1
|
Emam M, Caballero-Solares A, Xue X, Umasuthan N, Milligan B, Taylor RG, Balder R, Rise ML. Gill and Liver Transcript Expression Changes Associated With Gill Damage in Atlantic Salmon ( Salmo salar). Front Immunol 2022; 13:806484. [PMID: 35418993 PMCID: PMC8996064 DOI: 10.3389/fimmu.2022.806484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Gill damage represents a significant challenge in the teleost fish aquaculture industry globally, due to the gill's involvement in several vital functions and direct contact with the surrounding environment. To examine the local and systemic effects accompanying gill damage (which is likely to negatively affect gill function) of Atlantic salmon, we performed a field sampling to collect gill and liver tissue after several environmental insults (e.g., harmful algal blooms). Before sampling, gills were visually inspected and gill damage was scored; gill scores were assigned from pristine [gill score 0 (GS0)] to severely damaged gills (GS3). Using a 44K salmonid microarray platform, we aimed to compare the transcriptomes of pristine and moderately damaged (i.e., GS2) gill tissue. Rank Products analysis (5% percentage of false-positives) identified 254 and 34 upregulated and downregulated probes, respectively, in GS2 compared with GS0. Differentially expressed probes represented genes associated with functions including gill remodeling, wound healing, and stress and immune responses. We performed gill and liver qPCR for all four gill damage scores using microarray-identified and other damage-associated biomarker genes. Transcripts related to wound healing (e.g., neb and klhl41b) were significantly upregulated in GS2 compared with GS0 in the gills. Also, transcripts associated with immune and stress-relevant pathways were dysregulated (e.g., downregulation of snaclec 1-like and upregulation of igkv3) in GS2 compared with GS0 gills. The livers of salmon with moderate gill damage (i.e., GS2) showed significant upregulation of transcripts related to wound healing (i.e., chtop), apoptosis (e.g., bnip3l), blood coagulation (e.g., f2 and serpind1b), transcription regulation (i.e., pparg), and stress-responses (e.g., cyp3a27) compared with livers of GS0 fish. We performed principal component analysis (PCA) using transcript levels for gill and liver separately. The gill PCA showed that PC1 significantly separated GS2 from all other gill scores. The genes contributing most to this separation were pgam2, des, neb, tnnt2, and myom1. The liver PCA showed that PC1 significantly separated GS2 from GS0; levels of hsp70, cyp3a27, pparg, chtop, and serpind1b were the highest contributors to this separation. Also, hepatic acute phase biomarkers (e.g., serpind1b and f2) were positively correlated to each other and to gill damage. Gill damage-responsive biomarker genes and associated qPCR assays arising from this study will be valuable in future research aimed at developing therapeutic diets to improve farmed salmon welfare.
