1
|
Wang H, Zhang Y, Zhong B, Geng Y, Hao J, Jin Q, Hou W. Cysteine and glycine-rich protein 2 retards platelet-derived growth factor-BB-evoked phenotypic transition of airway smooth muscle cells by decreasing YAP/TAZ activity. Cell Biochem Funct 2024; 42:e3896. [PMID: 38081793 DOI: 10.1002/cbf.3896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 01/26/2024]
Abstract
Cysteine and glycine-rich protein 2 (Csrp2) has emerged as a key factor in controlling the phenotypic modulation of smooth muscle cells. The phenotypic transition of airway smooth muscle cells (ASMCs) is a pivotal step in developing airway remodeling during the onset of asthma. However, whether Csrp2 mediates the phenotypic transition of ASMCs in airway remodeling during asthma onset is undetermined. This work aimed to address the link between Csrp2 and the phenotypic transition of ASMCs evoked by platelet-derived growth factor (PDGF)-BB in vitro. The overexpression or silencing of Csrp2 in ASMCs was achieved through adenovirus-mediated gene transfer. The expression of mRNA was measured by quantitative real-time-PCR. Protein levels were determined through Western blot analysis. Cell proliferation was detected by EdU assay and Calcein AM assays. Cell cycle distribution was assessed via fluorescence-activated cell sorting assay. Cell migration was evaluated using the scratch-wound assay. The transcriptional activity of Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) was measured using the luciferase reporter assay. A decline in Csrp2 level occurred in PDGF-BB-stimulated ASMCs. Increasing Csrp2 expression repressed the PDGF-BB-evoked proliferation and migration of ASMCs. Moreover, increasing Csrp2 expression impeded the phenotypic change of PDGF-BB-stimulated ASMCs from a contractile phenotype into a synthetic/proliferative phenotype. On the contrary, the opposite effects were observed in Csrp2-silenced ASMCs. The activity of YAP/TAZ was elevated in PDGF-BB-stimulated ASMCs, which was weakened by Csrp2 overexpression or enhanced by Csrp2 silencing. The YAP/TAZ activator could reverse Csrp2-overexpression-mediated suppression of the PDGF-BB-evoked phenotypic switching of ASMCs, while the YAP/TAZ suppressor could dimmish Csrp2-silencing-mediated enhancement on PDGF-BB-evoked phenotypic switching of ASMCs. In summary, Csrp2 serves as a determinant for the phenotypic switching of ASMCs. Increasing Csrp2 is able to impede PDGF-BB-evoked phenotypic change of ASMCs from a synthetic phenotype into a synthetic/proliferative phenotype through the effects on YAP/TAZ. This work implies that Csrp2 may be a key player in airway remodeling during the onset of asthma.
Collapse
Affiliation(s)
- Huiyuan Wang
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Zhang
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Zhong
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Geng
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juanjuan Hao
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiaoyan Jin
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Hou
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Hayashi K, Horoiwa S, Mori K, Miyata H, Labios RJ, Morita T, Kobayashi Y, Yamashiro C, Higashijima F, Yoshimoto T, Kimura K, Nakagawa Y. Role of CRP2-MRTF interaction in functions of myofibroblasts. Cell Struct Funct 2023; 48:83-98. [PMID: 37164693 PMCID: PMC10721955 DOI: 10.1247/csf.23004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/18/2023] [Indexed: 05/12/2023] Open
Abstract
Inflammatory response induces phenotypic modulation of fibroblasts into myofibroblasts. Although transforming growth factor-βs (TGF-βs) evoke such transition, the details of the mechanism are still unknown. Here, we report that a LIM domain protein, cysteine-and glycine-rich protein 2 (CSRP2 [CRP2]) plays a vital role in the functional expression profile in myofibroblasts and cancer-associated fibroblasts (CAFs). Knock-down of CRP2 severely inhibits the expression of smooth muscle cell (SMC) genes, cell motility, and CAF-mediated collective invasion of epidermoid carcinoma. We elucidate the following molecular bases: CRP2 directly binds to myocardin-related transcription factors (MRTF-A/B [MRTFs]) and serum response factor (SRF) and stabilizes the MRTF/SRF/CArG-box complex to activate SMC gene expression. Furthermore, a three-dimensional structural analysis of CRP2 identifies the amino acids required for the CRP2-MRTF-A interaction. Polar amino acids in the C-terminal half (serine-152, glutamate-154, serine-155, threonine-156, threonine-157, and threonine-159 in human CRP2) are responsible for direct binding to MRTF-A. On the other hand, hydrophobic amino acids outside the consensus sequence of the LIM domain (tryptophan-139, phenylalanine-144, leucine-153, and leucine-158 in human CRP2) play a role in stabilizing the unique structure of the LIM domain.Key words: CRP2, 3D structure, myocardin-related transcription factor, myofibroblast, cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Ken’ichiro Hayashi
- Department of RNA Biology and Neuroscience, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Shinri Horoiwa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kotaro Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Miyata
- Department of Surgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Reuben Jacob Labios
- Department of RNA Biology and Neuroscience, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Morita
