1
|
Taylor E, Allen JD, Heyland A. Thyroid hormones reversibly inhibit metamorphic development in ophiuroid larvae. J Exp Biol 2025; 228:JEB249351. [PMID: 39760280 DOI: 10.1242/jeb.249351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
The timing of metamorphosis and settlement is critical for the survival and reproductive success of marine animals with biphasic life cycles. Thyroid hormones (THs) regulate developmental timing in diverse groups of chordates, including the regulation of metamorphosis in amphibians, teleosts, lancelets, tunicates and lampreys. Recent evidence suggests a role for TH regulation of metamorphosis outside of the chordates, including echinoderms, annelids and molluscs. Among echinoderms, TH effects on development as well as underlying signaling mechanisms in early embryogenesis have been documented for echinoid (sea urchin) larvae, but we lack information on TH effects on metamorphic development in most other echinoderm groups, including the ophiuroids (brittle stars). Unexpectedly, we found that THs, principally 3,5,3',5'-tetraiodo-l-thyronine (T4), reversibly inhibit metamorphic development and settlement in the daisy brittle star (Ophiopholis aculeata). Exposure to thiourea, an inhibitor of TH synthesis, accelerated metamorphic development. We showed that these effects were highly stage specific, providing evidence for a developmental point-of-no-return in ophiuroid metamorphic development. Furthermore, starvation of O. aculeata accelerated juvenile morphogenesis and settlement. Starvation also prevented the inhibitory effect of thiourea on TH function, suggesting that TH synthesis may play a role in delaying metamorphosis under conditions of high food availability. These findings provide evidence for a function of TH signaling in ophiuroid metamorphic development and suggest that exogenous TH sources may be involved in the regulation of metamorphic timing in O. aculeata. Together with new evidence of TH involvement in metamorphic development in a range of invertebrates, these findings further emphasize the versatile and central role of endocrine signaling in metamorphosis.
Collapse
Affiliation(s)
- Elias Taylor
- University of Guelph, Integrative Biology, 50 Stone Rd East, Guelph, ON, Canada, N1G 2W1
| | | | - Andreas Heyland
- University of Guelph, Integrative Biology, 50 Stone Rd East, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
2
|
Ge H, Huang Y, Zhang L, Huang S, Wang G. The Cell States of Sea Urchin During Metamorphosis Revealed by Single-Cell RNA Sequencing. Int J Mol Sci 2025; 26:1059. [PMID: 39940825 PMCID: PMC11817407 DOI: 10.3390/ijms26031059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Metamorphosis is a key process in the life history of sea urchin Heliocidaris crassispina. However, the understanding of its molecular mechanisms is still lacking, especially the basic cell biology pre-metamorphosis and post-metamorphosis. Therefore, we employed single-cell RNA sequencing to delineate the cellular states of larvae and juveniles of H. crassispina. Our investigation revealed that the cell composition in sea urchins comprises six primary populations, encompassing nerve cells, skeletogenic cells, immune cells, digestive cells, germ cells, and muscle cells. Subsequently, we identified subpopulations within these cells. Our findings indicated that the larval peripheral nerves were discarded during metamorphosis. A decrease in the number of spicules was observed during this process. Additionally, we examined the differences between larval and adult pigment cells. Meanwhile, cellulase is highlighted as an essential factor for the development of competent juveniles. In summary, this study not only serves as a valuable resource for future research on sea urchins but also deepens our understanding of the intricate metamorphosis process.
Collapse
Affiliation(s)
- Hui Ge
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
- Fisheries Research Institute of Fujian, 7 Shanhai Road, Huli, Xiamen 361000, China
| | - Yongyu Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Lili Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Shiyu Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Guodong Wang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| |
Collapse
|
3
|
Tate HM, Barone V, Schrankel CS, Hamdoun A, Lyons DC. Localization and origins of juvenile skeletogenic cells in the sea urchin Lytechinuspictus. Dev Biol 2024; 514:12-27. [PMID: 38862087 DOI: 10.1016/j.ydbio.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
The development of the sea urchin larval body plan is well understood from extensive studies of embryonic patterning. However, fewer studies have investigated the late larval stages during which the unique pentaradial adult body plan develops. Previous work on late larval development highlights major tissue changes leading up to metamorphosis, but the location of specific cell types during juvenile development is less understood. Here, we improve on technical limitations by applying highly sensitive hybridization chain reaction fluorescent in situ hybridization (HCR-FISH) to the fast-developing and transparent sea urchin Lytechinus pictus, with a focus on skeletogenic cells. First, we show that HCR-FISH can be used in L. pictus to precisely localize skeletogenic cells in the rudiment. In doing so, we provide a detailed staging scheme for the appearance of skeletogenic cells around the rudiment prior to and during biomineralization and show that many skeletogenic cells unassociated with larval rods localize outside of the rudiment prior to localizing inside. Second, we show that downstream biomineralization genes have similar expression patterns during larval and juvenile skeletogenesis, suggesting some conservation of skeletogenic mechanisms during development between stages. Third, we find co-expression of blastocoelar and skeletogenic cell markers around juvenile skeleton located outside of the rudiment, which is consistent with data showing that cells from the non-skeletogenic mesoderm embryonic lineage contribute to the juvenile skeletogenic cell lineage. This work sets the foundation for subsequent studies of other cell types in the late larva of L. pictus to better understand juvenile body plan development, patterning, and evolution.
