from morphological approaches in comparison with other species and provides new insights into trophoblast molecular markers. The morphological features of human early placentation are described in Carnegie stages (CS), from CS3 (floating blastocyst) to CS9 (emerging point of tertiary villi). Molecular markers are described for each type of trophoblast involved in human placental development. We summarise the character of human trophoblast cell lines and explain how long-term culture system of human cytotrophoblast, both monolayer and spheroid, established in recent studies allows for the generation of human trophoblast cell lines. Due to differences in developmental features among species, it is desirable to understand early placentation in humans. In addition, reliable molecular markers that reflect normal human trophoblast are needed to advance trophoblast research. In the clinical setting, these markers can be valuable means for morphologically and functionally assessing placenta-mediated pregnancy complications and provide early prediction and management of these diseases.
Collapse
Affiliation(s)
- Shingo Io
- Department of Life Science Frontiers, Center for iPS Cell Research & Application, Kyoto University, Kyoto, Japan.,Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Eiji Kondoh
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaoru Kawasaki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - And Shigehito Yamada
- Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
14
|
Cui K, Dong Y, Wang B, Cowan DB, Chan SL, Shyy J, Chen H. Endocytic Adaptors in Cardiovascular Disease. Front Cell Dev Biol 2020; 8:624159. [PMID: 33363178 PMCID: PMC7759532 DOI: 10.3389/fcell.2020.624159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Endocytosis is the process of actively transporting materials into a cell by membrane engulfment. Traditionally, endocytosis was divided into three forms: phagocytosis (cell eating), pinocytosis (cell drinking), and the more selective receptor-mediated endocytosis (clathrin-mediated endocytosis); however, other important endocytic pathways (e.g., caveolin-dependent endocytosis) contribute to the uptake of extracellular substances. In each, the plasma membrane changes shape to allow the ingestion and internalization of materials, resulting in the formation of an intracellular vesicle. While receptor-mediated endocytosis remains the best understood pathway, mammalian cells utilize each form of endocytosis to respond to their environment. Receptor-mediated endocytosis permits the internalization of cell surface receptors and their ligands through a complex membrane invagination process that is facilitated by clathrin and adaptor proteins. Internalized vesicles containing these receptor-ligand cargoes fuse with early endosomes, which can then be recycled back to the plasma membrane, delivered to other cellular compartments, or destined for degradation by fusing with lysosomes. These intracellular fates are largely determined by the interaction of specific cargoes with adaptor proteins, such as the epsins, disabled-homolog 2 (Dab2), the stonin proteins, epidermal growth factor receptor substrate 15, and adaptor protein 2 (AP-2). In this review, we focus on the role of epsins and Dab2 in controlling these sorting processes in the context of cardiovascular disease. In particular, we will focus on the function of epsins and Dab2 in inflammation, cholesterol metabolism, and their fundamental contribution to atherogenicity.
Collapse
Affiliation(s)
- Kui Cui
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States.,Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Yunzhou Dong
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States.,Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Beibei Wang
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States.,Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Douglas B Cowan
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States.,Department of Surgery, Harvard Medical School, Boston, MA, United States.,Department of Cardiology, Boston Children's Hospital, Boston, MA, United States
| | - Siu-Lung Chan
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States.,Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - John Shyy
- Division of Cardiology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States.,Department of Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Oh JN, Lee M, Choe GC, Lee DK, Choi KH, Kim SH, Jeong J, Lee CK. Identification of the Lineage Markers and Inhibition of DAB2 in In Vitro Fertilized Porcine Embryos. Int J Mol Sci 2020; 21:ijms21197275. [PMID: 33019677 PMCID: PMC7582820 DOI: 10.3390/ijms21197275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Specification of embryonic lineages is an important question in the field of early development. Numerous studies analyzed the expression patterns of the candidate transcripts and proteins in humans and mice and clearly determined the markers of each lineage. To overcome the limitations of human and mouse embryos, the expression of the marker transcripts in each cell has been investigated using in vivo embryos in pigs. In vitro produced embryos are more accessible, can be rapidly processed with low cost. Therefore, we analyzed the characteristics of lineage markers and the effects of the DAB2 gene (trophectoderm marker) in in vitro fertilized porcine embryos. We investigated the expression levels of the marker genes during embryonic stages and distribution of the marker proteins was assayed in day 7 blastocysts. Then, the shRNA vectors were injected into the fertilized embryos and the differences in the marker transcripts were analyzed. Marker transcripts showed diverse patterns of expression, and each embryonic lineage could be identified with localization of marker proteins. In DAB2-shRNA vectors injected embryos, HNF4A and PDGFRA were upregulated. DAB2 protein level was lower in shRNA-injected embryos without significant differences. Our results will contribute to understanding of the mechanisms of embryonic lineage specification in pigs.