Collapse
Affiliation(s)
- Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | | | | | - Rachel Balder
- Cargill Animal Nutrition and Health, Elk River, MN, United States
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
2
|
Campinho MA. Teleost Metamorphosis: The Role of Thyroid Hormone. Front Endocrinol (Lausanne) 2019; 10:383. [PMID: 31258515 PMCID: PMC6587363 DOI: 10.3389/fendo.2019.00383] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
In most teleosts, metamorphosis encompasses a dramatic post-natal developmental process where the free-swimming larvae undergo a series of morphological, cellular and physiological changes that enable the larvae to become a fully formed, albeit sexually immature, juvenile fish. In all teleosts studied to date thyroid hormones (TH) drive metamorphosis, being the necessary and sufficient factors behind this developmental transition. During metamorphosis, negative regulation of thyrotropin by thyroxine (T4) is relaxed allowing higher whole-body levels of T4 that enable specific responses at the tissue/cellular level. Higher local thyroid cellular signaling leads to cell-specific responses that bring about localized developmental events. TH orchestrate in a spatial-temporal manner all local developmental changes so that in the end a fully functional organism arises. In bilateral teleost species, the most evident metamorphic morphological change underlies a transition to a more streamlined body. In the pleuronectiform lineage (flatfishes), these metamorphic morphological changes are more dramatic. The most evident is the migration of one eye to the opposite side of the head and the symmetric pelagic larva development into an asymmetric benthic juvenile. This transition encompasses a dramatic loss of the embryonic derived dorsal-ventral and left-right axis. The embryonic dorsal-ventral axis becomes the left-right axis, whereas the embryonic left-right axis becomes, irrespectively, the dorsal-ventral axis of the juvenile animal. This event is an unparalleled morphological change in vertebrate development and a remarkable display of the capacity of TH-signaling in shaping adaptation and evolution in teleosts. Notwithstanding all this knowledge, there are still fundamental questions in teleost metamorphosis left unanswered: how the central regulation of metamorphosis is achieved and the neuroendocrine network involved is unclear; the detailed cellular and molecular events that give rise to the developmental processes occurring during teleost metamorphosis are still mostly unknown. Also in flatfish, comparatively little is still known about the developmental processes behind asymmetric development. This review summarizes the current knowledge on teleost metamorphosis and explores the gaps that still need to be challenged.
Collapse
|
3
|
Sole head transcriptomics reveals a coordinated developmental program during metamorphosis. Genomics 2019; 112:592-602. [PMID: 31071460 DOI: 10.1016/j.ygeno.2019.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 03/07/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022]
Abstract
Most teleosts undergo a thyroid hormone (TH) regulated larval to juvenile transition known as metamorphosis. In Pleuronectiformes (flatfish), metamorphosis is most dramatic, and one eye of the symmetric pelagic larvae migrates to the opposite side of the head, giving rise to an asymmetric benthic juvenile with both eyes on the same side of the body. Asymmetric development occurs mostly in the head. To understand the genetic mechanisms underlying this developmental change we have generated a Solea senegalensis metamorphosing flatfish head transcriptome. Our results reveal that THs acting as integrative factors direct a stepwise genetic program that initiates a specific organismal level response followed by cell specific responses that lead to the long-term changes that characterise the post-metamorphic identity and physiology of the head. Flatfish head asymmetric development during metamorphosis and its TH dependency is conserved thus we consider the findings in sole most likely representative of all flatfish species.
Collapse
|
4
|
Campinho MA, Silva N, Martins GG, Anjos L, Florindo C, Roman-Padilla J, Garcia-Cegarra A, Louro B, Manchado M, Power DM. A thyroid hormone regulated asymmetric responsive centre is correlated with eye migration during flatfish metamorphosis. Sci Rep 2018; 8:12267. [PMID: 30115956 PMCID: PMC6095868 DOI: 10.1038/s41598-018-29957-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 07/18/2018] [Indexed: 01/13/2023] Open
Abstract
Flatfish metamorphosis is a unique post-embryonic developmental event in which thyroid hormones (THs) drive the development of symmetric pelagic larva into asymmetric benthic juveniles. One of the eyes migrates to join the other eye on the opposite side of the head. Developmental mechanisms at the basis of the acquisition of flatfish anatomical asymmetry remain an open question. Here we demonstrate that an TH responsive asymmetric centre, determined by deiodinase 2 expression, ventrally juxtaposed to the migrating eye in sole (Solea senegalensis) correlates with asymmetric cranial ossification that in turn drives eye migration. Besides skin pigmentation that is asymmetric between dorsal and ventral sides, only the most anterior head region delimited by the eyes becomes asymmetric whereas the remainder of the head and organs therein stay symmetric. Sub-ocular ossification is common to all flatfish analysed to date, so we propose that this newly discovered mechanism is universal and is associated with eye migration in all flatfish.