- Department of Biology, Wakayama Medical University School of Medicine, 580 Mikazura, Wakayama 641-0011, Japan
| | - Yuka Kobayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Chiemi Yamashiro
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Fumiaki Higashijima
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Takuya Yoshimoto
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Yoshiaki Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Hindmarch CCT, Tian L, Xiong PY, Potus F, Bentley RET, Al-Qazazi R, Prins KW, Archer SL. An integrated proteomic and transcriptomic signature of the failing right ventricle in monocrotaline induced pulmonary arterial hypertension in male rats. Front Physiol 2022; 13:966454. [PMID: 36388115 PMCID: PMC9664166 DOI: 10.3389/fphys.2022.966454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023] Open
Abstract
Aim: Pulmonary arterial hypertension (PAH) is an obstructive pulmonary vasculopathy that results in death from right ventricular failure (RVF). There is limited understanding of the molecular mechanisms of RVF in PAH. Methods: In a PAH-RVF model induced by injection of adult male rats with monocrotaline (MCT; 60 mg/kg), we performed mass spectrometry to identify proteins that change in the RV as a consequence of PAH induced RVF. Bioinformatic analysis was used to integrate our previously published RNA sequencing data from an independent cohort of PAH rats. Results: We identified 1,277 differentially regulated proteins in the RV of MCT rats compared to controls. Integration of MCT RV transcriptome and proteome data sets identified 410 targets that are concordantly regulated at the mRNA and protein levels. Functional analysis of these data revealed enriched functions, including mitochondrial metabolism, cellular respiration, and purine metabolism. We also prioritized 15 highly enriched protein:transcript pairs and confirmed their biological plausibility as contributors to RVF. We demonstrated an overlap of these differentially expressed pairs with data published by independent investigators using multiple PAH models, including the male SU5416-hypoxia model and several male rat strains. Conclusion: Multiomic integration provides a novel view of the molecular phenotype of RVF in PAH which includes dysregulation of pathways involving purine metabolism, mitochondrial function, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Charles Colin Thomas Hindmarch
- QCPU, Queen’s Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Lian Tian
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Ping Yu Xiong
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Francois Potus
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et Pneumologie de Quebec, Quebec City, QC, Canada
| | | | - Ruaa Al-Qazazi
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Kurt W. Prins
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Stephen L. Archer
- QCPU, Queen’s Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen’s University, Kingston, ON, Canada,Department of Medicine, Queen’s University, Kingston, ON, Canada,*Correspondence: Stephen L. Archer,
| |
Collapse
|
4
|
Zhang J, Xu M, Chen T, Zhou Y. Bioinformatics Analysis of Common Differential Genes of Viral Myocarditis and Dilated Cardiomyopathy: Screening for Potential Pharmacological Compounds. J Cardiovasc Dev Dis 2022; 9:jcdd9100353. [PMID: 36286305 PMCID: PMC9604690 DOI: 10.3390/jcdd9100353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: The mechanism of viral myocarditis (VMC) progression to dilated cardiomyopathy (DCM) remains unclear. The aim of this study was to identify key genes in the progression of VMC to DCM, so as to find potential therapeutic drugs and provide insights for future research. (2) Methods: Differential expression analysis of GSE4172 and GSE17800 from the Gene Expression Omnibus (GEO) database was performed using GEO2R, which contained genome-wide analysis of myocardial biopsies from VMC and DCM, respectively. We used the Venn diagram analysis to screen the common differentially expressed genes (DEGs). GO functional enrichment analysis and KEGG pathway analysis were also performed. Then we conducted protein-protein interaction (PPI) networks using STRING and identified hub genes using Cytoscape. Finally, we used cMAP to screen out candidate compounds targeting these hub genes; (3) Results: In total, 2143 DEGs for VMC and 1365 DEGs for DCM were found. Then a total of 191 common DEGs were identified. Biological processes and pathway involved in these genes mainly include GABA-gated chloride ion channel activity and Rap1 signaling pathway. A total of 14 hub genes were identified. PPI network showed these hubs mainly enriched in regulation of WNT signaling pathway and GABA-gated chloride ion channel activity. Subgroup analysis of Severe VMC cohort revealed 10 hub genes which mainly clustered in GABA channel activity, extracellular matrix remodeling and sarcomere dysfunction. Using cMAP, we obtained top 10 potential medications, but only amlodipine is currently viable; (4) Conclusions: Our study finds the hub genes and reveals the important role of GABA-gated chloride ion channel, Rap1 signaling pathway, WNT signaling pathway, extracellular matrix remodeling and sarcomere dysfunction in the progression from VMC to DCM. Amlodipine is a potential viable drug in preventing the progression of VMC to DCM.
