1
|
Genetic Variability of the Mating Recognition Gene in Populations of Brachionus plicatilis. DIVERSITY 2022. [DOI: 10.3390/d14030155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of reproductive barriers promotes within-species divergence and is a requisite for speciation to occur. Mate recognition in the rotifer B. plicatilis is mediated through a surface glycoprotein called Mating Recognition Protein (MRP). Here we investigate the genetic variation of the mmr-b, MRP coding, gene in different natural populations of B. plicatilis from the Iberian Peninsula, that present different degree of population differentiation, with known adaptive divergence in some cases. The MRP gene consists of several nearly identical tandem repeats. We found a relatively high diversity within and among populations both in the number of repeats, as well as in the nucleotide sequence. Despite that most changes are neutral, variation that can potentially affect the protein function was found in two polymorphic sites within a repeat in some of these populations. Although being mostly subject to stabilizing selection, we have found a noticeable pattern of increasing mmr-b gene diversification correlated to increasing differences in environmental factors. The interplay between genetic differentiation, local adaptation and differentiation of the mating recognition system can lead to speciation events in nearly sympatric populations.
Collapse
|
2
|
Sunde J, Larsson P, Forsman A. Adaptations of early development to local spawning temperature in anadromous populations of pike (Esox lucius). BMC Evol Biol 2019; 19:148. [PMID: 31331267 PMCID: PMC6647320 DOI: 10.1186/s12862-019-1475-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/11/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In the wake of climate change many environments will be exposed to increased and more variable temperatures. Knowledge about how species and populations respond to altered temperature regimes is therefore important to improve projections of how ecosystems will be affected by global warming, and to aid management. We conducted a common garden, split-brood temperature gradient (4.5 °C, 9.7 °C and 12.3 °C) experiment to study the effects of temperature in two populations (10 families from each population) of anadromous pike (Esox lucius) that normally experience different temperatures during spawning. Four offspring performance measures (hatching success, day degrees until hatching, fry survival, and fry body length) were compared between populations and among families. RESULTS Temperature affected all performance measures in a population-specific manner. Low temperature had a positive effect on the Harfjärden population and a negative effect on the Lervik population. Further, the effects of temperature differed among families within populations. CONCLUSIONS The population-specific responses to temperature indicate genetic differentiation in developmental plasticity between populations, and may reflect an adaptation to low temperature during early fry development in Harfjärden, where the stream leading up to the wetland dries out relatively early in the spring, forcing individuals to spawn early. The family-specific responses to temperature treatment indicate presence of genetic variation for developmental plasticity (G x E) within both populations. Protecting between- and within-population genetic variation for developmental plasticity and high temperature-related adaptive potential of early life history traits will be key to long-term viability and persistence in the face of continued climate change.
Collapse
Affiliation(s)
- Johanna Sunde
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, SE-392 31 Kalmar, Sweden
| | - Per Larsson
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, SE-392 31 Kalmar, Sweden
| | - Anders Forsman
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, SE-392 31 Kalmar, Sweden
| |
Collapse
|
3
|
Tamario C, Sunde J, Petersson E, Tibblin P, Forsman A. Ecological and Evolutionary Consequences of Environmental Change and Management Actions for Migrating Fish. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00271] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
4
|
Montero-Pau J, Gómez A, Serra M. Founder effects drive the genetic structure of passively dispersed aquatic invertebrates. PeerJ 2018; 6:e6094. [PMID: 30581680 PMCID: PMC6294052 DOI: 10.7717/peerj.6094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/10/2018] [Indexed: 11/25/2022] Open
Abstract
Populations of passively dispersed organisms in continental aquatic habitats typically show high levels of neutral genetic differentiation despite their high dispersal capabilities. Several evolutionary factors, including founder events, local adaptation, and life cycle features such as high population growth rates and the presence of propagule banks, have been proposed to be responsible for this paradox. Here, we have modeled the colonization process to assess the impact of migration rate, population growth rate, population size, local adaptation and life-cycle features on the population genetic structure in these organisms. Our simulations show that the strongest effect on population structure are persistent founder effects, resulting from the interaction of a few population founders, high population growth rates, large population sizes and the presence of diapausing egg banks. In contrast, the role of local adaptation, genetic hitchhiking and migration is limited to small populations in these organisms. Our results indicate that local adaptation could have different impact on genetic structure in different groups of zooplankters.