Collapse
Affiliation(s)
- Marco A Campinho
- Comparative Endocrinology and Integrative Biology Group, CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Nádia Silva
- Comparative Endocrinology and Integrative Biology Group, CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Gabriel G Martins
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Liliana Anjos
- Comparative Endocrinology and Integrative Biology Group, CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Claudia Florindo
- CBMR, Centre for Biomedical Research, Departamento de Ciências Biomedicas e Medicina, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Javier Roman-Padilla
- Comparative Endocrinology and Integrative Biology Group, CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.,IFAPA Centro El Toruño, 11500 El Puerto de Santa Maria, Cádiz, Spain
| | - Ana Garcia-Cegarra
- Comparative Endocrinology and Integrative Biology Group, CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.,Universidad de Antofagasta, Antofagasta, Chile
| | - Bruno Louro
- Comparative Endocrinology and Integrative Biology Group, CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Manuel Manchado
- IFAPA Centro El Toruño, 11500 El Puerto de Santa Maria, Cádiz, Spain
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology Group, CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
5
|
Xu J, Ke Z, Xia J, He F, Bao B. Change of body height is regulated by thyroid hormone during metamorphosis in flatfishes and zebrafish. Gen Comp Endocrinol 2016; 236:9-16. [PMID: 27340040 DOI: 10.1016/j.ygcen.2016.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/17/2016] [Accepted: 06/19/2016] [Indexed: 11/15/2022]
Abstract
Flatfishes with more body height after metamorphosis should be better adapted to a benthic lifestyle. In this study, we quantified the changes in body height during metamorphosis in two flatfish species, Paralichthys olivaceus and Platichthys stellatus. The specific pattern of cell proliferation along the dorsal and ventral edge of the body to allow fast growth along the dorsal/ventral axis might be related to the change of body height. Thyroid hormone (T4 and T3) and its receptors showed distribution or gene expression patterns similar to those seen for the cell proliferation. 2-Mercapto-1-methylimidazole, an inhibitor of endogenous thyroid hormone synthesis, inhibited cell proliferation and decreased body height, suggesting that the change in body shape was dependent on the local concentration of thyroid hormone to induce cell proliferation. In addition, after treatment with 2-mercapto-1-methylimidazole, zebrafish larvae were also shown to develop a slimmer body shape. These findings enrich our knowledge of the role of thyroid hormone during flatfish metamorphosis, and the role of thyroid hormone during the change of body height during post-hatching development should help us to understand better the biology of metamorphosis in fishes.
Collapse
Affiliation(s)
- Juan Xu
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Zhonghe Ke
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Jianhong Xia
- Shanghai Science & Technology Museum, Shanghai 200127, China
| | - Fang He
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Baolong Bao
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China.
| |
Collapse
|
6
|
Alves RN, Gomes AS, Stueber K, Tine M, Thorne MAS, Smáradóttir H, Reinhard R, Clark MS, Rønnestad I, Power DM. The transcriptome of metamorphosing flatfish. BMC Genomics 2016; 17:413. [PMID: 27233904 PMCID: PMC4884423 DOI: 10.1186/s12864-016-2699-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Flatfish metamorphosis denotes the extraordinary transformation of a symmetric pelagic larva into an asymmetric benthic juvenile. Metamorphosis in vertebrates is driven by thyroid hormones (THs), but how they orchestrate the cellular, morphological and functional modifications associated with maturation to juvenile/adult states in flatfish is an enigma. Since THs act via thyroid receptors that are ligand activated transcription factors, we hypothesized that the maturation of tissues during metamorphosis should be preceded by significant modifications in the transcriptome. Targeting the unique metamorphosis of flatfish and taking advantage of the large size of Atlantic halibut (Hippoglossus hippoglossus) larvae, we determined the molecular basis of TH action using RNA sequencing. RESULTS De novo assembly of sequences for larval head, skin and gastrointestinal tract (GI-tract) yielded 90,676, 65,530 and 38,426 contigs, respectively. More than 57 % of the assembled sequences were successfully annotated using a multi-step Blast approach. A unique set of biological processes and candidate genes were identified specifically associated with changes in morphology and function of the head, skin and GI-tract. Transcriptome dynamics during metamorphosis were mapped with SOLiD sequencing of whole larvae and revealed greater than 8,000 differentially expressed (DE) genes significantly (p < 0.05) up- or down-regulated in comparison with the juvenile stage. Candidate transcripts quantified by SOLiD and qPCR analysis were significantly (r = 0.843; p < 0.05) correlated. The majority (98 %) of DE genes during metamorphosis were not TH-responsive. TH-responsive transcripts clustered into 6 groups based on their expression pattern during metamorphosis and the majority of the 145 DE TH-responsive genes were down-regulated. CONCLUSIONS A transcriptome resource has been generated for metamorphosing Atlantic halibut and over 8,000 DE transcripts per stage were identified. Unique sets of biological processes and candidate genes were associated with changes in the head, skin and GI-tract during metamorphosis. A small proportion of DE transcripts were TH-responsive, suggesting that they trigger gene networks, signalling cascades and transcription factors, leading to the overt changes in tissue occurring during metamorphosis.