Collapse
|
5
|
Hulikova A, Park KC, Loonat AA, Gunadasa-Rohling M, Curtis MK, Chung YJ, Wilson A, Carr CA, Trafford AW, Fournier M, Moshnikova A, Andreev OA, Reshetnyak YK, Riley PR, Smart N, Milne TA, Crump NT, Swietach P. Alkaline nucleoplasm facilitates contractile gene expression in the mammalian heart. Basic Res Cardiol 2022; 117:17. [PMID: 35357563 PMCID: PMC8971196 DOI: 10.1007/s00395-022-00924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 01/31/2023]
Abstract
Cardiac contractile strength is recognised as being highly pH-sensitive, but less is known about the influence of pH on cardiac gene expression, which may become relevant in response to changes in myocardial metabolism or vascularization during development or disease. We sought evidence for pH-responsive cardiac genes, and a physiological context for this form of transcriptional regulation. pHLIP, a peptide-based reporter of acidity, revealed a non-uniform pH landscape in early-postnatal myocardium, dissipating in later life. pH-responsive differentially expressed genes (pH-DEGs) were identified by transcriptomics of neonatal cardiomyocytes cultured over a range of pH. Enrichment analysis indicated "striated muscle contraction" as a pH-responsive biological process. Label-free proteomics verified fifty-four pH-responsive gene-products, including contractile elements and the adaptor protein CRIP2. Using transcriptional assays, acidity was found to reduce p300/CBP acetylase activity and, its a functional readout, inhibit myocardin, a co-activator of cardiac gene expression. In cultured myocytes, acid-inhibition of p300/CBP reduced H3K27 acetylation, as demonstrated by chromatin immunoprecipitation. H3K27ac levels were more strongly reduced at promoters of acid-downregulated DEGs, implicating an epigenetic mechanism of pH-sensitive gene expression. By tandem cytoplasmic/nuclear pH imaging, the cardiac nucleus was found to exercise a degree of control over its pH through Na+/H+ exchangers at the nuclear envelope. Thus, we describe how extracellular pH signals gain access to the nucleus and regulate the expression of a subset of cardiac genes, notably those coding for contractile proteins and CRIP2. Acting as a proxy of a well-perfused myocardium, alkaline conditions are permissive for expressing genes related to the contractile apparatus.
Collapse
Affiliation(s)
- Alzbeta Hulikova
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Kyung Chan Park
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Aminah A Loonat
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - M Kate Curtis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Yu Jin Chung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Abigail Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Carolyn A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Andrew W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Marjorie Fournier
- Department of Biochemistry, Advanced Proteomics Facility, University of Oxford, Oxford, UK
| | - Anna Moshnikova
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI, 02881, USA
| | - Oleg A Andreev
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI, 02881, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI, 02881, USA
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Nicola Smart
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, UK
| | - Nicholas T Crump
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
6
|
Chen B, Tao W, Yan L, Zeng M, Song L, Huang Z, Chen F. Molecular feature of arterial remodeling in the brain arteriovenous malformation revealed by arteriovenous shunt rat model and RNA sequencing. Int Immunopharmacol 2022; 107:108653. [PMID: 35247777 DOI: 10.1016/j.intimp.2022.108653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/05/2022] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Morphological research suggested the feeding artery of brain arteriovenous malformation (bAVM) had vascular remodeling under the high blood flow; however, the underlying molecular mechanisms were unclear. METHODS We constructed 32 simplified AVM rat models in four groups: the control group (n = 6), 1-week high-blood-flow group (n = 9), 3-week high-blood-flow group (n = 7) and 6-week high-blood-flow group (n = 10). The circumference, blood velocity, blood flow, pressure, and wall shear of the feeding artery were measured or calculated. The arterial wall change was observed by Masson staining. RNA sequencing (RNA-seq) of feeding arteries was performed, followed by bioinformatics analysis to detect the potential molecular mechanism for bAVM artery remodeling under the high blood flow. RESULTS We observed hemodynamic injury and vascular remodeling on the feeding artery under the high blood flow. RNA-seq showed immune/inflammation infiltration and vascular smooth muscle cell (VSMC) phenotype transformation during remodeling. Weighted gene co-expression network analysis (WGCNA) and time series analysis further identified 27 key genes and pathways involved in remodeling. Upstream miRNA and molecular drugs were predicted targeting these key genes. CONCLUSIONS We depicted molecular change of bAVM arterial remodeling via RNA-seq in high-blood-flow rat models. Twenty-seven key genes may regulate immune/inflammation infiltration and VSMC phenotype transform in bAVM arterial remodeling.
Collapse
Affiliation(s)
- Bo Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wengui Tao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Langchao Yan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Laixin Song
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Neurosurgery, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, Heilongjiang, China; Department of Surgery, Mudanjiang Huimin Hospital, Mudanjiang, Heilongjiang, China
| | - Zheng Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fenghua Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
She M, Tang M, Jiang T, Zeng Q. The Roles of the LIM Domain Proteins in Drosophila Cardiac and Hematopoietic Morphogenesis. Front Cardiovasc Med 2021; 8:616851. [PMID: 33681304 PMCID: PMC7928361 DOI: 10.3389/fcvm.2021.616851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Drosophila melanogaster has been used as a model organism for study on development and pathophysiology of the heart. LIM domain proteins act as adaptors or scaffolds to promote the assembly of multimeric protein complexes. We found a total of 75 proteins encoded by 36 genes have LIM domain in Drosophila melanogaster by the tools of SMART, FLY-FISH, and FlyExpress, and around 41.7% proteins with LIM domain locate in lymph glands, muscles system, and circulatory system. Furthermore, we summarized functions of different LIM domain proteins in the development and physiology of fly heart and hematopoietic systems. It would be attractive to determine whether it exists a probable "LIM code" for the cycle of different cell fates in cardiac and hematopoietic tissues. Next, we aspired to propose a new research direction that the LIM domain proteins may play an important role in fly cardiac and hematopoietic morphogenesis.