Collapse
Affiliation(s)
- Javier Montero-Pau
- Department of Biochemistry and Molecular Biology, Universidad de Valencia, Valencia, Spain.,Department of Biological Sciences, University of Hull, Hull, United Kingdom
| | - Africa Gómez
- Department of Biological Sciences, University of Hull, Hull, United Kingdom
| | - Manuel Serra
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
5
|
Sunde J, Tibblin P, Larsson P, Forsman A. Sex-specific effects of outbreeding on offspring quality in pike ( Esox lucius). Ecol Evol 2018; 8:10448-10459. [PMID: 30464817 PMCID: PMC6238122 DOI: 10.1002/ece3.4510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Intraspecific genetic admixture occurs when previously separated populations within a species start interbreeding, and it can have either positive, negative, or neutral effects on reproductive performance. As there currently is no reliable predictor for the outcome of admixture, an increased knowledge about admixture effects in different species and populations is important to increase the understanding about what determines the response to admixture. We tested for effects of admixture on F1 offspring quality in three subpopulations of pike (Esox lucius). Gametes were collected in the field, and eggs from each female were experimentally fertilized with milt from a male from each population (one "pure" and two "admixed" treatments). Three offspring quality measures (hatching success, fry survival, and fry length) were determined and compared between (a) pure and admixed population combinations and (b) the sex-specific treatments within each admixed population combination (based on the origin of the male and female, respectively). The results suggested that although there were no overall effects of admixture on offspring quality, the consequences for a given population combination could be sex-specific and thus differ depending on which of the parents originated from one or the other population. All offspring quality traits were influenced by both maternal ID and paternal ID. Sex- and individual-specific effects can have implications for dispersal behavior and gene flow between natural populations, and are important to consider in conservation efforts.
Collapse
Affiliation(s)
- Johanna Sunde
- Department of Biology and Environmental ScienceEcology and Evolution in Microbial Model Systems, EEMiSLinnaeus UniversityKalmarSweden
| | - Petter Tibblin
- Department of Biology and Environmental ScienceEcology and Evolution in Microbial Model Systems, EEMiSLinnaeus UniversityKalmarSweden
| | - Per Larsson
- Department of Biology and Environmental ScienceEcology and Evolution in Microbial Model Systems, EEMiSLinnaeus UniversityKalmarSweden
| | - Anders Forsman
- Department of Biology and Environmental ScienceEcology and Evolution in Microbial Model Systems, EEMiSLinnaeus UniversityKalmarSweden
| |
Collapse
|
6
|
Riss S, Arthofer W, Steiner FM, Schlick-Steiner BC, Pichler M, Stadler P, Stelzer CP. Do genome size differences within Brachionus asplanchnoidis (Rotifera, Monogononta) cause reproductive barriers among geographic populations? HYDROBIOLOGIA 2017; 796:59-75. [PMID: 34764495 PMCID: PMC7611973 DOI: 10.1007/s10750-016-2872-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Genome size in the rotifer Brachionus asplanchnoidis, which belongs to the B. plicatilis species complex, is greatly enlarged and extremely variable (205-407 Mbp). Such variation raises the question whether large genome size differences among individuals might cause reproductive barriers, which could trigger speciation within this group by restricting gene flow across populations. To test this hypothesis, we used B. asplanchnoidis clones from three geographic populations and conducted assays to quantify reproductive isolation among clones differing in genome size, and we examined the population structure of all three populations using amplified fragment length polymorphisms (AFLPs). AFLPs indicated that these populations were genetically separated, but we also found hints of natural gene flow. Clones from different populations with genome size differences of up to 1.7-fold could interbred successfully in the laboratory and give rise to viable, fertile 'hybrid' offspring. Genome sizes of these 'hybrids' were intermediate between those of their parents, and fitness in terms of male production, population growth, and egg development time was not negatively affected. Thus, we found no evidence for reproductive isolation or nascent speciation within B. asplanchnoidis. Instead, our results suggest that gene flow within this species can occur despite a remarkably large range of genome sizes.