Collapse
Affiliation(s)
- Heidi M Tate
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Vanessa Barone
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Catherine S Schrankel
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA; San Diego State University, San Diego, CA, USA
| | - Amro Hamdoun
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Deirdre C Lyons
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Taylor E, Corsini M, Heyland A. Shared regulatory function of non-genomic thyroid hormone signaling in echinoderm skeletogenesis. EvoDevo 2024; 15:10. [PMID: 39113104 PMCID: PMC11304627 DOI: 10.1186/s13227-024-00226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/22/2024] [Indexed: 08/10/2024] Open
Abstract
Thyroid hormones are crucial regulators of metamorphosis and development in bilaterians, particularly in chordate deuterostomes. Recent evidence suggests a role for thyroid hormone signaling, principally via 3,5,3',5'-Tetraiodo-L-thyronine (T4), in the regulation of metamorphosis, programmed cell death and skeletogenesis in echinoids (sea urchins and sand dollars) and sea stars. Here, we test whether TH signaling in skeletogenesis is a shared trait of Echinozoa (Echinoida and Holothouroida) and Asterozoa (Ophiourida and Asteroida). We demonstrate dramatic acceleration of skeletogenesis after TH treatment in three classes of echinoderms: sea urchins, sea stars, and brittle stars (echinoids, asteroids, and ophiuroids). Fluorescently labeled thyroid hormone analogues reveal thyroid hormone binding to cells proximal to regions of skeletogenesis in the gut and juvenile rudiment. We also identify, for the first time, a potential source of thyroxine during gastrulation in sea urchin embryos. Thyroxine-positive cells are present in tip of the archenteron. In addition, we detect thyroid hormone binding to the cell membrane and nucleus during metamorphic development in echinoderms. Immunohistochemistry of phosphorylated MAPK in the presence and absence of TH-binding inhibitors suggests that THs may act via phosphorylation of MAPK (ERK1/2) to accelerate initiation of skeletogenesis in the three echinoderm groups. Together, these results indicate that TH regulation of mesenchyme cell activity via integrin-mediated MAPK signaling may be a conserved mechanism for the regulation of skeletogenesis in echinoderm development. In addition, TH action via a nuclear thyroid hormone receptor may regulate metamorphic development. Our findings shed light on potentially ancient pathways of thyroid hormone activity in echinoids, ophiuroids, and asteroids, or on a signaling system that has been repeatedly co-opted to coordinate metamorphic development in bilaterians.
Collapse
Affiliation(s)
- Elias Taylor
- College of Biological Sciences, University of Guelph, Integrative Biology, Guelph, ON, N1G-2W1, Canada.
| | - Megan Corsini
- College of Biological Sciences, University of Guelph, Integrative Biology, Guelph, ON, N1G-2W1, Canada
| | - Andreas Heyland
- College of Biological Sciences, University of Guelph, Integrative Biology, Guelph, ON, N1G-2W1, Canada
| |
Collapse
|
5
|
Taylor E, Wynen H, Heyland A. Thyroid hormone membrane receptor binding and transcriptional regulation in the sea urchin Strongylocentrotus purpuratus. Front Endocrinol (Lausanne) 2023; 14:1195733. [PMID: 37305042 PMCID: PMC10250714 DOI: 10.3389/fendo.2023.1195733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Thyroid hormones (THs) are small amino acid derived signaling molecules with broad physiological and developmental functions in animals. Specifically, their function in metamorphic development, ion regulation, angiogenesis and many others have been studied in detail in mammals and some other vertebrates. Despite extensive reports showing pharmacological responses of invertebrate species to THs, little is known about TH signaling mechanisms outside of vertebrates. Previous work in sea urchins suggests that non-genomic mechanisms are activated by TH ligands. Here we show that several THs bind to sea urchin (Strongylocentrotus purpuratus) cell membrane extracts and are displaced by ligands of RGD-binding integrins. A transcriptional analysis across sea urchin developmental stages shows activation of genomic and non-genomic pathways in response to TH exposure, suggesting that both pathways are activated by THs in sea urchin embryos and larvae. We also provide evidence associating TH regulation of gene expression with TH response elements in the genome. In ontogeny, we found more differentially expressed genes in older larvae compared to gastrula stages. In contrast to gastrula stages, the acceleration of skeletogenesis by thyroxine in older larvae is not fully inhibited by competitive ligands or inhibitors of the integrin membrane receptor pathway, suggesting that THs likely activate multiple pathways. Our data confirms a signaling function of THs in sea urchin development and suggests that both genomic and non-genomic mechanisms play a role, with genomic signaling being more prominent during later stages of larval development.
Collapse
Affiliation(s)
| | | | - Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
de Santiago WGA, Muñoz-Alvarez AI, Díaz-Martínez JP, Benítez-Villalobos F. Resemblances in the early development of two sea urchins: Toxopneustes roseus (Euechinoidea: Echinacea) and Rhyncholampas pacificus (Euechinoidea: Irregularia) from different habitats in the southern Mexican Pacific. Dev Biol 2023; 499:1-9. [PMID: 37085002 DOI: 10.1016/j.ydbio.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Sea urchins play a key role in the marine environment, contributing to maintain a balance in benthic ecosystems. Toxopneustes roseus acts as a regulator of rhodolith beds and is a key species as a bioturbation promoter, while Rhyncholampas pacificus moderates the detritus content of sediment through various mechanisms and contributes to accelerating the circulation of organic matter. However, nothing is known about their early development, so the objective of this research is to characterize the embryonic and larval development of specimens of the two species from the southern Mexican Pacific and identify the causes that produce their differences. The embryonic development of T. roseus lasted approximately 20 h; the echinopluteus larva appeared at 23 h and culminated in around 12 days with an eight-armed larva. Metamorphosis was reached at 18 days. The embryonic development of R. pacificus lasted about 15 h; the larva emerged at 20 h and culminated in about two days with an eight-armed larva. The metamorphosis was completed in 9 days. The reproductive output of both species determines their development time and the structure of their larvae; therefore, the energy of R. pacificus is invested in reaching metamorphosis earlier to ensure that its larvae, which are not very abundant, settle and recruit to the population. Regarding T. roseus, the longest permanence in the plankton is efficiently maintained by its numerous larvae through the presence of mobile arms and the shift of the swimming function to the epauletes. This is the first work that characterizes the early development of a species of the genus Toxopneustes and of the only living species of the genus Ryncholampas. The information generated in this work is essential to gaining knowledge about these groups of echinoids, especially the effect of the environment on their early development.
Collapse
Affiliation(s)
- Walter Germán Alonso de Santiago
- División de Estudios de Posgrado, Universidad del Mar (UMAR), Campus Puerto Ángel, Distrito de San Pedro Pochutla, Puerto Ángel, Oaxaca, C.P. 70902, Mexico; Laboratorio de Ecología del Desarrollo, Universidad del Mar (UMAR), Campus Puerto Ángel, Distrito de San Pedro Pochutla, Puerto Ángel, Oaxaca, C.P. 70902, Mexico
| | - Astrid Itzel Muñoz-Alvarez
- Laboratorio de Ecología del Desarrollo, Universidad del Mar (UMAR), Campus Puerto Ángel, Distrito de San Pedro Pochutla, Puerto Ángel, Oaxaca, C.P. 70902, Mexico
| | - Julia Patricia Díaz-Martínez
- Laboratorio de Ecología del Desarrollo, Universidad del Mar (UMAR), Campus Puerto Ángel, Distrito de San Pedro Pochutla, Puerto Ángel, Oaxaca, C.P. 70902, Mexico
| | - Francisco Benítez-Villalobos
- Laboratorio de Ecología del Desarrollo, Universidad del Mar (UMAR), Campus Puerto Ángel, Distrito de San Pedro Pochutla, Puerto Ángel, Oaxaca, C.P. 70902, Mexico; Instituto de Recursos, Universidad del Mar (UMAR), Campus Puerto Ángel, Distrito de San Pedro Pochutla, Puerto Ángel, Oaxaca, C.P. 70902, Mexico.