Collapse
Affiliation(s)
- Meihua She
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Min Tang
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Tingting Jiang
- Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| |
Collapse
|
8
|
Guru A, Lite C, Freddy AJ, Issac PK, Pasupuleti M, Saraswathi NT, Arasu MV, Al-Dhabi NA, Arshad A, Arockiaraj J. Intracellular ROS scavenging and antioxidant regulation of WL15 from cysteine and glycine-rich protein 2 demonstrated in zebrafish in vivo model. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103863. [PMID: 32918928 DOI: 10.1016/j.dci.2020.103863] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 05/02/2023]
Abstract
Antioxidant peptides are naturally present in food, especially in fishes, and are considered to contain rich source of various bioactive compounds that are structurally heterogeneous. This study aims to identify and characterize the antioxidant property of the WL15 peptide, derived from Cysteine and glycine-rich protein 2 (CSRP2) identified from the transcriptome of a freshwater food fish, Channa striatus. C. striatus is already studied to contain high levels of amino acids and fatty acids, besides traditionally known for its pharmacological benefits in the Southeast Asian region. In our study, in vitro analysis of WL15 peptide exhibited strong free radical scavenging activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), superoxide anion radical and hydrogen peroxide (H2O2) scavenging assay. Further, to evaluate the cytotoxicity and dose-response, the Human dermal fibroblast (HDF) cells were used. Results showed that the treatment of HDF cells with varying concentrations (10, 20, 30, 40 and 50 μM) of WL15 peptide was not cytotoxic. However, the treatment concentrations showed enhanced antioxidant properties by significantly inhibiting the levels of free radicals. For in vivo assessment, we have used zebrafish larvae for evaluating the developmental toxicity and for determining the antioxidant property of the WL15 peptide. Zebrafish embryos were treated with the WL15 peptide from 4 h of post-fertilization (hpf) to 96 hpf covering the embryo-larval developmental period. At the end of the exposure period, the larvae were exposed to H2O2 (1 mM) for inducing generic oxidative stress. The exposure of WL15 peptide during the embryo-larval period showed no developmental toxicity even in higher concentrations of the peptide. Besides, the WL15 peptide considerably decreased the intracellular reactive oxygen species (ROS) levels induced by H2O2 exposure. WL15 peptide also inhibited the H2O2-induced caspase 3-dependent apoptotic response in zebrafish larvae was observed using the whole-mount immunofluorescence staining. Overall results from our study showed that the pre-treatment of WL15 (50 μM) in the H2O2-exposed zebrafish larvae, attenuated the expression of activated caspase 3 expressions, reduced Malondialdehyde (MDA) levels, and enhanced antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT). The gene expression of antioxidant enzymes such as glutathione S-transferase (GST), glutathione peroxide (GPx) and γ-glutamyl cysteine synthetase (GCS) was found to be upregulated. In conclusion, it can be conceived that pre-treatment with WL15 could mitigate H2O2-induced oxidative injury by elevating the activity and expression of antioxidant enzymes, thereby decreasing MDA levels and cellular apoptosis by enhancing the antioxidant response, demonstrated by the in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Christy Lite
- Endocrine and Exposome Laboratory, Department of Zoology, Madras Christian College, Tambaram, Chennai, 600 059, Tamil Nadu, India
| | - Allen J Freddy
- Endocrine and Exposome Laboratory, Department of Zoology, Madras Christian College, Tambaram, Chennai, 600 059, Tamil Nadu, India
| | - Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1 Sector 10 Jankipuram Extension Sitapur Road, Lucknow, 226 031, Uttar Pradesh, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, 613 401, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
9
|
Nihashi Y, Umezawa K, Shinji S, Hamaguchi Y, Kobayashi H, Kono T, Ono T, Kagami H, Takaya T. Distinct cell proliferation, myogenic differentiation, and gene expression in skeletal muscle myoblasts of layer and broiler chickens. Sci Rep 2019; 9:16527. [PMID: 31712718 PMCID: PMC6848216 DOI: 10.1038/s41598-019-52946-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/26/2019] [Indexed: 02/01/2023] Open
Abstract
Myoblasts play a central role during skeletal muscle formation and growth. Precise understanding of myoblast properties is thus indispensable for meat production. Herein, we report the cellular characteristics and gene expression profiles of primary-cultured myoblasts of layer and broiler chickens. Broiler myoblasts actively proliferated and promptly differentiated into myotubes compared to layer myoblasts, which corresponds well with the muscle phenotype of broilers. Transcriptomes of layer and broiler myoblasts during differentiation were quantified by RNA sequencing. Ontology analyses of the differentially expressed genes (DEGs) provided a series of extracellular proteins as putative markers for characterization of chicken myogenic cells. Another ontology analyses demonstrated that broiler myogenic cells are rich in cell cycle factors and muscle components. Independent of these semantic studies, principal component analysis (PCA) statistically defined two gene sets: one governing myogenic differentiation and the other segregating layers and broilers. Thirteen candidate genes were identified with a combined study of the DEGs and PCA that potentially contribute to proliferation or differentiation of chicken myoblasts. We experimentally proved that one of the candidates, enkephalin, an opioid peptide, suppresses myoblast growth. Our results present a new perspective that the opioids present in feeds may influence muscle development of domestic animals.