Collapse
Affiliation(s)
- Jong-Nam Oh
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.-N.O.); (M.L.); (G.C.C.); (D.-K.L.); (K.-H.C.); (S.-H.K.); (J.J.)
| | - Mingyun Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.-N.O.); (M.L.); (G.C.C.); (D.-K.L.); (K.-H.C.); (S.-H.K.); (J.J.)
| | - Gyung Cheol Choe
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.-N.O.); (M.L.); (G.C.C.); (D.-K.L.); (K.-H.C.); (S.-H.K.); (J.J.)
| | - Dong-Kyung Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.-N.O.); (M.L.); (G.C.C.); (D.-K.L.); (K.-H.C.); (S.-H.K.); (J.J.)
| | - Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.-N.O.); (M.L.); (G.C.C.); (D.-K.L.); (K.-H.C.); (S.-H.K.); (J.J.)
| | - Seung-Hun Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.-N.O.); (M.L.); (G.C.C.); (D.-K.L.); (K.-H.C.); (S.-H.K.); (J.J.)
| | - Jinsol Jeong
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.-N.O.); (M.L.); (G.C.C.); (D.-K.L.); (K.-H.C.); (S.-H.K.); (J.J.)
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.-N.O.); (M.L.); (G.C.C.); (D.-K.L.); (K.-H.C.); (S.-H.K.); (J.J.)
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
- Correspondence:
| |
Collapse
|
16
|
Vazquez-Carretero MD, García-Miranda P, Balda MS, Matter K, Ilundáin AA, Peral MJ. Proper E-cadherin membrane location in colon requires Dab2 and it modifies by inflammation and cancer. J Cell Physiol 2020; 236:1083-1093. [PMID: 32617970 DOI: 10.1002/jcp.29917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/03/2020] [Accepted: 06/21/2020] [Indexed: 12/30/2022]
Abstract
We reported that Disabled-2 (Dab2) is located at the apical membrane in suckling rat intestine. Here, we discovered that, in colon of suckling and adult mouse and of adult human, Dab2 is only at lateral crypt cell membrane and colocalized with E-cadherin. Dab2 depletion in Caco-2 cells led to E-cadherin internalization indicating that its membrane location requires Dab2. In mice, we found that 3 days of dextran sulfate sodium-induced colitis increased Dab2/E-cadherin colocalization, which was decreased as colitis progressed to 6 and 9 days. In agreement, Dab2/E-cadherin colocalization increased in human mild and severe ulcerative colitis and in polyps, being reduced in colon adenocarcinomas, which even showed epithelial Dab2 absence and E-cadherin delocalization. Epithelial Dab2 decrement preceded that of E-cadherin. We suggest that Dab2, by inhibiting E-cadherin internalization, stabilizes adherens junctions, and its absence from the epithelium may contribute to development of colon inflammation and cancer.
Collapse
Affiliation(s)
| | - Pablo García-Miranda
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - María S Balda
- Department of Cell Biology, Institute of Ophthalmology, University College London, London, UK
| | - Karl Matter
- Department of Cell Biology, Institute of Ophthalmology, University College London, London, UK
| | - Anunciación A Ilundáin
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - María J Peral
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
17
|
Jing Z, Jia-Jun W, Wei-Jie Y. Phosphorylation of Dab2 is involved in inhibited VEGF-VEGFR-2 signaling induced by downregulation of syndecan-1 in glomerular endothelial cell. Cell Biol Int 2019; 44:894-904. [PMID: 31868265 DOI: 10.1002/cbin.11288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/21/2019] [Indexed: 11/10/2022]
Abstract
Disabled-2 (Dab2) and PAR-3 (partitioning defective 3) are reported to play critical roles in maintaining retinal microvascular endothelial cells biology by regulating VEGF-VEGFR-2 signaling. The role of Dab2 and PAR-3 in glomerular endothelial cell (GEnC) is unclear. In this study, we found that, no matter whether with vascular endothelial growth factor (VEGF) treatment or not, decreased expression of Dab2 could lead to cell apoptosis by preventing activation of VEGF-VEGFR-2 signaling in GEnC, accompanied by reduced membrane VEGFR-2 expression. And silencing of PAR-3 gene expression caused increased apoptosis of GEnC by inhibiting activation of VEGF-VEGFR-2 signaling and membrane VEGFR-2 expression. In our previous research, we found that the silencing of syndecan-1 gene expression inhibited VEGF-VEGFR-2 signaling by modulating internalization of VEGFR-2. And our further research demonstrated that downregulation of syndecan-1 lead to no significant change in the expression of Dab2 and PAR-3 both at messenger RNA and protein levels in GEnC, while phosphorylation of Dab2 was significantly increased in GEnC transfected with Dab2 small interfering RNA (siRNA) compared with control siRNA. Atypical protein kinase C (aPKC) could induce phosphorylation of Dab2, thus negatively regulating VEGF-VEGFR-2 signaling. And we found that decreased expression of syndecan-1 lead to activation of aPKC, and aPKC inhibitor treatment could block phosphorylation of Dab2 in GEnC. Besides, aPKC inhibitor treatment could activate VEGF-VGEFR-2 signaling in GEnC transfected with syndecan-1 siRNA in a dose-dependent manner. In conclusion, we speculated that phosphorylation of Dab2 is involved in preventing activation of VEGF-VEGFR-2 signaling in GEnC transfected with syndecan-1 siRNA. This provides a new target for the therapy of GEnC injury and kidney disease.