| |
Collapse
|
7
|
Wynen H, Taylor E, Heyland A. Thyroid hormone-induced cell death in sea urchin metamorphic development. J Exp Biol 2022; 225:284353. [PMID: 36412991 PMCID: PMC10112870 DOI: 10.1242/jeb.244560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022]
Abstract
Thyroid hormones (THs) are important regulators of development, metabolism and homeostasis in metazoans. Specifically, they have been shown to regulate the metamorphic transitions of vertebrates and invertebrates alike. Indirectly developing sea urchin larvae accelerate the formation of juvenile structures in response to thyroxine (T4) treatment, while reducing their larval arm length. The mechanisms underlying larval arm reduction are unknown and we hypothesized that programmed cell death (PCD) is linked to this process. To test this hypothesis, we measured larval arm retraction in response to different THs (T4, T3, rT3, Tetrac) and assessed cell death in larvae using three different methods (TUNEL, YO-PRO-1 and caspase-3 activity) in the sea urchin Strongylocentrotus purpuratus. We also compared the extent of PCD in response to TH treatment before and after the invagination of the larval ectoderm, which marks the initiation of juvenile development in larval sea urchin species. We found that T4 treatment results in the strongest reduction of larval arms but detected a significant increase of PCD in response to T4, T3 and Tetrac in post-ingression but not pre-ingression larvae. As post-ingression larvae have initiated metamorphic development and therefore allocate resources to both larval and the juvenile structures, these results provide evidence that THs regulate larval development differentially via PCD. PCD in combination with cell proliferation likely has a key function in sea urchin development.
Collapse
Affiliation(s)
- Hannah Wynen
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| | - Elias Taylor
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| | - Andreas Heyland
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
8
|
Formery L, Wakefield A, Gesson M, Toisoul L, Lhomond G, Gilletta L, Lasbleiz R, Schubert M, Croce JC. Developmental atlas of the indirect-developing sea urchin Paracentrotus lividus: From fertilization to juvenile stages. Front Cell Dev Biol 2022; 10:966408. [DOI: 10.3389/fcell.2022.966408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
The sea urchin Paracentrotus lividus has been used as a model system in biology for more than a century. Over the past decades, it has been at the center of a number of studies in cell, developmental, ecological, toxicological, evolutionary, and aquaculture research. Due to this previous work, a significant amount of information is already available on the development of this species. However, this information is fragmented and rather incomplete. Here, we propose a comprehensive developmental atlas for this sea urchin species, describing its ontogeny from fertilization to juvenile stages. Our staging scheme includes three periods divided into 33 stages, plus 15 independent stages focused on the development of the coeloms and the adult rudiment. For each stage, we provide a thorough description based on observations made on live specimens using light microscopy, and when needed on fixed specimens using confocal microscopy. Our descriptions include, for each stage, the main anatomical characteristics related, for instance, to cell division, tissue morphogenesis, and/or organogenesis. Altogether, this work is the first of its kind providing, in a single study, a comprehensive description of the development of P. lividus embryos, larvae, and juveniles, including details on skeletogenesis, ciliogenesis, myogenesis, coelomogenesis, and formation of the adult rudiment as well as on the process of metamorphosis in live specimens. Given the renewed interest for the use of sea urchins in ecotoxicological, developmental, and evolutionary studies as well as in using marine invertebrates as alternative model systems for biomedical investigations, this study will greatly benefit the scientific community and will serve as a reference for specialists and non-specialists interested in studying sea urchins.
Collapse
|
9
|
Tokanai K, Kamei Y, Minokawa T. An easy and rapid staining method for confocal microscopic observation and reconstruction of three-dimensional images of echinoderm larvae and juveniles. Dev Growth Differ 2021; 63:478-487. [PMID: 34747504 DOI: 10.1111/dgd.12758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023]
Abstract
The morphologies of the internal organs of echinoderm larvae and juveniles are difficult to study using conventional optical microscopes because of their structural complexity and opaqueness. This paper describes an easy and rapid protocol involving Nile blue staining followed by benzyl alcohol/benzyl benzoate (BABB) clearing to overcome this limitation. This method was developed for a three-dimensional (3D) analysis of the internal structures of advanced larvae and juveniles of echinoderms (the sea lily Metacrinus rotundus, the sea urchin Hemicentrotus pulcherrimus, and the sand dollar Scaphechinus mirabilis) and is suitable for obtaining serial optical images by confocal microscopy without the use of specific antibodies or special reagents for labeling. Nile blue is an easy-to-use stain that offers several advantages for confocal microscopy such as it can stain various tissues with strong fluorescent signals without substantial bleaching during observation. We found that the strong fluorescence signal of Nile blue quickly yielded clear high-resolution optical section images for 3D reconstruction. BABB clearing rendered opaque larvae highly transparent. The clearing procedure was also easy and quick. During the process, agarose embedding prior to staining and clearing was found to be critical for handling the samples of less than 500-μm length and stabilizing their orientations. To conclude, the protocol described is useful for performing a rapid and accurate 3D morphological analysis of echinoderm larvae and juveniles.