Collapse
Affiliation(s)
- Ricardo N Alves
- Comparative Endocrinology and Integrative Biology Group, Centro de Ciências do Mar - CCMAR, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ana S Gomes
- Department of Biology, University of Bergen, 5020, Bergen, Norway
| | - Kurt Stueber
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Mbaye Tine
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany.,Current address: Molecular Zoology Laboratory, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| | - M A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | | | - Richard Reinhard
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - M S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Ivar Rønnestad
- Department of Biology, University of Bergen, 5020, Bergen, Norway
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology Group, Centro de Ciências do Mar - CCMAR, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
7
|
Georgiou S, Alami-Durante H, Power DM, Sarropoulou E, Mamuris Z, Moutou KA. Transient up- and down-regulation of expression of myosin light chain 2 and myostatin mRNA mark the changes from stratified hyperplasia to muscle fiber hypertrophy in larvae of gilthead sea bream (Sparus aurata L.). Cell Tissue Res 2015; 363:541-54. [PMID: 26246399 DOI: 10.1007/s00441-015-2254-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/06/2015] [Indexed: 01/17/2023]
Abstract
Hyperplasia and hypertrophy are the two mechanisms by which muscle develops and grows. We study these two mechanisms, during the early development of white muscle in Sparus aurata, by means of histology and the expression of structural and regulatory genes. A clear stage of stratified hyperplasia was identified early in the development of gilthead sea bream but ceased by 35 dph when hypertrophy took over. Mosaic recruitment of new white fibers began as soon as 60 dph. The genes mlc2a and mlc2b were expressed at various levels during the main phases of hyperplasia and hypertrophy. The genes myog and mlc2a were significantly up-regulated during the intensive stratified formation of new fibers and their expression was significantly correlated. Expression of mstn1 and igf1 increased at 35 dph, appeared to regulate the hyperplasia-to-hypertrophy transition, and may have stimulated the expression of mlc2a, mlc2b and col1a1 at the onset of mosaic hyperplasia. The up-regulation of mstn1 at transitional phases in muscle development indicates a dual regulatory role of myostatin in fish larval muscle growth.
Collapse
Affiliation(s)
- Stella Georgiou
- Department of Biochemistry & Biotechnology, University of Thessaly, Ploutonos 26, Larissa, Greece
| | - Hélène Alami-Durante
- UR 1067 Nutrition Métabolisme Aquaculture, INRA, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Deborah M Power
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Faro, Portugal
| | - Elena Sarropoulou
- Institute of Marine Biology & Genetics, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
| | - Zissis Mamuris
- Department of Biochemistry & Biotechnology, University of Thessaly, Ploutonos 26, Larissa, Greece
| | - Katerina A Moutou
- Department of Biochemistry & Biotechnology, University of Thessaly, Ploutonos 26, Larissa, Greece.