Collapse
Affiliation(s)
- Yuma Nihashi
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Koji Umezawa
- Department of Agricultural and Life Science, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano, 399-4598, Japan.,Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Sayaka Shinji
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Yu Hamaguchi
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Hisato Kobayashi
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.,Department of Embryology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Tamao Ono
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano, 399-4598, Japan.,Department of Agricultural and Life Science, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Hiroshi Kagami
- Department of Agricultural and Life Science, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Tomohide Takaya
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano, 399-4598, Japan. .,Department of Agricultural and Life Science, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano, 399-4598, Japan. .,Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano, 399-4598, Japan.
| |
Collapse
|
10
|
Wang C, Liu W, Shen Y, Chen J, Zhu H, Yang X, Jiang X, Wang Y, Zhou J. Cardiomyocyte dedifferentiation and remodeling in 3D scaffolds to generate the cellular diversity of engineering cardiac tissues. Biomater Sci 2019; 7:4636-4650. [PMID: 31455969 DOI: 10.1039/c9bm01003c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of engineered cardiac tissues (ECTs) is a new strategy for the repair and replacement of cardiac tissues in patients with myocardial infarction, particularly at late stages. However, the mechanisms underlying the development of ECTs, including cell-scaffold interactions, are not fully understood, although they are closely related to their therapeutic effect. In the present study, we aimed to determine the cellular fate of cardiomyocytes in a 3D scaffold microenvironment, as well as their role in generating the cellular diversity of ECTs by single-cell sequencing analysis. Consistent with the observed plasticity of cardiomyocytes during cardiac regeneration, cardiomyocytes in 3D scaffolds appeared to dedifferentiate, showing an initial loss of normal cytoskeleton organization in the adaptive response to the new scaffold microenvironment. Cardiomyocytes undergoing this process regained their proliferation potential and gradually developed into myocardial cells at different developmental stages, generating heterogeneous regenerative ECTs. To better characterize the remodeled ECTs, high-throughput single-cell sequencing was performed. The ECTs contained a wide diversity of cells related to endogenous classes in the heart, including myocardial cells at different developmental stages and different kinds of interstitial cells. Non-cardiac cells seemed to play important roles in cardiac reconstruction, especially Cajal-like interstitial cells and macrophages. Altogether, our results showed for the first time that cells underwent adaptive dedifferentiation for survival in a 3D scaffold microenvironment to generate heterogeneous tissues. These findings provide an important basis for an improved understanding of the development and assembly of engineered tissues.
Collapse
Affiliation(s)
- Changyong Wang
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Wei Liu
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Yuan Shen
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Jiayun Chen
- College of Life Science and Technology, Huazhong Agricultural university, No.1, shizishan street, Wuhan 430070, PR China
| | - Huimin Zhu
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Xiaoning Yang
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Xiaoxia Jiang
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Yan Wang
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Jin Zhou
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| |
Collapse
|
11
|
Sun H, Zuo X, Sun L, Yan P, Zhang F, Xue H, Li E, Zhou Y, Wu R, Wu X. Insights into the seasonal adaptive mechanisms of Chinese alligators (Alligator sinensis) from transcriptomic analyses. AUST J ZOOL 2018. [DOI: 10.1071/zo18005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Chinese alligator (Alligator sinensis) is an endemic and rare species in China, and is considered to be one of the most endangered vertebrates in the world. It is known to hibernate, an energy-saving strategy against cold temperatures and food deprivation. Changes in gene expression during hibernation remain largely unknown. To understand these complex seasonal adaptive mechanisms, we performed a comprehensive survey of differential gene expression in heart, skeletal muscle, and kidney of hibernating and active Chinese alligators using RNA-Sequencing. In total, we identified 4780 genes differentially expressed between the active and hibernating periods. GO and KEGG pathway analysis indicated the likely role of these differentially expressed genes (DEGs). The upregulated DEGs in the active Chinese alligator, CSRP3, MYG and PCKGC, may maintain heart and skeletal muscle contraction, transport and storage of oxygen, and enhance the body’s metabolism, respectively. The upregulated DEGs in the dormant Chinese alligator, ADIPO, CIRBP and TMM27, may improve insulin sensitivity and glucose/lipid metabolism, protect cells against harmful effects of cold temperature and hypoxia, regulate amino acid transport and uptake, and stimulate the proliferation of islet cells and the secretion of insulin. These results provide a foundation for understanding the molecular mechanisms of the seasonal adaptation required for hibernation in Chinese alligators, as well as effective information for other non-model organisms research.
Collapse
|
12
|
Kihara T, Sugimoto Y, Shinohara S, Takaoka S, Miyake J. Cysteine-rich protein 2 accelerates actin filament cluster formation. PLoS One 2017; 12:e0183085. [PMID: 28813482 PMCID: PMC5558965 DOI: 10.1371/journal.pone.0183085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/29/2017] [Indexed: 12/22/2022] Open
Abstract
Filamentous actin (F-actin) forms many types of structures and dynamically regulates cell morphology and movement, and plays a mechanosensory role for extracellular stimuli. In this study, we determined that the smooth muscle-related transcription factor, cysteine-rich protein 2 (CRP2), regulates the supramolecular networks of F-actin. The structures of CRP2 and F-actin in solution were analyzed by small-angle X-ray solution scattering (SAXS). The general shape of CRP2 was partially unfolded and relatively ellipsoidal in structure, and the apparent cross sectional radius of gyration (Rc) was about 15.8 Å. The predicted shape, derived by ab initio modeling, consisted of roughly four tandem clusters: LIM domains were likely at both ends with the middle clusters being an unfolded linker region. From the SAXS analysis, the Rc of F-actin was about 26.7 Å, and it was independent of CRP2 addition. On the other hand, in the low angle region of the CRP2-bound F-actin scattering, the intensities showed upward curvature with the addition of CRP2, which indicates increasing branching of F-actin following CRP2 binding. From biochemical analysis, the actin filaments were augmented and clustered by the addition of CRP2. This F-actin clustering activity of CRP2 was cooperative with α-actinin. Thus, binding of CRP2 to F-actin accelerates actin polymerization and F-actin cluster formation.