Collapse
Affiliation(s)
- Kohei Tokanai
- Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Aomori, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology Core Research Facilities, National Institute for Basic Biology, Aichi, Japan
| | - Takuya Minokawa
- Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Aomori, Japan
| |
Collapse
|
10
|
Wynen H, Heyland A. Hormonal Regulation of Programmed Cell Death in Sea Urchin Metamorphosis. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.733787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Programmed cell death (PCD) has been identified as a key process in the metamorphic transition of indirectly developing organisms such as frogs and insects. Many marine invertebrate species with indirect development and biphasic life cycles face the challenge of completing the metamorphic transition of the larval body into a juvenile when they settle into the benthic habitat. Some key characteristics stand out during this transition in comparison to frogs and insects: (1) the transition is often remarkably fast and (2) the larval body is largely abandoned and few structures transition into the juvenile stage. In sea urchins, a group with a drastic and fast metamorphosis, development and destruction of the larval body is regulated by endocrine signals. Here we provide a brief review of the basic regulatory mechanisms of PCD in animals. We then narrow our discussion to metamorphosis with a specific emphasis on sea urchins with indirect life histories and discuss the function of thyroid hormones and histamine in larval development, metamorphosis and settlement of the sea urchin Strongylocentrotus purpuratus. We were able to annotate the large majority of PCD related genes in the sea urchin S. purpuratus and ongoing studies on sea urchin metamorphosis will shed light on the regulatory architecture underlying this dramatic life history transition. While we find overwhelming evidence for hormonal regulation of PCD in animals, especially in the context of metamorphosis, the mechanisms in many marine invertebrate groups with indirect life histories requires more work. Hence, we propose that studies of PCD in animals requires functional studies in whole organisms rather than isolated cells. We predict that future work, targeting a broader array of organisms will not only help to reveal important new functions of PCD but provide a fundamentally new perspective on its use in a diversity of taxonomic, developmental, and ecological contexts.
Collapse
|
11
|
Nesbit KT, Hamdoun A. Embryo, larval, and juvenile staging of Lytechinus pictus from fertilization through sexual maturation. Dev Dyn 2020; 249:1334-1346. [PMID: 32644271 DOI: 10.1002/dvdy.223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sea urchin embryos have been used for more than a century in the study of fertilization and early development. However, several of the species used, such as Strongylocentrotus purpuratus, have long generation times making them suboptimal for transgenerational studies. RESULTS Here, we present an overview of the development of a rapidly developing echinoderm species, Lytechinus pictus, from fertilization through sexual maturation. When grown at room temperature (20°C) embryos complete the first cell cycle in 90 minutes, followed by subsequent cleavages every 45 minutes, leading to hatching at 9 hours postfertilization (hpf). The swimming embryos gastrulate from 12 to 36 hpf and produce the cells which subsequently give rise to the larval skeleton and immunocytes. Larvae begin to feed at 2 days and metamorphose by 3 weeks. Juveniles reach sexual maturity at 4 to 6 months of age, depending on individual growth rate. CONCLUSIONS This staging scheme lays a foundation for future studies in L. pictus, which share many of the attractive features of other urchins but have the key advantage of rapid development to sexual maturation. This is significant for multigenerational and genetic studies newly enabled by CRISPR-CAS mediated gene editing.
Collapse
Affiliation(s)
- Katherine T Nesbit
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
12
|
Wessel GM, Kiyomoto M, Shen TL, Yajima M. Genetic manipulation of the pigment pathway in a sea urchin reveals distinct lineage commitment prior to metamorphosis in the bilateral to radial body plan transition. Sci Rep 2020; 10:1973. [PMID: 32029769 PMCID: PMC7005274 DOI: 10.1038/s41598-020-58584-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/24/2019] [Indexed: 12/26/2022] Open
Abstract
Echinoderms display a vast array of pigmentation and patterning in larval and adult life stages. This coloration is thought to be important for immune defense and camouflage. However, neither the cellular nor molecular mechanism that regulates this complex coloration in the adult is known. Here we knocked out three different genes thought to be involved in the pigmentation pathway(s) of larvae and grew the embryos to adulthood. The genes tested were polyketide synthase (PKS), Flavin-dependent monooxygenase family 3 (FMO3) and glial cells missing (GCM). We found that disabling of the PKS gene at fertilization resulted in albinism throughout all life stages and throughout all cells and tissues of this animal, including the immune cells of the coelomocytes. We also learned that FMO3 is an essential modifier of the polyketide. FMO3 activity is essential for larval pigmentation, but in juveniles and adults, loss of FMO3 activity resulted in the animal becoming pastel purple. Linking the LC-MS analysis of this modified pigment to a naturally purple animal suggested a conserved echinochrome profile yielding a pastel purple. We interpret this result as FMO3 modifies the parent polyketide to contribute to the normal brown/green color of the animal, and that in its absence, other biochemical modifications are revealed, perhaps by other members of the large FMO family in this animal. The FMO modularity revealed here may be important in the evolutionary changes between species and for different immune challenges. We also learned that glial cells missing (GCM), a key transcription factor of the endomesoderm gene regulatory network of embryos in the sea urchin, is required for pigmentation throughout the life stages of this sea urchin, but surprisingly, is not essential for larval development, metamorphosis, or maintenance of adulthood. Mosaic knockout of either PKS or GCM revealed spatial lineage commitment in the transition from bilaterality of the larva to a pentaradial body plan of the adult. The cellular lineages identified by pigment presence or absence (wild-type or knock-out lineages, respectively) followed a strict oral/aboral profile. No circumferential segments were seen and instead we observed 10-fold symmetry in the segments of pigment expression. This suggests that the adult lineage commitments in the five outgrowths of the hydropore in the larva are early, complete, fixed, and each bilaterally symmetric. Overall, these results suggest that pigmentation of this animal is genetically determined and dependent on a population of pigment stem cells that are set-aside in a sub-region of each outgrowth of the pentaradial adult rudiment prior to metamorphosis. This study reveals the complex chemistry of pigment applicable to many organisms, and further, provides an insight into the key transitions from bilateral to pentaradial body plans unique to echinoderms.
Collapse
Affiliation(s)
- Gary M Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA.
| | - Masato Kiyomoto
- Tateyama Marine Laboratory, Marine and Coastal Research Center, Ochanomizu University, Kou-yatsu 11, Tateyama, Chiba, 294-0301, Japan
| | - Tun-Li Shen
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
13
|
Hodin J, Ferner MC, Gaylord B. Choosing the right home: settlement responses by larvae of six sea urchin species align with hydrodynamic traits of their contrasting adult habitats. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlz149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Ocean organisms as diverse as seaweeds and sea cucumbers exhibit life cycles in which dispersal occurs primarily via microscopic larvae or spores, with adults exhibiting limited or even no dispersal. In benthic animals, the larval stage concludes with irreversible settlement into the benthos. The decision of where and when to settle is thus one of substantial import. Prior work has shown that settlement in two shoreline echinoids (a sea urchin and a sand dollar) is unexpectedly sensitive to an environmental feature (intense fluid turbulence) that can be considered as a signal to larvae of their arrival in the neighbourhood of the hydrodynamically energetic habitats in which these taxa live as adults. Here, we used a comparative approach to explore the evolution of turbulence responsiveness in late-stage echinoid larvae. We examined three pairs of closely related sea urchins that differ in the energetic exposure of their adult habitats and found that larval responsiveness to turbulence was more pronounced in urchins that settle in more hydrodynamically exposed locations. These results raise the possibility that evolutionary differences in larval responsiveness to environmental indicators of appropriate adult habitat might reinforce or even provide a mechanism for vicariance in the ocean.