| |
Collapse
|
8
|
Campinho MA, Silva N, Roman-Padilla J, Ponce M, Manchado M, Power DM. Flatfish metamorphosis: a hypothalamic independent process? Mol Cell Endocrinol 2015; 404:16-25. [PMID: 25575457 DOI: 10.1016/j.mce.2014.12.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/12/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
Anuran and flatfish metamorphosis are tightly regulated by thyroid hormones that are the necessary and sufficient factors that drive this developmental event. In the present study whole mount in situ hybridization (WISH) and quantitative PCR in sole are used to explore the central regulation of flatfish metamorphosis. Central regulation of the thyroid in vertebrates is mediated by the hypothalamus-pituitary-thyroid (HPT) axis. Teleosts diverge from other vertebrates as hypothalamic regulation in the HPT axis is proposed to be through hypothalamic inhibition although the regulatory factor remains enigmatic. The dynamics of the HPT axis during sole metamorphosis revealed integration between the activity of the thyrotrophes in the pituitary and the thyroid follicles. No evidence was found supporting a role for thyroid releasing hormone (trh) or corticotrophin releasing hormone (crh) in hypothalamic control of TH production during sole metamorphosis. Intriguingly the results of the present study suggest that neither hypothalamic trh nor crh expression changes during sole metamorphosis and raises questions about the role of these factors and the hypothalamus in regulation of thyrotrophs.
Collapse
Affiliation(s)
- Marco A Campinho
- Comparative and Molecular Endocrinology Group, Marine Science Centre (CCMAR), Universidade do Algarve, Faro 8005-139, Portugal.
| | - Nadia Silva
- Comparative and Molecular Endocrinology Group, Marine Science Centre (CCMAR), Universidade do Algarve, Faro 8005-139, Portugal
| | - Javier Roman-Padilla
- Comparative and Molecular Endocrinology Group, Marine Science Centre (CCMAR), Universidade do Algarve, Faro 8005-139, Portugal; IFAPA Centro El Toruño, El Puerto de Santa Maria, Cadiz 11500, Spain
| | - Marian Ponce
- IFAPA Centro El Toruño, El Puerto de Santa Maria, Cadiz 11500, Spain
| | - Manuel Manchado
- IFAPA Centro El Toruño, El Puerto de Santa Maria, Cadiz 11500, Spain
| | - Deborah M Power
- Comparative and Molecular Endocrinology Group, Marine Science Centre (CCMAR), Universidade do Algarve, Faro 8005-139, Portugal
| |
Collapse
|
9
|
Mommens M, Fernandes JMO, Tollefsen KE, Johnston IA, Babiak I. Profiling of the embryonic Atlantic halibut (Hippoglossus hippoglossus L.) transcriptome reveals maternal transcripts as potential markers of embryo quality. BMC Genomics 2014; 15:829. [PMID: 25269745 PMCID: PMC4246526 DOI: 10.1186/1471-2164-15-829] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Commercial Atlantic halibut (Hippoglossus hippoglossus) farming is restricted by variable oocyte quality, slow growth, and early maturation of male fish. Maternally transferred components regulate early developmental processes; therefore, they have an effect on the future viability of the embryo. Using a newly developed Agilent 10 k custom-made oligonucleotide array, we profiled components of the transcriptome involved in immune defence as well as germline and muscle development during early developmental stages: 8-cell embryos (8CS), germ ring stage (GR), 10-somite stage (10SS), and hatched embryos (HT). In addition, we identified differentially expressed transcripts in low (≤9 ± 3% hatching) and high (≥86 ± 3°% hatching) quality eggs at 8CS to identify potential maternal markers for embryo quality. RESULTS Out of 2066 differentially expressed transcripts, 160 were identified as maternal transcripts being specifically expressed at 8CS only. Twenty transcripts were differentially expressed in 8-cell embryos between low and high quality egg groups. Several immune-related transcripts were identified as promising molecular markers of hatching success including interferon regulatory factor 7 and mhc class 2A chain. Differential expression was positively validated with quantitative real-time PCR. CONCLUSIONS We have demonstrated maternal transfer of innate and adaptive immune system transcripts into Atlantic halibut embryos and their relation with future embryo developmental potential. We identified several transcripts as potential molecular markers of embryo quality. The developed microarray represents a useful resource for improving the commercial production of Atlantic halibut.