Collapse
Affiliation(s)
- Takanori Kihara
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, Hibikino, Wakamatsu, Kitakyushu, Fukuoka, Japan
| | - Yasunobu Sugimoto
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Satoko Shinohara
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka, Japan
| | - Shunpei Takaoka
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, Hibikino, Wakamatsu, Kitakyushu, Fukuoka, Japan
| | - Jun Miyake
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka, Japan
| |
Collapse
|
13
|
Straubinger J, Boldt K, Kuret A, Deng L, Krattenmacher D, Bork N, Desch M, Feil R, Feil S, Nemer M, Ueffing M, Ruth P, Just S, Lukowski R. Amplified pathogenic actions of angiotensin II in cysteine-rich LIM-only protein 4-negative mouse hearts. FASEB J 2017; 31:1620-1638. [PMID: 28138039 DOI: 10.1096/fj.201601186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Abstract
LIM domain proteins have been identified as essential modulators of cardiac biology and pathology; however, it is unclear which role the cysteine-rich LIM-only protein (CRP)4 plays in these processes. In studying CRP4 mutant mice, we found that their hearts developed normally, but lack of CRP4 exaggerated multiple parameters of the cardiac stress response to the neurohormone angiotensin II (Ang II). Aiming to dissect the molecular details, we found a link between CRP4 and the cardioprotective cGMP pathway, as well as a multiprotein complex comprising well-known hypertrophy-associated factors. Significant enrichment of the cysteine-rich intestinal protein (CRIP)1 in murine hearts lacking CRP4, as well as severe cardiac defects and premature death of CRIP1 and CRP4 morphant zebrafish embryos, further support the notion that depleting CRP4 is incompatible with a proper cardiac development and function. Together, amplified Ang II signaling identified CRP4 as a novel antiremodeling factor regulated, at least to some extent, by cardiac cGMP.-Straubinger, J., Boldt, K., Kuret, A., Deng, L., Krattenmacher, D., Bork, N., Desch, M., Feil, R., Feil, S., Nemer, M., Ueffing, M., Ruth, P., Just, S., Lukowski, R. Amplified pathogenic actions of angiotensin II in cysteine-rich LIM-only protein 4 negative mouse hearts.
Collapse
Affiliation(s)
- Julia Straubinger
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research, Molecular Biology of Retinal Degenerations and Medical Proteome Center, University of Tübingen, Tübingen, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lisa Deng
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Diana Krattenmacher
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Nadja Bork
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Matthias Desch
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; and
| | - Susanne Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; and
| | - Mona Nemer
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Immunology, and Microbiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marius Ueffing
- Institute for Ophthalmic Research, Molecular Biology of Retinal Degenerations and Medical Proteome Center, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany;
| |
Collapse
|
14
|
Goltz D, Hittetiya K, Gevensleben H, Kirfel J, Diehl L, Meyer R, Büttner R. Loss of the LIM-only protein Fhl2 impairs inflammatory reaction and scar formation after cardiac ischemia leading to better hemodynamic performance. Life Sci 2016; 151:348-358. [DOI: 10.1016/j.lfs.2016.02.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 01/09/2023]
|
15
|
Jin K, Xiao D, Andersen B, Xiang M. Lmo4 and Other LIM domain only factors are necessary and sufficient for multiple retinal cell type development. Dev Neurobiol 2015; 76:900-15. [PMID: 26579872 DOI: 10.1002/dneu.22365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/01/2015] [Accepted: 11/12/2015] [Indexed: 12/13/2022]
Abstract
Understanding the molecular basis by which distinct cell types are specified is a central issue in retinogenesis and retinal disease development. Here we examined the role of LIM domain only 4 (Lmo4) in retinal development using both gain-of-function and loss-of-function approaches. By immunostaining, Lmo4 was found to be expressed in mouse retina from E10.5 to mature stages. Retroviral delivery of Lmo4 into retinal progenitor cells could promote the amacrine, bipolar and Müller cell fates at the expense of photoreceptors. It also inhibited the fate of early-born retinal ganglion cells. Using a dominant-negative form of Lmo4 which suppresses transcriptional activities of all LIM domain only factors, we demonstrated that LIM domain only factors are both necessary and sufficient for promoting amacrine and bipolar cell development, but not for the differentiation of ganglion, horizontal, Müller, or photoreceptor cells. Taken together, our study uncovers multiple roles of Lmo4 during retinal development and demonstrates the importance of LIM domain only factors in ensuring proper retinal cell specification and differentiation. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 900-915, 2016.