Collapse
Affiliation(s)
- Jason Hodin
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
| | - Matthew C Ferner
- Estuary & Ocean Science Center, San Francisco State University, Tiburon, CA, USA
| | - Brian Gaylord
- Bodega Marine Laboratory, University of California at Davis, Bodega Bay, CA, USA
- Department of Evolution and Ecology, University of California at Davis, Davis, CA, USA
| |
Collapse
|
14
|
Katow H, Yoshida H, Kiyomoto M. Initial report of γ-aminobutyric acidergic locomotion regulatory system and its 3-mercaptopropionic acid-sensitivity in metamorphic juvenile of sea urchin, Hemicentrotus pulcherrimus. Sci Rep 2020; 10:778. [PMID: 31964929 PMCID: PMC6972954 DOI: 10.1038/s41598-020-57567-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022] Open
Abstract
The γ-aminobutyric acid (GABA) signal transmission system (GSTS) contributes to larval swimming through the regulation of ciliary beating. However, whether this system also contributes to the primary podia (PP)-generated motility of juveniles remained unclear. The present study aimed to elucidate the involvement of the GSTS in the motility of metamorphic juveniles (juveniles) (1) by immunohistochemically elucidating the location of molecular constituents of the PP, and (2) by inhibiting the activity of GΑΒΑ decarboxylase (GAD) with 3-mercaptopropionic acid (3-MPA). During metamorphosis, the echinus rudiment protrudes its PP out of the body surface in 8-arm plutei. The PP expresses immunopositive signal (-IS) of GAD, GABA, GABAA receptor and tropomyosin, and is constituted with the GABA-IS negative distal tip and the GABA/GAD-IS gaiter region. The latter radiates distal projections to the disc that contains a GAD-IS cellular network. The juvenile body cavity houses a GABA/βIII-tubulin-IS Penta-radial ring (PrR) that extends branches into each PP and several bridges to the GAD/GABA-IS Penta-radial plate (PrP) on the oral side but does not reach to the gaiter region. 3-MPA reversibly inhibits the juvenile motility and GABA-IS expression in the PrR/PrP complex. This indicates that the complex is the major contributor to the GABAergic motility in juveniles.
Collapse
Affiliation(s)
- Hideki Katow
- Research Center for Marine Biology, Tohoku University, Asamushi, Aomori, 039-3501, Japan. .,Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan.
| | - Hiromi Yoshida
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Masato Kiyomoto
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan.,Marine and Coastal Research Center, Ochanomizu University, Tateyama, Chiba, 294-0301, Japan
| |
Collapse
|
15
|
Ferner MC, Hodin J, Ng G, Gaylord B. Brief exposure to intense turbulence induces a sustained life-history shift in echinoids. ACTA ACUST UNITED AC 2019; 222:jeb.187351. [PMID: 30573667 DOI: 10.1242/jeb.187351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022]
Abstract
In coastal ecosystems, attributes of fluid motion can prompt animal larvae to rise or sink in the water column and to select microhabitats within which they attach and commit to a benthic existence. In echinoid (sea urchin and sand dollar) larvae living along wave-exposed shorelines, intense turbulence characteristic of surf zones can cause individuals to undergo an abrupt life-history shift characterized by precocious entry into competence - the stage at which larvae will settle and complete metamorphosis in response to local cues. However, the mechanistic details of this turbulence-triggered onset of competence remain poorly defined. Here, we evaluate in a series of laboratory experiments the time course of this turbulence effect, both the rapidity with which it initiates and whether it perdures. We found that larvae become competent with turbulence exposures as brief as 30 s, with longer exposures inducing a greater proportion of larvae to become competent. Intriguingly, larvae can remember such exposures for a protracted period (at least 24 h), a pattern reminiscent of long-term potentiation. Turbulence also induces short-term behavioral responses that last less than 30 min, including cessation of swimming, that facilitate sinking and thus contact of echinoid larvae with the substratum. Together, these results yield a novel perspective on how larvae find their way to suitable adult habitat at the critical settlement transition, and also open new experimental opportunities to elucidate the mechanisms by which planktonic animals respond to fluid motion.
Collapse
Affiliation(s)
- Matthew C Ferner
- San Francisco Bay National Estuarine Research Reserve and Estuary & Ocean Science Center, San Francisco State University, Tiburon, CA 94920, USA
| | - Jason Hodin
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Gabriel Ng
- Bodega Marine Laboratory and Department of Evolution and Ecology, University of California at Davis, Bodega Bay, CA 94923, USA
| | - Brian Gaylord
- Bodega Marine Laboratory and Department of Evolution and Ecology, University of California at Davis, Bodega Bay, CA 94923, USA
| |
Collapse
|
16
|
Hodin J, Heyland A, Mercier A, Pernet B, Cohen DL, Hamel JF, Allen JD, McAlister JS, Byrne M, Cisternas P, George SB. Culturing echinoderm larvae through metamorphosis. Methods Cell Biol 2018; 150:125-169. [PMID: 30777174 DOI: 10.1016/bs.mcb.2018.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Echinoderms are favored study organisms not only in cell and developmental biology, but also physiology, larval biology, benthic ecology, population biology and paleontology, among other fields. However, many echinoderm embryology labs are not well-equipped to continue to rear the post-embryonic stages that result. This is unfortunate, as such labs are thus unable to address many intriguing biological phenomena, related to their own cell and developmental biology studies, that emerge during larval and juvenile stages. To facilitate broader studies of post-embryonic echinoderms, we provide here our collective experience rearing these organisms, with suggestions to try and pitfalls to avoid. Furthermore, we present information on rearing larvae from small laboratory to large aquaculture scales. Finally, we review taxon-specific approaches to larval rearing through metamorphosis in each of the four most commonly-studied echinoderm classes-asteroids, echinoids, holothuroids and ophiuroids.