Collapse
Affiliation(s)
- Zhou Jing
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 HaiNing Road, Shanghai, 200080, People's Republic of China
| | - Wu Jia-Jun
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 HaiNing Road, Shanghai, 200080, People's Republic of China
| | - Yuan Wei-Jie
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 HaiNing Road, Shanghai, 200080, People's Republic of China
| |
Collapse
|
18
|
Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells 2019; 8:cells8111345. [PMID: 31671891 PMCID: PMC6912373 DOI: 10.3390/cells8111345] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cells need to exchange material and information with their environment. This is largely achieved via cell-surface receptors which mediate processes ranging from nutrient uptake to signaling responses. Consequently, their surface levels have to be dynamically controlled. Endocytosis constitutes a powerful mechanism to regulate the surface proteome and to recycle vesicular transmembrane proteins that strand at the plasma membrane after exocytosis. For efficient internalization, the cargo proteins need to be linked to the endocytic machinery via adaptor proteins such as the heterotetrameric endocytic adaptor complex AP-2 and a variety of mostly monomeric endocytic adaptors. In line with the importance of endocytosis for nutrient uptake, cell signaling and neurotransmission, animal models and human mutations have revealed that defects in these adaptors are associated with several diseases ranging from metabolic disorders to encephalopathies. This review will discuss the physiological functions of the so far known adaptor proteins and will provide a comprehensive overview of their links to human diseases.
Collapse
|
19
|
Nakanishi M, Mitchell RR, Benoit YD, Orlando L, Reid JC, Shimada K, Davidson KC, Shapovalova Z, Collins TJ, Nagy A, Bhatia M. Human Pluripotency Is Initiated and Preserved by a Unique Subset of Founder Cells. Cell 2019; 177:910-924.e22. [PMID: 30982595 DOI: 10.1016/j.cell.2019.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/21/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022]
Abstract
The assembly of organized colonies is the earliest manifestation in the derivation or induction of pluripotency in vitro. However, the necessity and origin of this assemblance is unknown. Here, we identify human pluripotent founder cells (hPFCs) that initiate, as well as preserve and establish, pluripotent stem cell (PSC) cultures. PFCs are marked by N-cadherin expression (NCAD+) and reside exclusively at the colony boundary of primate PSCs. As demonstrated by functional analysis, hPFCs harbor the clonogenic capacity of PSC cultures and emerge prior to commitment events or phenotypes associated with pluripotent reprogramming. Comparative single-cell analysis with pre- and post-implantation primate embryos revealed hPFCs share hallmark properties with primitive endoderm (PrE) and can be regulated by non-canonical Wnt signaling. Uniquely informed by primate embryo organization in vivo, our study defines a subset of founder cells critical to the establishment pluripotent state.
Collapse
Affiliation(s)
- Mio Nakanishi
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Ryan R Mitchell
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Yannick D Benoit
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Luca Orlando
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jennifer C Reid
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Kenichi Shimada
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kathryn C Davidson
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Zoya Shapovalova
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Tony J Collins
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Andras Nagy
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Mickie Bhatia
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
20
|
Qiu C, Huang S, Park J, Park Y, Ko YA, Seasock MJ, Bryer JS, Xu XX, Song WC, Palmer M, Hill J, Guarnieri P, Hawkins J, Boustany-Kari CM, Pullen SS, Brown CD, Susztak K. Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease. Nat Med 2018; 24:1721-1731. [PMID: 30275566 PMCID: PMC6301011 DOI: 10.1038/s41591-018-0194-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 08/08/2018] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD), a condition in which the kidneys are unable to clear waste products, affects 700 million people globally. Genome-wide association studies (GWASs) have identified sequence variants for CKD; however, the biological basis of these GWAS results remains poorly understood. To address this issue, we created an expression quantitative trait loci (eQTL) atlas for the glomerular and tubular compartments of the human kidney. Through integrating the CKD GWAS with eQTL, single-cell RNA sequencing and regulatory region maps, we identified novel genes for CKD. Putative causal genes were enriched for proximal tubule expression and endolysosomal function, where DAB2, an adaptor protein in the TGF-β pathway, formed a central node. Functional experiments confirmed that reducing Dab2 expression in renal tubules protected mice from CKD. In conclusion, compartment-specific eQTL analysis is an important avenue for the identification of novel genes and cellular pathways involved in CKD development and thus potential new opportunities for its treatment.
Collapse
Affiliation(s)
- Chengxiang Qiu
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Shizheng Huang
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Jihwan Park
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - YoSon Park
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Yi-An Ko
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Matthew J Seasock
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua S Bryer
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiang-Xi Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at University of Pennsylvania, Pennsylvania, PA, USA
| | - Matthew Palmer
- Pathology and Laboratory Medicine at the Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jon Hill
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Paolo Guarnieri
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Julie Hawkins
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | | | - Steven S Pullen
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Christopher D Brown
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Meng Y, Moore R, Tao W, Smith ER, Tse JD, Caslini C, Xu XX. GATA6 phosphorylation by Erk1/2 propels exit from pluripotency and commitment to primitive endoderm. Dev Biol 2018; 436:55-65. [PMID: 29454706 PMCID: PMC5912698 DOI: 10.1016/j.ydbio.2018.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
The transcription factor GATA6 and the Fgf/Ras/MAPK signaling pathway are essential for the development of the primitive endoderm (PrE), one of the two lineages derived from the pluripotent inner cell mass (ICM) of mammalian blastocysts. A mutant mouse line in which Gata6-coding exons are replaced with H2BGFP (histone H2B Green Fluorescence Protein fusion protein) was developed to monitor Gata6 promoter activity. In the Gata6-H2BGFP heterozygous blastocysts, the ICM cells that initially had uniform GFP fluorescence signal at E3.5 diverged into two populations by the 64-cell stage, either as the GFP-high PrE or the GFP-low epiblasts (Epi). However in the GATA6-null blastocysts, the originally moderate GFP expression subsided in all ICM cells, indicating that the GATA6 protein is required to maintain its own promoter activity during PrE linage commitment. In embryonic stem cells, expressed GATA6 was shown to bind and activate the Gata6 promoter in PrE differentiation. Mutations of a conserved serine residue (S264) for Erk1/2 phosphorylation in GATA6 protein drastically impacted its ability to activate its own promoter. We conclude that phosphorylation of GATA6 by Erk1/2 compels exit from pluripotent state, and the phosphorylation propels a GATA6 positive feedback regulatory circuit to compel PrE differentiation. Our findings resolve the longstanding question on the dual requirements of GATA6 and Ras/MAPK pathway for PrE commitment of the pluripotent ICM.