Collapse
Affiliation(s)
- Kangxin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China.,Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854
| | - Dongchang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Bogi Andersen
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, Irvine, California, 92697-4030.,Department of Biological Chemistry, Division of Endocrinology and Metabolism, University of California, Irvine, California, 92697-4030
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China.,Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854
| |
Collapse
|
16
|
Goo JS, Kim YN, Choi KM, Hwang IS, Kim JE, Lee YJ, Kwak MH, Shim SB, Jee SW, Lim CJ, Seong JK, Hwang DY. Proteomic analysis of kidneys from selenoprotein M transgenic rats in response to increased bioability of selenium. Clin Proteomics 2013; 10:10. [PMID: 23937859 PMCID: PMC3751301 DOI: 10.1186/1559-0275-10-10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 07/31/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To characterize changes in global protein expression in kidneys of transgenic rats overexpressing human selenoprotein M (SelM) in response to increased bioabivility of selenium (Sel), total proteins extracted from kidneys of 10-week-old CMV/hSelM Tg and wild-type rats were separated by 2-dimensional gel electrophoresis and measured for changes in expression. RESULTS Ten and three proteins showing high antioxidant enzymatic activity were up- and down-regulated, respectively, in SelM-overexpressing CMV/hSelM Tg rats compared to controls based on an arbitrary 2-fold difference. Up-regulated proteins included LAP3, BAIAP2L1, CRP2, CD73 antigen, PDGF D, KIAA143 homolog, PRPPS-AP2, ZFP313, HSP-60, and N-WASP, whereas down-regulated proteins included ALKDH3, rMCP-3, and STC-1. After Sel treatment, five of the up-regulated proteins were significantly increased in expression in wild-type rats, whereas there were no changes in CMV/hSelM Tg rats. Only two of the down-regulated proteins showed reduced expression in wild-type and Tg rats after Sel treatment. CONCLUSIONS These results show the primary novel biological evidences that new functional protein groups and individual proteins in kidneys of Tg rats relate to Sel biology including the response to Sel treatment and SelM expression.
Collapse
Affiliation(s)
- Jun Seo Goo
- Department of Biomaterials Science, College of Natural Resources & Life Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea
| | - Yo Na Kim
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | - Kyung Mi Choi
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | - In Sik Hwang
- Department of Biomaterials Science, College of Natural Resources & Life Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea
| | - Ji Eun Kim
- Department of Biomaterials Science, College of Natural Resources & Life Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea
| | - Young Ju Lee
- Department of Biomaterials Science, College of Natural Resources & Life Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea
| | - Moon Hwa Kwak
- Department of Biomaterials Science, College of Natural Resources & Life Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea
| | - Sun Bo Shim
- Department of Laboratory Animal Resources, National Institute of Food and Drug Safety, Korea FDA, Osong 363-700, Korea
| | - Seung Wan Jee
- Department of Laboratory Animal Resources, National Institute of Food and Drug Safety, Korea FDA, Osong 363-700, Korea
| | - Chul Joo Lim
- Department of Laboratory Animal Resources, National Institute of Food and Drug Safety, Korea FDA, Osong 363-700, Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, South Korea.,Interdisciplinary Program for Bioinformatics, Program or Cancer Biology and BIO-MAX Institute, Seoul National University, Seoul 151-742, South Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources & Life Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea
| |
Collapse
|
17
|
The diversification of the LIM superclass at the base of the metazoa increased subcellular complexity and promoted multicellular specialization. PLoS One 2012; 7:e33261. [PMID: 22438907 PMCID: PMC3305314 DOI: 10.1371/journal.pone.0033261] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 02/07/2012] [Indexed: 01/15/2023] Open
Abstract
Background Throughout evolution, the LIM domain has been deployed in many different domain configurations, which has led to the formation of a large and distinct group of proteins. LIM proteins are involved in relaying stimuli received at the cell surface to the nucleus in order to regulate cell structure, motility, and division. Despite their fundamental roles in cellular processes and human disease, little is known about the evolution of the LIM superclass. Results We have identified and characterized all known LIM domain-containing proteins in six metazoans and three non-metazoans. In addition, we performed a phylogenetic analysis on all LIM domains and, in the process, have identified a number of novel non-LIM domains and motifs in each of these proteins. Based on these results, we have formalized a classification system for LIM proteins, provided reasonable timing for class and family origin events; and identified lineage-specific loss events. Our analysis is the first detailed description of the full set of LIM proteins from the non-bilaterian species examined in this study. Conclusion Six of the 14 LIM classes originated in the stem lineage of the Metazoa. The expansion of the LIM superclass at the base of the Metazoa undoubtedly contributed to the increase in subcellular complexity required for the transition from a unicellular to multicellular lifestyle and, as such, was a critically important event in the history of animal multicellularity.
Collapse
|
18
|
Li A, Ponten F, dos Remedios CG. The interactome of LIM domain proteins: The contributions of LIM domain proteins to heart failure and heart development. Proteomics 2012; 12:203-25. [DOI: 10.1002/pmic.201100492] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 12/22/2022]
|
19
|
Kihara T, Shinohara S, Fujikawa R, Sugimoto Y, Murata M, Miyake J. Regulation of cysteine-rich protein 2 localization by the development of actin fibers during smooth muscle cell differentiation. Biochem Biophys Res Commun 2011; 411:96-101. [PMID: 21718689 DOI: 10.1016/j.bbrc.2011.06.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 11/26/2022]
Abstract
Cysteine-rich protein 2 (CRP2) is a cofactor for smooth muscle cell (SMC) differentiation. Here, we examined the mechanism of CRP2 distribution dynamics during SMC differentiation. CRP2 protein directly associated with F-actin through its N-terminal LIM domain and Gly-rich region, as determined by ELISA. In undifferentiated cells that contain few actin stress fibers, CRP2 was broadly distributed throughout the whole cell, including the nucleus. After induction of SMC differentiation, CRP2 localized to actin stress fibers as they formed. The stress fiber-localized CRP2 entered the nucleus because of induced actin depolymerization. These CRP2 dynamics were reproduced by in silico simulation. CRP2 localization dynamics, which affect CRP2 function, are regulated by the formation of actin stress fibers in conjunction with SMC differentiation.