Collapse
Affiliation(s)
- Jason Hodin
- Friday Harbor Labs, University of Washington, Friday Harbor, WA, United States.
| | - Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Annie Mercier
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Bruno Pernet
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, United States
| | - David L Cohen
- State of Hawai'i, Division of Aquatic Resources, Ānuenue Fisheries Research Center, Honolulu, HI, United States
| | - Jean-François Hamel
- Society for the Exploration and Valuing of the Environment (SEVE), Portugal Cove-St. Philips, NL, Canada
| | - Jonathan D Allen
- Biology Department, College of William and Mary, Williamsburg, VA, United States
| | - Justin S McAlister
- Department of Biology, College of the Holy Cross, Worcester, MA, United States
| | - Maria Byrne
- School of Medical Sciences and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Paula Cisternas
- School of Medical Sciences and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Sophie B George
- Department of Biology, Georgia Southern University, Statesboro, GA, United States
| |
Collapse
|
17
|
Hodin J, Ferner MC, Ng G, Gaylord B. Sand Dollar Larvae Show Within-Population Variation in Their Settlement Induction by Turbulence. THE BIOLOGICAL BULLETIN 2018; 235:152-166. [PMID: 30624118 DOI: 10.1086/699827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Settlement-the generally irreversible transition from a planktonic phase to a benthic phase-is a critical stage in the life history of many shoreline organisms. It is reasonable to expect that larvae are under intense selection pressure to identify appropriate settlement habitat. Several decades of studies have focused mainly on local indicators that larvae use to identify suitable habitat, such as olfactory cues that indicate the presence of conspecifics or a favored food source. Our recent work has shown that the larvae of seashore-dwelling echinoids (sea urchins, sand dollars, and kin) can be primed to settle following a brief exposure to a broader-scale indicator of their approach to shore: an increase in fluid turbulence. Here we demonstrate that this priming shows within-population variation: the offspring of certain Pacific sand dollar (Dendraster excentricus) parents-both specific fathers and specific mothers, regardless of the other parent-are more responsive to turbulence than others. In particular, the observation of the effect correlating, in some cases, with specific fathers leads us to conclude that these behavioral differences are likely genetic and thus heritable. We also report that turbulence exposure causes larvae to temporarily sink to the bottom of a container of seawater and that larvae that respond in this way are also more likely to subsequently settle. We hypothesize a two-step scenario for the evolution of turbulence responsiveness at settlement and suggest that the evolutionary origin of these behaviors could be a driving force for population differentiation and speciation.
Collapse
|
18
|
Singh A, Pinto L, Martin C, Rutherford N, Ragunathan A, Upadhyay U, Kapoor P, McRae M, Siddiqui A, Cantelmi D, Heyland A, Wray G, Stone J. Rudiment resorption as a response to starvation during larval development in the sea urchin Strongylocentrotus droebachiensis. CAN J ZOOL 2018. [DOI: 10.1139/cjz-2017-0261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phenotypic flexibility (reversible phenotypic change) enables organisms to couple internal, ontogenetic responses with external, environmental cues. Phenotypic flexibility also provides organisms with the capacity to buffer stereotypical internal, developmental processes from unpredictable external, ecological events. Echinoids exhibit dramatic phenotypic flexibility in response to variation in exogenous nutrient supplies. The extent to which echinoids display this flexibility has been explored incompletely and research hitherto has been conducted predominantly on larval structures and morphologies. We investigated experimentally the extent to which the primordial juvenile, the developing rudiment, can exhibit the first phase in phenotypic flexibility among individuals. We report for the first time on rudiment regression and complete resorption as a response to starvation during larval development in the sea urchin Strongylocentrotus droebachiensis (O.F. Müller, 1776) and identify a developmental “window of opportunity” within which this can occur. Based on our observations and previous suggestions, we speculate that sea urchin rudiments might provide means of buffering development during unfavorable conditions.
Collapse
Affiliation(s)
- A. Singh
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - L. Pinto
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - C. Martin
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - N. Rutherford
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - A. Ragunathan
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - U. Upadhyay
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - P. Kapoor
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - M. McRae
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - A. Siddiqui
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - D. Cantelmi
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - A. Heyland
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - G. Wray
- State University of New York, Stony Brook, NY 11794, USA
| | - J.R. Stone
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
19
|
Fadl AEA, Mahfouz ME, El-Gamal MMT, Heyland A. Onset of feeding in juvenile sea urchins and its relation to nutrient signalling. INVERTEBR REPROD DEV 2018. [DOI: 10.1080/07924259.2018.1513873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alyaa Elsaid Abdelaziz Fadl
- Department of Integrative Biology, Faculty of Biological science, University of Guelph, Guelph, Ontario, Canada
- Department of Zoology, Faculty of Science, University of Kafrelsheikh, Kafr Elsheikh, Egypt
| | - Magdy Elsayed Mahfouz
- Department of Zoology, Faculty of Science, University of Kafrelsheikh, Kafr Elsheikh, Egypt
| | | | - Andreas Heyland
- Department of Integrative Biology, Faculty of Biological science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
20
|
Taylor E, Heyland A. Thyroid Hormones Accelerate Initiation of Skeletogenesis via MAPK (ERK1/2) in Larval Sea Urchins ( Strongylocentrotus purpuratus). Front Endocrinol (Lausanne) 2018; 9:439. [PMID: 30127765 PMCID: PMC6087762 DOI: 10.3389/fendo.2018.00439] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/17/2018] [Indexed: 11/29/2022] Open
Abstract
Thyroid hormones are important regulators of development and metabolism in animals. Their function via genomic and non-genomic actions is well-established in vertebrate species but remains largely elusive among invertebrates. Previous work suggests that thyroid hormones, principally 3,5,3',5'-Tetraiodo-L-thyronine (T4), regulate development to metamorphosis in sea urchins. Here we show that thyroid hormones, including T4, 3,5,3'-triiodo-l-thyronine (T3), and 3,5-Diiodothyronine (T2) accelerate initiation of skeletogenesis in sea urchin gastrulae and pluteus larvae of the sea urchin Strongylocentrotus purpuratus, as measured by skeletal spicule formation. Fluorescently conjugated hormones show T4 binding to primary mesenchyme cells in sea urchin gastrulae. Furthermore, our investigation of TH mediated skeletogenesis shows that Ets1, a transcription factor controlling initiation of skeletogenesis, is a target of activated (phosphorylated) mitogen-activated protein kinase [MAPK; extracellular signal-regulated kinase 1/2 (ERK1/2)]. As well, we show that PD98059, an inhibitor of ERK1/2 MAPK signaling, prevents the T4 mediated acceleration of skeletogenesis and upregulation of Ets1. In contrast, SB203580, an inhibitor of p38 MAPK signaling, did not inhibit the effect of T4. Immunohistochemistry revealed that T4 causes phosphorylation of ERK1/2 in presumptive primary mesenchyme cells and the basal membrane of epithelial cells in the gastrula. Pre-incubation of sea urchin gastrulae with RGD peptide, a competitive inhibitor of TH binding to integrins, inhibited the effect of T4 on skeletogenesis. Together, these experiments provide evidence that T4 acts via a MAPK- (ERK1/2) mediated integrin membrane receptor to accelerate skeletogenesis in sea urchin mesenchyme cells. These findings shed light, for the first time, on a putative non-genomic pathway of TH action in a non-chordate deuterostome and help elucidate the evolutionary history of TH signaling in animals.