Collapse
Affiliation(s)
- Yue Meng
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Graduate Program in Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Robert Moore
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wensi Tao
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Graduate Program in Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Elizabeth R Smith
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jeffrey D Tse
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Graduate Program in Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Corrado Caslini
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xiang-Xi Xu
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Graduate Program in Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
22
|
Abstract
At the time of implantation, the mouse blastocyst has developed three cell lineages: the epiblast (Epi), the primitive endoderm (PrE), and the trophectoderm (TE). The PrE and TE are extraembryonic tissues but their interactions with the Epi are critical to sustain embryonic growth, as well as to pattern the embryo. We review here the cellular and molecular events that lead to the production of PrE and Epi lineages and discuss the different hypotheses that are proposed for the induction of these cell types. In the second part, we report the current knowledge about the epithelialization of the PrE.
Collapse
|
23
|
Howley BV, Howe PH. TGF-beta signaling in cancer: post-transcriptional regulation of EMT via hnRNP E1. Cytokine 2018; 118:19-26. [PMID: 29396052 DOI: 10.1016/j.cyto.2017.12.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/29/2017] [Indexed: 12/12/2022]
Abstract
The TGFβ signaling pathway is a critical regulator of cancer progression in part through induction of the epithelial to mesenchymal transition (EMT). This process is aberrantly activated in cancer cells, facilitating invasion of the basement membrane, survival in the circulatory system, and dissemination to distant organs. The mechanisms through which epithelial cells transition to a mesenchymal state involve coordinated transcriptional and post-transcriptional control of gene expression. One such mechanism of control is through the RNA binding protein hnRNP E1, which regulates splicing and translation of a cohort of EMT and stemness-associated transcripts. A growing body of evidence indicates a major role for hnRNP E1 in the control of epithelial cell plasticity, especially in the context of carcinoma progression. Here, we review the multiple mechanisms through which hnRNP E1 functions to control EMT and metastatic progression.
Collapse
Affiliation(s)
- Breege V Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
24
|
Conditional ablation of the RFX4 isoform 1 transcription factor: Allele dosage effects on brain phenotype. PLoS One 2018; 13:e0190561. [PMID: 29298325 PMCID: PMC5752003 DOI: 10.1371/journal.pone.0190561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/21/2017] [Indexed: 11/25/2022] Open
Abstract
Regulatory factor X4 (RFX4) isoform 1 is a recently discovered isoform of the winged helix transcription factor RFX4, which can bind to X-box consensus sequences that are enriched in the promoters of cilia-related genes. Early insertional mutagenesis studies in mice first identified this isoform, and demonstrated that it was crucial for mouse brain development. RFX4 isoform 1 is the only RFX4 isoform significantly expressed in the mouse fetal and adult brain. In this study, we evaluated conditional knock-out (KO) mice in which one or two floxed alleles of Rfx4 were deleted early in development through the use of a Sox2-Cre transgene. Heterozygous deletion of Rfx4 resulted in severe, non-communicating congenital hydrocephalus associated with hypoplasia of the subcommissural organ. Homozygous deletion of Rfx4 resulted in formation of a single ventricle in the forebrain, and severe dorsoventral patterning defects in the telencephalon and midbrain at embryonic day 12.5, a collection of phenotypes that resembled human holoprosencephaly. No anatomical abnormalities were noted outside the brain in either case. At the molecular level, transcripts encoded by the cilia-related gene Foxj1 were significantly decreased, and Foxj1 was identified as a direct gene target of RFX4 isoform 1. The phenotypes were similar to those observed in the previous Rfx4 insertional mutagenesis studies. Thus, we provide a novel conditional KO animal model in which to investigate the downstream genes directly and/or indirectly regulated by RFX4 isoform 1. This model could provide new insights into the pathogenesis of obstructive hydrocephalus and holoprosencephaly in humans, both relatively common and disabling birth defects.