Collapse
Affiliation(s)
| | | | | | | | - Igor Babiak
- Faculty of Biosciences and Aquaculture, University of Nordland, N-8049 Bodø, Norway.
| |
Collapse
|
10
|
Molecular and cellular changes in skin and muscle during metamorphosis of Atlantic halibut (Hippoglossus hippoglossus) are accompanied by changes in deiodinases expression. Cell Tissue Res 2012; 350:333-46. [DOI: 10.1007/s00441-012-1473-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
|
11
|
Infante C, Ponce M, Manchado M. Duplication of calsequestrin genes in teleosts: Molecular characterization in the Senegalese sole (Solea senegalensis). Comp Biochem Physiol B Biochem Mol Biol 2011; 158:304-14. [PMID: 21256971 DOI: 10.1016/j.cbpb.2011.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/16/2011] [Accepted: 01/17/2011] [Indexed: 01/20/2023]
|
12
|
Advances in research on the prenatal development of skeletal muscle in animals in relation to the quality of muscle-based food. I. Regulation of myogenesis and environmental impact. Animal 2011; 5:703-17. [DOI: 10.1017/s1751731110002089] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
13
|
Troponin T isoforms and posttranscriptional modifications: Evolution, regulation and function. Arch Biochem Biophys 2010; 505:144-54. [PMID: 20965144 DOI: 10.1016/j.abb.2010.10.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 12/11/2022]
Abstract
Troponin-mediated Ca²(+)-regulation governs the actin-activated myosin motor function which powers striated (skeletal and cardiac) muscle contraction. This review focuses on the structure-function relationship of troponin T, one of the three protein subunits of the troponin complex. Molecular evolution, gene regulation, alternative RNA splicing, and posttranslational modifications of troponin T isoforms in skeletal and cardiac muscles are summarized with emphases on recent research progresses. The physiological and pathophysiological significances of the structural diversity and regulation of troponin T are discussed for impacts on striated muscle function and adaptation in health and diseases.
Collapse
|
14
|
Campinho MA, Galay-Burgos M, Sweeney GE, Power DM. Coordination of deiodinase and thyroid hormone receptor expression during the larval to juvenile transition in sea bream (Sparus aurata, Linnaeus). Gen Comp Endocrinol 2010; 165:181-94. [PMID: 19549532 DOI: 10.1016/j.ygcen.2009.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 11/13/2022]
Abstract
To test the hypothesis that THs play an important role in the larval to juvenile transition in the marine teleost model, sea bream (Sparus auratus), key elements of the thyroid axis were analysed during development. Specific RT-PCR and Taqman quantitative RT-PCR were established and used to measure sea bream iodothyronine deiodinases and thyroid hormone receptor (TR) genes, respectively. Expression of deiodinases genes (D1 and D2) which encode enzymes producing T3, TRs and T4 levels start to increase at 20-30 days post-hatch (dph; beginning of metamorphosis), peak at about 45 dph (climax) and decline to early larval levels after 90-100 dph (end of metamorphosis) when fish are fully formed juveniles. The profile of these different TH elements during sea bream development is strikingly similar to that observed during the TH driven metamorphosis of flatfish and suggests that THs play an analogous role in the larval to juvenile transition in this species and probably also in other pelagic teleosts. However, the effect of T3 treatment on deiodinases and TR transcript abundance in sea bream is not as clear cut as in larval flatfish and tadpoles indicating divergence in the responsiveness of TH axis elements and highlighting the need for further studies of this axis during development of fish.