Collapse
Affiliation(s)
- Takanori Kihara
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Wasylyk C, Zambrano A, Zhao C, Brants J, Abecassis J, Schalken JA, Rogatsch H, Schaefer G, Pycha A, Klocker H, Wasylyk B. Tubulin tyrosine ligase like 12 links to prostate cancer through tubulin posttranslational modification and chromosome ploidy. Int J Cancer 2010; 127:2542-53. [PMID: 20162578 DOI: 10.1002/ijc.25261] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prostate cancer is a common cause of death, and an important goal is to establish the pathways and functions of causative genes. We isolated RNAs that are differentially expressed in macrodissected prostate cancer samples. This study focused on 1 identified gene, TTLL12, which was predicted to modify tubulins, an established target for tumor therapy. TTLL12 is the most poorly characterized member of a recently discovered 14-member family of proteins that catalyze posttranslational modification of tubulins. We show that human TTLL12 is expressed in the proliferating layer of benign prostate. Expression increases during cancer progression to metastasis. It is highly expressed in many metastatic prostate cancer cell lines. It partially colocalizes with vimentin intermediate filaments and cellular structures containing tubulin, including midbodies, centrosomes, intercellular bridges and the mitotic spindle. Downregulation of TTLL12 affects several posttranslational modifications of tubulin (detyrosination and subsequent deglutamylation and polyglutamylation). Overexpression alters chromosomal ploidy. These results raise the possibility that TTLL12 could contribute to tumorigenesis through effects on the cytoskeleton, tubulin modification and chromosome number stability. This study contributes a step toward developing more selective agents targeting microtubules, an already successful target for tumor therapy.
Collapse
Affiliation(s)
- Christine Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS-U 964 INSERM, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Papuga J, Hoffmann C, Dieterle M, Moes D, Moreau F, Tholl S, Steinmetz A, Thomas C. Arabidopsis LIM proteins: a family of actin bundlers with distinct expression patterns and modes of regulation. THE PLANT CELL 2010; 22:3034-52. [PMID: 20817848 PMCID: PMC2965535 DOI: 10.1105/tpc.110.075960] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 07/04/2010] [Accepted: 08/19/2010] [Indexed: 05/18/2023]
Abstract
Recently, a number of two LIM-domain containing proteins (LIMs) have been reported to trigger the formation of actin bundles, a major higher-order cytoskeletal assembly. Here, we analyzed the six Arabidopsis thaliana LIM proteins. Promoter-β-glucuronidase reporter studies revealed that WLIM1, WLIM2a, and WLIM2b are widely expressed, whereas PLIM2a, PLIM2b, and PLIM2c are predominantly expressed in pollen. LIM-green fluorescent protein (GFP) fusions all decorated the actin cytoskeleton and increased actin bundle thickness in transgenic plants and in vitro, although with different affinities and efficiencies. Remarkably, the activities of WLIMs were calcium and pH independent, whereas those of PLIMs were inhibited by high pH and, in the case of PLIM2c, by high [Ca(2+)]. Domain analysis showed that the C-terminal domain is key for the responsiveness of PLIM2c to pH and calcium. Regulation of LIM by pH was further analyzed in vivo by tracking GFP-WLIM1 and GFP-PLIM2c during intracellular pH modifications. Cytoplasmic alkalinization specifically promoted release of GFP-PLIM2c but not GFP-WLIM1, from filamentous actin. Consistent with these data, GFP-PLIM2c decorated long actin bundles in the pollen tube shank, a region of relatively low pH. Together, our data support a prominent role of Arabidopsis LIM proteins in the regulation of actin cytoskeleton organization and dynamics in sporophytic tissues and pollen.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Clément Thomas
- Centre de Recherche Public-Santé, L-1526 Luxembourg, Luxembourg
| |
Collapse
|
22
|
Gross DR. Other Transgenic Animal Models Used in Cardiovascular Studies. ANIMAL MODELS IN CARDIOVASCULAR RESEARCH 2009. [PMCID: PMC7121723 DOI: 10.1007/978-0-387-95962-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Previous chapters have described a large number of transgenic animal models used to study specific cardiovascular syndromes. This chapter will fill in some gaps. Many of these transgenic animals were developed to study normal and/or abnormal physiological responses in other organ systems, or to study basic biochemical and molecular reactions or pathways. These models were then discovered to also have effects on the cardiovascular system, some of them unanticipated. A word of caution, particularly when highly inbred mouse strains are used to develop transgenic models - not all strains of a particular species are created equal. When cardiovascular parameters of age- and sex-matched A/J and C57BL/6J inbred mice were compared the C57BL/6J mice demonstrated eccentric physiologic ventricular hypertrophy, increased ventricular function, lower heart rates, and increased exercise endurance.1
Collapse
|