Collapse
|
25
|
Vuong NH, Salah Salah O, Vanderhyden BC. 17β-Estradiol sensitizes ovarian surface epithelium to transformation by suppressing Disabled-2 expression. Sci Rep 2017; 7:16702. [PMID: 29196616 PMCID: PMC5711839 DOI: 10.1038/s41598-017-16219-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/07/2017] [Indexed: 01/06/2023] Open
Abstract
Estrogen replacement therapy increases the risk of human ovarian cancer and exogenous estradiol accelerates the onset of ovarian cancer in mouse models. This study uses primary cultures of mouse ovarian surface epithelium (OSE) to demonstrate that one possible mechanism by which estrogen accelerates the initiation of ovarian cancer is by up-regulation of microRNA-378 via the ESR1 pathway to result in the down-regulation of a tumour suppressor called Disabled-2 (Dab2). Estrogen suppression of Dab2 was reproducible in vivo and across many cell types including mouse oviductal epithelium and primary cultures of human ovarian cancer cells. Suppression of Dab2 resulted in increased proliferation, loss of contact inhibition, morphological dysplasia, and resistance to oncogene-induced senescence - all factors that can sensitize OSE to transformation. Given that DAB2 is highly expressed in healthy human OSE and is absent in the majority of ovarian tumours, this study has taken the first steps to provide a mechanistic explanation for how estrogen therapy may play a role in the initiation of ovarian cancer.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/biosynthesis
- Adaptor Proteins, Vesicular Transport/genetics
- Animals
- Apoptosis Regulatory Proteins
- Carcinoma, Ovarian Epithelial/chemically induced
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/metabolism
- Carcinoma, Ovarian Epithelial/pathology
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Epithelium/metabolism
- Epithelium/pathology
- Estradiol/adverse effects
- Estradiol/pharmacology
- Female
- Humans
- Mice
- Mice, Knockout
- Ovarian Neoplasms/chemically induced
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Ovary/metabolism
- Ovary/pathology
- Tumor Suppressor Proteins/biosynthesis
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Nhung H Vuong
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Omar Salah Salah
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Barbara C Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada.
| |
Collapse
|
26
|
Seccia TM, Caroccia B, Gomez-Sanchez EP, Vanderriele PE, Gomez-Sanchez CE, Rossi GP. Review of Markers of Zona Glomerulosa and Aldosterone-Producing Adenoma Cells. Hypertension 2017; 70:867-874. [PMID: 28947616 DOI: 10.1161/hypertensionaha.117.09991] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Teresa M Seccia
- From the Department of Medicine-DIMED, University of Padua, Italy (T.M.S., B.C., P.-E.V., G.P.R.); and Department of Pharmacology and Toxicology (E.P.G.-S.) and Division of Endocrinology (C.E.G.-S.), G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson
| | - Brasilina Caroccia
- From the Department of Medicine-DIMED, University of Padua, Italy (T.M.S., B.C., P.-E.V., G.P.R.); and Department of Pharmacology and Toxicology (E.P.G.-S.) and Division of Endocrinology (C.E.G.-S.), G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson
| | - Elise P Gomez-Sanchez
- From the Department of Medicine-DIMED, University of Padua, Italy (T.M.S., B.C., P.-E.V., G.P.R.); and Department of Pharmacology and Toxicology (E.P.G.-S.) and Division of Endocrinology (C.E.G.-S.), G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson
| | - Paul-Emmanuel Vanderriele
- From the Department of Medicine-DIMED, University of Padua, Italy (T.M.S., B.C., P.-E.V., G.P.R.); and Department of Pharmacology and Toxicology (E.P.G.-S.) and Division of Endocrinology (C.E.G.-S.), G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson
| | - Celso E Gomez-Sanchez
- From the Department of Medicine-DIMED, University of Padua, Italy (T.M.S., B.C., P.-E.V., G.P.R.); and Department of Pharmacology and Toxicology (E.P.G.-S.) and Division of Endocrinology (C.E.G.-S.), G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson
| | - Gian Paolo Rossi
- From the Department of Medicine-DIMED, University of Padua, Italy (T.M.S., B.C., P.-E.V., G.P.R.); and Department of Pharmacology and Toxicology (E.P.G.-S.) and Division of Endocrinology (C.E.G.-S.), G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson.
| |
Collapse
|
27
|
Meng Y, Cai KQ, Moore R, Tao W, Tse JD, Smith ER, Xu XX. Pten facilitates epiblast epithelial polarization and proamniotic lumen formation in early mouse embryos. Dev Dyn 2017; 246:517-530. [PMID: 28387983 DOI: 10.1002/dvdy.24503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/27/2017] [Accepted: 03/21/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Phosphatase and tensin homologue on chromosome 10 (Pten), a lipid phosphatase originally identified as a tumor-suppressor gene, regulates the phosphoinositol 3 kinase signaling pathway and impacts cell death and proliferation. Pten mutant embryos die at early stages of development, although the particular developmental deficiency and the mechanisms are not yet fully understood. RESULTS We analyzed Pten mutant embryos in detail and found that the formation of the proamniotic cavity is impaired. Embryoid bodies derived from Pten-null embryonic stem cells failed to undergo cavitation, reproducing the embryonic phenotype in vitro. Analysis of embryoid bodies and embryos revealed a role of Pten in the initiation of the focal point of the epithelial rosette that develops into the proamniotic lumen, and in establishment of epithelial polarity to transform the amorphous epiblast cells into a polarized epithelium. CONCLUSIONS We conclude that Pten is required for proamniotic cavity formation by establishing polarity for epiblast cells to form a rosette that expands into the proamniotic lumen, rather than facilitating apoptosis to create the cavity. Developmental Dynamics 246:517-530, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yue Meng
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Kathy Q Cai
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Robert Moore
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Wensi Tao
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeffrey D Tse
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Elizabeth R Smith
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Xiang-Xi Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
28
|
Szumska D, Cioroch M, Keeling A, Prat A, Seidah NG, Bhattacharya S. Pcsk5 is required in the early cranio-cardiac mesoderm for heart development. BMC DEVELOPMENTAL BIOLOGY 2017; 17:6. [PMID: 28446132 PMCID: PMC5407003 DOI: 10.1186/s12861-017-0148-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/17/2017] [Indexed: 11/25/2022]