Collapse
Affiliation(s)
- Marco António Campinho
- Comparative Molecular Endocrinology Group, Marine Science Centre (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | | | | | | |
Collapse
|
15
|
Andersen Ø, Dahle SW, van Nes S, Bardal T, Tooming-Klunderud A, Kjørsvik E, Galloway TF. Differential spatio-temporal expression and functional diversification of the myogenic regulatory factors MyoD1 and MyoD2 in Atlantic halibut (Hippoglossus hippoglossus). Comp Biochem Physiol B Biochem Mol Biol 2009; 154:93-101. [PMID: 19454321 DOI: 10.1016/j.cbpb.2009.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/30/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022]
Abstract
Development of the vertebrate skeletal muscle is orchestrated by the myogenic regulatory factors MyoD, Myf5, myogenin and MRF4, which likely arose from the duplications of a single ancestral gene early in vertebrate evolution. We have isolated two myod genes from Atlantic halibut and examined their differential expression during embryogenesis using quantitative PCR and in situ hybridization to address their functional roles in this asymmetrically organized flatfish. myod1 was initially maternally expressed, while myod2 mRNA was first detectable during gastrulation. The myod1 mRNA levels predominated throughout somitogenesis, and both slow and fast muscle precursor cells displayed the bilateral symmetric myod1 signal during the formation of the symmetric somite pairs. In contrast, myod2 was left-right asymmetrically expressed in the fast muscle precursors. The random expression of myod2 was not associated with the right-sided eye migration and the development of thicker fast skeletal muscle on the eyed side than on the blind side. The nucleotide substitution analysis indicated that the teleost MyoDs essentially have evolved under purifying selection, but a subset of amino acid sites under strong positive selection were identified in the MyoD2 branch. Altogether, halibut MyoD1 seems to have retained the central role of MyoD in driving skeletal myogenesis, whereas the function of MyoD2 is uncertain in this flatfish species.
Collapse
|
16
|
Involvement of growth hormone-insulin-like growth factor I system in cranial remodeling during halibut metamorphosis as indicated by tissue- and stage-specific receptor gene expression and the presence of growth hormone receptor protein. Cell Tissue Res 2008; 332:211-25. [DOI: 10.1007/s00441-007-0568-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 12/19/2007] [Indexed: 12/13/2022]
|
17
|
Galay-Burgos M, Power DM, Llewellyn L, Sweeney GE. Thyroid hormone receptor expression during metamorphosis of Atlantic halibut (Hippoglossus hippoglossus). Mol Cell Endocrinol 2008; 281:56-63. [PMID: 18068891 DOI: 10.1016/j.mce.2007.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 10/02/2007] [Accepted: 10/19/2007] [Indexed: 01/22/2023]
Abstract
Flatfish such as the Atlantic halibut (Hippoglossus hippoglossus) undergo a dramatic metamorphosis that transforms the pelagic, symmetric larva into a benthic, cranially asymmetric juvenile. In common with amphibian metamorphosis, flatfish metamorphosis is under endocrine control with thyroid hormones being particularly important. In this report we confirm that tri-iodothyronine (T(3)) levels peak at metamorphic climax during halibut metamorphosis. Moreover, we have isolated cDNA clones of TRalpha and TRbeta genes and confirmed the presence in halibut of two TRalpha isoforms (representing the products of distinct genes) and two TRbeta isoforms (generated from a single gene by alternative splicing). Real-time PCR was used to assess expression of these genes during metamorphosis. TRbeta shows the most dramatic expression profile, with a peak occurring during metamorphic climax.
Collapse
Affiliation(s)
- Malyka Galay-Burgos
- School of Biosciences, University of Wales, Museum Avenue, CF10 3US Cardiff, UK
| | | | | | | |
Collapse
|