Collapse
|
21
|
Fadl AEA, Mahfouz ME, El-Gamal MMT, Heyland A. New biomarkers of post-settlement growth in the sea urchin Strongylocentrotus purpuratus. Heliyon 2017; 3:e00412. [PMID: 29034337 PMCID: PMC5635345 DOI: 10.1016/j.heliyon.2017.e00412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/24/2017] [Accepted: 09/15/2017] [Indexed: 11/29/2022] Open
Abstract
Some sea urchins, including the purple sea urchin Strongylocentrotus purpuratus, have been successfully used in aquaculture, but their slow growth and late reproduction are challenging to overcome when developing efficient aquaculture production techniques. S. purpuratus develops via an indirect life history that is characterized by a drastic settlement process at the end of a larval period that lasts for several weeks. During this transition, the bilateral larva is transformed into a pentaradial juvenile, which will start feeding and growing in the benthic habitat. Due to predation and other ecological factors, settlement is typically associated with high mortality rates in juvenile populations. Additionally, juveniles require several days to develop a functional mouth and digestive system. During this perimetamorphic period, juveniles use up larval resources until they are capable to digest adult food. Mechanisms underlying the onset of juvenile feeding and metabolism have implications for the recruitment of natural populations as well as aquaculture and are relatively poorly understood in S. purpuratus. The insulin/insulin-like growth factor signalling (IIS)/Target of Rapamycin (TOR) pathway (IIS/TOR) is well conserved among animal phyla and regulates physiological and developmental functions, such as growth, reproduction, aging and nutritional status. We analyzed the expression of FoxO, TOR, and ILPs in post-settlement juveniles in conjunction with their early growth trajectories. We also tested how pre-settlement starvation affected post-settlement expression of IIS. We found that FoxO provides a useful molecular marker in early juveniles as its expression is strongly correlated with juvenile growth. We also found that pre-settlement starvation affects juvenile growth trajectories as well as IIS. Our findings provide preliminary insights into the mechanisms underlying post-settlement growth and metabolism in S. purpuratus. They also have important implications for sea urchin aquaculture, as they show that pre-settlement nutrient environment significantly affects both early growth trajectories and gene expression. This information can be used to develop new biomarkers for juvenile health in sea urchin population ecology and aquaculture aquaculture.
Collapse
Affiliation(s)
- Alyaa Elsaid Abdelaziz Fadl
- Department of Integrative Biology, Faculty of Biological Science, University of Guelph, Guelph, Ontario, Canada.,Department of Zoology, Faculty of Science, University of Kafrelsheikh, Kafr Elsheikh, Egypt
| | - Magdy Elsayed Mahfouz
- Department of Zoology, Faculty of Science, University of Kafrelsheikh, Kafr Elsheikh, Egypt
| | | | - Andreas Heyland
- Department of Integrative Biology, Faculty of Biological Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
22
|
Comeau A, Bishop CD, Cameron CB. Ossicle development of the crinoid Florometra serratissima through larval stages. CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crinoids are the oldest living class of echinoderm and sister group to the remaining eleutherozoan clade and so are key to discussions on the evolution and development of the echinoderm skeleton. Here we present the intraspecific variation of ossicle development of the feather star Florometra serratissima (A.H. Clark, 1907) during its three larval stages: doliolaria, cystidean, and early pentacrinoid. To induce settlement, larvae were cultured on a sea table in glass bowls containing coralline algae. The soft tissues of 60 larvae were dissolved to isolate and to observe the ossicles with compound microscopy and scanning electron microscopy. From the late doliolaria stage to 56-day-old pentacrinoids, a total of four types of ossicle developed: oral plates, basal plates, columnar stalk ossicles, and an attachment disk. Occasionally, an additional plate was found under the basal plates, which may represent a vestigial infrabasal plate. The shape of the attachment disk was plastic to accommodate the substrate. Crinoid ossicle development is variable in size, shape, and number, and the timing of development is asynchronous; traits that may have contributed to the early rapid radiation and phenotypic disparity of echinoderms.
Collapse
Affiliation(s)
- Ariane Comeau
- Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Cory D. Bishop
- Department of Biology, St. Francis Xavier University, 2320 Notre Dame Avenue, Antigonish, NS B2G 2W5, Canada
| | - Christopher B. Cameron
- Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
23
|
Valero-Gracia A, Petrone L, Oliveri P, Nilsson DE, Arnone MI. Non-directional Photoreceptors in the Pluteus of Strongylocentrotus purpuratus. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
24
|
CH Ho E, Buckley KM, Schrankel CS, Schuh NW, Hibino T, Solek CM, Bae K, Wang G, Rast JP. Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva. Immunol Cell Biol 2016; 94:861-874. [PMID: 27192936 PMCID: PMC5073156 DOI: 10.1038/icb.2016.51] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 02/07/2023]
Abstract
The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates.
Collapse
Affiliation(s)
- Eric CH Ho
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Katherine M Buckley
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Catherine S Schrankel
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas W Schuh
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Taku Hibino
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Cynthia M Solek
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Koeun Bae
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Guizhi Wang
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jonathan P Rast
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Hodin J, Lutek K, Heyland A. A newly identified left-right asymmetry in larval sea urchins. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160139. [PMID: 27853591 PMCID: PMC5108941 DOI: 10.1098/rsos.160139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Directional asymmetry (DA) in body form is a widespread phenomenon in animals and plants alike, and a functional understanding of such asymmetries can offer insights into the ways in which ecology and development interface to drive evolution. Echinoids (sea urchins, sand dollars and their kin) with planktotrophic development have a bilaterally symmetrical feeding pluteus larva that undergoes a dramatic metamorphosis into a pentameral juvenile that enters the benthos at settlement. The earliest stage of this transformation involves a DA: a left-side invagination in mid-stage larvae leads to the formation of the oral field of the juvenile via a directionally asymmetric structure called the echinus rudiment. Here, we show for the first time in two echinoid species that there is a corresponding DA in the overall shape of the larva: late-stage plutei have consistently shorter arms specifically on the rudiment (left) side. We then demonstrate a mechanistic connection between the rudiment and arm length asymmetries by examining rare, anomalous purple urchin larvae that have rudiments on both the left and the right side. Our data suggest that this asymmetry is probably a broadly shared feature characterizing ontogeny in the class Echinoidea. We propose several functional hypotheses-including developmental constraints and water column stability-to account for this newly identified asymmetry.