Abstract
Background Loss of proprotein convertase subtilisin/kexin type 5 (Pcsk5) results in multiple developmental anomalies including cardiac malformations, caudal regression, pre-sacral mass, renal agenesis, anteroposterior patterning defects, and tracheo-oesophageal and anorectal malformations, and is a model for VACTERL/caudal regression/Currarino syndromes (VACTERL association - Vertebral anomalies, Anal atresia, Cardiac defects, Tracheoesophageal fistula and/or Esophageal atresia, Renal & Radial anomalies and Limb defects). Results Using magnetic resonance imaging (MRI), we examined heart development in mouse embryos with zygotic and cardiac specific deletion of Pcsk5. We show that conditional deletion of Pcsk5 in all epiblastic lineages recapitulates all developmental malformations except for tracheo-esophageal malformations. Using a conditional deletion strategy, we find that there is an essential and specific requirement for Pcsk5 in the cranio-cardiac mesoderm for cardiogenesis, but not for conotruncal septation or any other aspect of embryonic development. Surprisingly, deletion of Pcsk5 in cardiogenic or pharyngeal mesodermal progenitors that form later from the cranio-cardiac mesoderm does not affect heart development. Neither is Pcsk5 essential in the neural crest, which drives conotruncal septation. Conclusions Our results suggest that Pcsk5 may have an essential and early role in the cranio-cardiac mesoderm for heart development. Alternatively, it is possible that Pcsk5 may still play a critical role in Nkx2.5-expressing cardiac progenitors, with persistence of mRNA or protein accounting for the lack of effect of deletion on heart development. Electronic supplementary material The online version of this article (doi:10.1186/s12861-017-0148-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dorota Szumska
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Milena Cioroch
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Angela Keeling
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), 110 Pine Ave west, Montreal, QC, H2W1R7, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), 110 Pine Ave west, Montreal, QC, H2W1R7, Canada
| | - Shoumo Bhattacharya
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
29
|
Tao W, Moore R, Smith ER, Xu XX. Endocytosis and Physiology: Insights from Disabled-2 Deficient Mice. Front Cell Dev Biol 2016; 4:129. [PMID: 27933291 PMCID: PMC5122593 DOI: 10.3389/fcell.2016.00129] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/27/2016] [Indexed: 01/29/2023] Open
Abstract
Disabled-2 (Dab2) is a clathrin and cargo binding endocytic adaptor protein, and cell biology studies revealed that Dab2 plays a role in cellular trafficking of a number of transmembrane receptors and signaling proteins. A PTB/PID domain located in the N-terminus of Dab2 binds the NPXY motif(s) present at the cytoplasmic tails of certain transmembrane proteins/receptors. The membrane receptors reported to bind directly to Dab2 include LDL receptor and its family members LRP1 and LRP2 (megalin), growth factor receptors EGFR and FGFR, and the cell adhesion receptor beta1 integrin. Dab2 also serves as an adaptor in signaling pathways. Particularly, Dab2 facilitates the endocytosis of the Ras activating Grb2/Sos1 signaling complex, controls its disassembly, and thereby regulates the Ras/MAPK signaling pathway. Cellular analyses have suggested several diverse functions for the widely expressed proteins, and Dab2 is also considered a tumor suppressor, as loss or reduced expression is found in several cancer types. Dab2 null mutant mice were generated and investigated to determine if the findings from cellular studies might be important and relevant in intact animals. Dab2 conditional knockout mice mediated through a Sox2-Cre transgene have no obvious developmental defects and have a normal life span despite that the Dab2 protein is essentially absent in the mutant mice. The conditional knockout mice were grossly normal, though more recent investigation of the Dab2-deficient mice revealed several phenotypes, which can be accounted for by several previously suggested mechanisms. The studies of mutant mice established that Dab2 plays multiple physiological roles through its endocytic functions and modulation of signal pathways.
Collapse
Affiliation(s)
- Wensi Tao
- Sylvester Comprehensive Cancer Center and Department of Cell Biology, Graduate Program in Cell and Developmental Biology, University of Miami School of Medicine Miami, FL, USA
| | - Robert Moore
- Sylvester Comprehensive Cancer Center and Department of Cell Biology, Graduate Program in Cell and Developmental Biology, University of Miami School of Medicine Miami, FL, USA
| | - Elizabeth R Smith
- Sylvester Comprehensive Cancer Center and Department of Cell Biology, Graduate Program in Cell and Developmental Biology, University of Miami School of Medicine Miami, FL, USA
| | - Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center and Department of Cell Biology, Graduate Program in Cell and Developmental Biology, University of Miami School of Medicine Miami, FL, USA
| |
Collapse
|
30
|
Disabled-2 Determines Commitment of a Pre-adipocyte Population in Juvenile Mice. Sci Rep 2016; 6:35947. [PMID: 27779214 PMCID: PMC5078790 DOI: 10.1038/srep35947] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023] Open
Abstract
Disabled-2 (Dab2) is a widely expressed clathrin binding endocytic adaptor protein and known for the endocytosis of the low-density lipoprotein (LDL) family receptors. Dab2 also modulates endosomal Ras/MAPK (Erk1/2) activity by regulating the disassembly of Grb2/Sos1 complexes associated with clathrin-coated vesicles. We found that the most prominent phenotype of Dab2 knockout mice was their striking lean body composition under a high fat and high caloric diet, although the weight of the mutant mice was indistinguishable from wild-type littermates on a regular chow. The remarkable difference in resistance to high caloric diet-induced weight gain of the dab2-deleted mice was presented only in juvenile but not in mature mice. Investigation using Dab2-deficient embryonic fibroblasts and mesenchymal stromal cells indicated that Dab2 promoted adipogenic differentiation by modulation of MAPK (Erk1/2) activity, which otherwise suppresses adipogenesis through the phosphorylation of PPARγ. The results suggest that Dab2 is required for the excessive calorie-induced differentiation of an adipocyte progenitor cell population that is present in juvenile but depleted in mature animals. The finding provides evidence for a limited pre-adipocyte population in juvenile mammals and the requirement of Dab2 in the regulation of Ras/MAPK signal in the commitment of the precursor cells to adipose tissues.