Collapse
Affiliation(s)
- Simone Riss
- Research Institute for Limnology, University of Innsbruck, Mondseestr. 9, 5310 Mondsee, Austria
| | - Wolfgang Arthofer
- Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Florian M Steiner
- Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | | | - Maria Pichler
- Research Institute for Limnology, University of Innsbruck, Mondseestr. 9, 5310 Mondsee, Austria
| | - Peter Stadler
- Research Institute for Limnology, University of Innsbruck, Mondseestr. 9, 5310 Mondsee, Austria
| | - Claus-Peter Stelzer
- Research Institute for Limnology, University of Innsbruck, Mondseestr. 9, 5310 Mondsee, Austria
| |
Collapse
|
7
|
Kronenberger JA, Funk WC, Smith JW, Fitzpatrick SW, Angeloni LM, Broder ED, Ruell EW. Testing the demographic effects of divergent immigrants on small populations of Trinidadian guppies. Anim Conserv 2016. [DOI: 10.1111/acv.12286] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- J. A. Kronenberger
- Department of Biology Colorado State University Fort Collins CO USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
| | - W. C. Funk
- Department of Biology Colorado State University Fort Collins CO USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
| | - J. W. Smith
- Department of Biology Colorado State University Fort Collins CO USA
| | | | - L. M. Angeloni
- Department of Biology Colorado State University Fort Collins CO USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
| | - E. D. Broder
- Department of Biology Colorado State University Fort Collins CO USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
| | - E. W. Ruell
- Department of Biology Colorado State University Fort Collins CO USA
| |
Collapse
|
8
|
Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA. Genetic rescue to the rescue. Trends Ecol Evol 2015; 30:42-9. [DOI: 10.1016/j.tree.2014.10.009] [Citation(s) in RCA: 355] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 01/26/2023]
|
9
|
Gabaldón C, Montero-Pau J, Serra M, Carmona MJ. Morphological similarity and ecological overlap in two rotifer species. PLoS One 2013; 8:e57087. [PMID: 23451154 PMCID: PMC3579795 DOI: 10.1371/journal.pone.0057087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/17/2013] [Indexed: 11/18/2022] Open
Abstract
Co-occurrence of cryptic species raises theoretically relevant questions regarding their coexistence and ecological similarity. Given their great morphological similitude and close phylogenetic relationship (i.e., niche retention), these species will have similar ecological requirements and are expected to have strong competitive interactions. This raises the problem of finding the mechanisms that may explain the coexistence of cryptic species and challenges the conventional view of coexistence based on niche differentiation. The cryptic species complex of the rotifer Brachionus plicatilis is an excellent model to study these questions and to test hypotheses regarding ecological differentiation. Rotifer species within this complex are filtering zooplankters commonly found inhabiting the same ponds across the Iberian Peninsula and exhibit an extremely similar morphology-some of them being even virtually identical. Here, we explore whether subtle differences in body size and morphology translate into ecological differentiation by comparing two extremely morphologically similar species belonging to this complex: B. plicatilis and B. manjavacas. We focus on three key ecological features related to body size: (1) functional response, expressed by clearance rates; (2) tolerance to starvation, measured by growth and reproduction; and (3) vulnerability to copepod predation, measured by the number of preyed upon neonates. No major differences between B. plicatilis and B. manjavacas were found in the response to these features. Our results demonstrate the existence of a substantial niche overlap, suggesting that the subtle size differences between these two cryptic species are not sufficient to explain their coexistence. This lack of evidence for ecological differentiation in the studied biotic niche features is in agreement with the phylogenetic limiting similarity hypothesis but requires a mechanistic explanation of the coexistence of these species not based on differentiation related to biotic niche axes.
Collapse
Affiliation(s)
- Carmen Gabaldón
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia, Spain.
| | | | | | | |
Collapse
|
10
|
Ching J, Musheyev SA, Chowdhury D, Kim JA, Choi Y, Dennehy JJ. MIGRATION ENHANCES ADAPTATION IN BACTERIOPHAGE POPULATIONS EVOLVING IN ECOLOGICAL SINKS. Evolution 2012; 67:10-7. [DOI: 10.1111/j.1558-5646.2012.01742.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|