Collapse
Affiliation(s)
- Jason Hodin
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
| | - Keegan Lutek
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
26
|
Sreetharan S, Thome C, Mitz C, Eme J, Mueller CA, Hulley EN, Manzon RG, Somers CM, Boreham DR, Wilson JY. Embryonic development of lake whitefish Coregonus clupeaformis: a staging series, analysis of growth and effects of fixation. JOURNAL OF FISH BIOLOGY 2015; 87:539-558. [PMID: 26184490 DOI: 10.1111/jfb.12725] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
A reference staging series of 18 morphological stages of laboratory reared lake whitefish Coregonus clupeaformis is provided. The developmental processes of blastulation, gastrulation, neurulation as well as development of the eye, circulatory system, chromatophores and mouth are included and accompanied by detailed descriptions and live imaging. Quantitative measurements of embryo size and mass were taken at each developmental stage. Eggs were 3·19 ± 0·16 mm (mean ± s.d.) in diameter at fertilization and embryos reached a total length (LT ) of 14·25 ± 0·41 mm at hatch. Separated yolk and embryo dry mass were 0·25 ± 0·08 mg and 1·39 ± 0·17 mg, respectively, at hatch. The effects of two common preservatives (formalin and ethanol) were examined throughout development and post hatch. Embryo LT significantly decreased following fixation at all points in development. A correction factor to estimate live LT from corresponding fixed LT was determined as live LT = (fixed LT )(1·025) . Eye diameter and yolk area measurements significantly increased in fixed compared with live embryos up to 85-90% development for both measurements. The described developmental stages can be generalized to teleost species, and is particularly relevant for the study of coregonid development due to additionally shared developmental characteristics. The results of this study and staging series are therefore applicable across various research streams encompassing numerous species that require accurate staging of embryos and descriptions of morphological development.
Collapse
Affiliation(s)
- S Sreetharan
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - C Thome
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - C Mitz
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - J Eme
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - C A Mueller
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - E N Hulley
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - R G Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S 0A2, Canada
| | - C M Somers
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S 0A2, Canada
| | - D R Boreham
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
- Northern Ontario School of Medicine, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6, Canada
| | - J Y Wilson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
27
|
Hodin J, Ferner MC, Ng G, Lowe CJ, Gaylord B. Rethinking competence in marine life cycles: ontogenetic changes in the settlement response of sand dollar larvae exposed to turbulence. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150114. [PMID: 26543587 PMCID: PMC4632551 DOI: 10.1098/rsos.150114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/25/2015] [Indexed: 06/05/2023]
Abstract
Complex life cycles have evolved independently numerous times in marine animals as well as in disparate algae. Such life histories typically involve a dispersive immature stage followed by settlement and metamorphosis to an adult stage on the sea floor. One commonality among animals exhibiting transitions of this type is that their larvae pass through a 'precompetent' period in which they do not respond to localized settlement cues, before entering a 'competent' period, during which cues can induce settlement. Despite the widespread existence of these two phases, relatively little is known about how larvae transition between them. Moreover, recent studies have blurred the distinction between the phases by demonstrating that fluid turbulence can spark precocious activation of competence. Here, we further investigate this phenomenon by exploring how larval interactions with turbulence change across ontogeny, focusing on offspring of the sand dollar Dendraster excentricus (Eschscholtz). Our data indicate that larvae exhibit increased responsiveness to turbulence as they get older. We also demonstrate a likely cost to precocious competence: the resulting juveniles are smaller. Based upon these findings, we outline a new, testable conception of competence that has the potential to reshape our understanding of larval dispersal and connectivity among marine populations.
Collapse
Affiliation(s)
- Jason Hodin
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| | - Matthew C. Ferner
- San Francisco Bay National Estuarine Research Reserve and Department of Biology, San Francisco State University, Tiburon, CA 94920, USA
| | - Gabriel Ng
- Bodega Marine Laboratory and Department of Evolution and Ecology, University of California at Davis, Bodega Bay, CA 94923, USA
| | | | - Brian Gaylord
- Bodega Marine Laboratory and Department of Evolution and Ecology, University of California at Davis, Bodega Bay, CA 94923, USA
| |
Collapse
|
28
|
Heyland A, Hodin J, Bishop C. Manipulation of developing juvenile structures in purple sea urchins (Strongylocentrotus purpuratus) by morpholino injection into late stage larvae. PLoS One 2014; 9:e113866. [PMID: 25436992 PMCID: PMC4250057 DOI: 10.1371/journal.pone.0113866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/30/2014] [Indexed: 11/19/2022] Open
Abstract
Sea urchins have been used as experimental organisms for developmental biology for over a century. Yet, as is the case for many other marine invertebrates, understanding the development of the juveniles and adults has lagged far behind that of their embryos and larvae. The reasons for this are, in large part, due to the difficulty of experimentally manipulating juvenile development. Here we develop and validate a technique for injecting compounds into juvenile rudiments of the purple sea urchin, Strongylocentrotus purpuratus. We first document the distribution of rhodaminated dextran injected into different compartments of the juvenile rudiment of sea urchin larvae. Then, to test the potential of this technique to manipulate development, we injected Vivo-Morpholinos (vMOs) designed to knock down p58b and p16, two proteins involved in the elongation of S. purpuratus larval skeleton. Rudiments injected with these vMOs showed a delay in the growth of some juvenile skeletal elements relative to controls. These data provide the first evidence that vMOs, which are designed to cross cell membranes, can be used to transiently manipulate gene function in later developmental stages in sea urchins. We therefore propose that injection of vMOs into juvenile rudiments, as shown here, is a viable approach to testing hypotheses about gene function during development, including metamorphosis.
Collapse
Affiliation(s)
- Andreas Heyland
- Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| | - Jason Hodin
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, United States of America
| | - Cory Bishop
- Department of Biology, St. Francis Xavier University, Antigonish, NS, Canada
| |
Collapse
|