Collapse
|
31
|
Tao W, Moore R, Meng Y, Smith ER, Xu XX. Endocytic adaptors Arh and Dab2 control homeostasis of circulatory cholesterol. J Lipid Res 2016; 57:809-17. [PMID: 27005486 DOI: 10.1194/jlr.m063065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 11/20/2022] Open
Abstract
High serum cholesterol (hypercholesterolemia) strongly associates with cardiovascular diseases as the atherogenic LDLs promote atheroma development in arteries (atherosclerosis). LDL clearance from the circulation by LDL receptor (LDLR)-mediated endocytosis by hepatic and peripheral tissues and subsequent feedback regulation of endogenous synthesis of cholesterol is a key determinant of serum LDL level. Human mutation analysis revealed that autosomal recessive hypercholesterolemia (ARH), an LDLR endocytic adaptor, perturbs LDLR function and thus impacts serum cholesterol levels. In our genetic analysis of mutant mice, we found that deletion of another LDLR endocytic adaptor, Disabled-2 (Dab2), only slightly affected serum cholesterol levels. However, elimination of both arh and dab2 genes in mice resulted in profound hypercholesterolemia similar to that resulting from ldlr homozygous deletion. In the liver, Dab2 is expressed in sinusoid endothelial cells but not in hepatocytes. When deleting both Dab2 and Arh, HMG-CoA reductase level increased to the level similar to that of ldlr knockout. Thus, in the absence of Arh, Dab2 in liver endothelial cells regulates cholesterol synthesis in hepatocytes. We conclude that the combination of Arh and Dab2 is responsible for the majority of adaptor function in LDLR endocytosis and LDLR-mediated cholesterol homeostasis.
Collapse
Affiliation(s)
- Wensi Tao
- Department of Cell Biology, Molecular Cell and Developmental Biology Graduate Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Robert Moore
- Department of Cell Biology, Molecular Cell and Developmental Biology Graduate Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Yue Meng
- Department of Cell Biology, Molecular Cell and Developmental Biology Graduate Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Elizabeth R Smith
- Department of Cell Biology, Molecular Cell and Developmental Biology Graduate Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Xiang-Xi Xu
- Department of Cell Biology, Molecular Cell and Developmental Biology Graduate Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
32
|
Role of Epithelial-Mesenchyme Transition in Chlamydia Pathogenesis. PLoS One 2015; 10:e0145198. [PMID: 26681200 PMCID: PMC4683008 DOI: 10.1371/journal.pone.0145198] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022] Open
Abstract
Chlamydia trachomatis genital infection in women causes serious adverse reproductive complications, and is a strong co-factor for human papilloma virus (HPV)-associated cervical epithelial carcinoma. We tested the hypothesis that Chlamydia induces epithelial-mesenchyme transition (EMT) involving T cell-derived TNF-alpha signaling, caspase activation, cleavage inactivation of dicer and dysregulation of micro-RNA (miRNA) in the reproductive epithelium; the pathologic process of EMT causes fibrosis and fertility-related epithelial dysfunction, and also provides the co-factor function for HPV-related cervical epithelial carcinoma. Using a combination of microarrays, immunohistochemistry and proteomics, we showed that chlamydia altered the expression of crucial miRNAs that control EMT, fibrosis and tumorigenesis; specifically, miR-15a, miR-29b, miR-382 and MiR-429 that maintain epithelial integrity were down-regulated, while miR-9, mi-R-19a, miR-22 and miR-205 that promote EMT, fibrosis and tumorigenesis were up-regulated. Chlamydia induced EMT in vitro and in vivo, marked by the suppression of normal epithelial cell markers especially E-cadherin but up-regulation of mesenchymal markers of pathological EMT, including T-cadherin, MMP9, and fibronectin. Also, Chlamydia upregulated pro-EMT regulators, including the zinc finger E-box binding homeobox protein, ZEB1, Snail1/2, and thrombospondin1 (Thbs1), but down-regulated anti-EMT and fertility promoting proteins (i.e., the major gap junction protein connexin 43 (Cx43), Mets1, Add1Scarb1 and MARCKSL1). T cell-derived TNF-alpha signaling was required for chlamydial-induced infertility and caspase inhibitors prevented both infertility and EMT. Thus, chlamydial-induced T cell-derived TNF-alpha activated caspases that inactivated dicer, causing alteration in the expression of reproductive epithelial miRNAs and induction of EMT. EMT causes epithelial malfunction, fibrosis, infertility, and the enhancement of tumorigenesis of HPV oncogene-transformed epithelial cells. These findings provide a novel understanding of the molecular pathogenesis of chlamydia-associated diseases, which may guide a rational prevention strategy.
Collapse
|
33
|
Disabled homolog 2 is required for migration and invasion of prostate cancer cells. Front Med 2015; 9:312-21. [PMID: 26143155 DOI: 10.1007/s11684-015-0401-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/07/2015] [Indexed: 12/13/2022]
Abstract
Disabled homolog 2 (DAB2) is frequently deleted or epigenetically silenced in many human cancer cells. Therefore, DAB2 has always been regarded as a tumor suppressor gene. However, the role of DAB2 in tumor progression and metastasis remains unclear. In this study, DAB2 expression was upregulated along with human prostate cancer (PCa) progression. DAB2 overexpression or knockdown effects in LNCaP and PC3 cell lines were verified to address the biological functions of DAB2 in PCa progression and metastasis. LNCaP and PC3 cell lines were generated from human PCa cells with low and high metastatic potentials, respectively. The results showed that DAB2 shRNA knockdown can inhibit the migratory and invasive abilities of PC3 cells, as well as the tumorigenicity, whereas DAB2 overexpression enhanced LNCaP cell migration and invasion. Further investigation showed that DAB2 regulated the cell migration associated genes in PC3 cells, and the differential DAB2 expression between LNCaP and PC3 cells was partly regulated by histone 4 acetylation. Therefore, DAB2 may play an important role in PCa progression and metastasis.
Collapse
|
34
|
Hermitte S, Chazaud C. Primitive endoderm differentiation: from specification to epithelium formation. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0537. [PMID: 25349446 DOI: 10.1098/rstb.2013.0537] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In amniotes, primitive endoderm (PrE) plays important roles not only for nutrient support but also as an inductive tissue required for embryo patterning. PrE is an epithelial monolayer that is visible shortly before embryo implantation and is one of the first three cell lineages produced by the embryo. We review here the molecular mechanisms that have been uncovered during the past 10 years on PrE and epiblast cell lineage specification within the inner cell mass of the blastocyst and on their subsequent steps of differentiation.
Collapse
Affiliation(s)
- Stéphanie Hermitte
- Clermont Université, Université d'Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France INSERM, UMR1103, 63001 Clermont-Ferrand, France CNRS, UMR6293, 63001 Clermont-Ferrand, France
| | - Claire Chazaud
- Clermont Université, Université d'Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France INSERM, UMR1103, 63001 Clermont-Ferrand, France CNRS, UMR6293, 63001 Clermont-Ferrand, France
| |
Collapse
|
35
|
|
36
|
Hormonal induction and roles of Disabled-2 in lactation and involution. PLoS One 2014; 9:e110737. [PMID: 25360623 PMCID: PMC4216001 DOI: 10.1371/journal.pone.0110737] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/16/2014] [Indexed: 02/06/2023] Open
Abstract
Disabled-2 (Dab2) is a widely expressed endocytic adaptor that was first isolated as a 96 KDa phospho-protein, p96, involved in MAPK signal transduction. Dab2 expression is lost in several cancer types including breast cancer, and Dab2 is thought to have a tumor suppressor function. In mammary epithelia, Dab2 was induced upon pregnancy and further elevated during lactation. We constructed mutant mice with a mosaic Dab2 gene deletion to bypass early embryonic lethality and to investigate the roles of Dab2 in mammary physiology. Loss of Dab2 had subtle effects on lactation, but Dab2-deficient mammary glands showed a strikingly delayed cell clearance during involution. In primary cultures of mouse mammary epithelial cells, Dab2 proteins were also induced by estrogen, progesterone, and/or prolactin. Dab2 null mammary epithelial cells were refractory to growth suppression induced by TGF-beta. However, Dab2 deletion did not affect Smad2 phosphorylation; rather TGF-beta-stimulated MAPK activation was enhanced in Dab2-deficient cells. We conclude that Dab2 expression is induced by hormones and Dab2 plays a role in modulating TGF-beta signaling to enhance apoptotic clearance of mammary epithelial cells during involution.
Collapse
|
37
|
The primitive endoderm segregates from the epiblast in β1 integrin-deficient early mouse embryos. Mol Cell Biol 2013; 34:560-72. [PMID: 24277939 DOI: 10.1128/mcb.00937-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We analyzed the mechanism of developmental failure in implanted β1 integrin-null blastocysts and found that primitive endoderm cells are present but segregate away from, instead of forming an epithelial layer covering, the inner cell mass. This cell segregation phenotype was also reproduced in β1 integrin-null embryoid bodies, in which primitive endoderm cells segregated and appeared as miniature aggregates detached from the core spheroids, and a primitive endoderm layer failed to form on the surface. Restricted β1 integrin gene deletion in embryos using Ttr-Cre or Sox2-Cre indicated that the loss of integrin function in the cells of the inner core rather than the outer layer is responsible for the failure to form a primitive endoderm layer. We conclude that β1 integrin is essential for the attachment of the primitive endoderm layer to the epiblast during the formation of a basement membrane, a process concurrent with the transition from cadherin- to integrin-mediated cell adhesion.
Collapse
|