1
|
Guo X, Wang H, Lin D, Wang Y, Jin X. Cytonuclear evolution in fully heterotrophic plants: lifestyles and gene function determine scenarios. BMC PLANT BIOLOGY 2024; 24:989. [PMID: 39428472 PMCID: PMC11492565 DOI: 10.1186/s12870-024-05702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Evidence shows that full mycoheterotrophs and holoparasites often have reduced plastid genomes with rampant gene loss, elevated substitution rates, and deeply altered to conventional evolution in mitochondrial genomes, but mechanisms of cytonuclear evolution is unknown. Endoparasitic Sapria himalayana and mycoheterotrophic Gastrodia and Platanthera guangdongensis represent different heterotrophic types, providing a basis to illustrate cytonuclear evolution. Here, we focused on nuclear-encoded plastid / mitochondrial (N-pt / mt) -targeting protein complexes, including caseinolytic protease (ClpP), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo), oxidative phosphorylation system (OXPHOS), DNA recombination, replication, and repair (DNA-RRR) system, and pentatricopeptide repeat (PPR) proteins, to identify evolutionary drivers for cytonuclear interaction. RESULTS The severity of gene loss of N-pt PPR and pt-RRR genes was positively associated with increased degree of heterotrophy in full mycoheterotrophs and S. himalayana, while N-mt PPR and mt-RRR genes were retained. Substitution rates of organellar and nuclear genes encoding N-pt/mt subunits in protein complexes were evaluated, cytonuclear coevolution was identified in S. himalayana, whereas disproportionate rates of evolution were observed in the OXPHOS complex in full mycoheterotrophs, only slight accelerations in substitution rates were identified in N-mt genes of full mycoheterotrophs. CONCLUSIONS Nuclear compensatory evolution was identified in protein complexes encoded by plastid and N-pt genes. Selection shaping codon preferences, functional constraint, mt-RRR gene regulation, and post-transcriptional regulation of PPR genes all facilitate mito-nuclear evolution. Our study enriches our understanding of genomic coevolution scenarios in fully heterotrophic plants.
Collapse
Affiliation(s)
- Xuelian Guo
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Hanchen Wang
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Dongliang Lin
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yajun Wang
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Xiaohua Jin
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China.
| |
Collapse
|
2
|
Bentz PC, Leebens‐Mack J. Developing Asparagaceae1726: An Asparagaceae-specific probe set targeting 1726 loci for Hyb-Seq and phylogenomics in the family. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11597. [PMID: 39360194 PMCID: PMC11443443 DOI: 10.1002/aps3.11597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 10/04/2024]
Abstract
Premise Target sequence capture (Hyb-Seq) is a cost-effective sequencing strategy that employs RNA probes to enrich for specific genomic sequences. By targeting conserved low-copy orthologs, Hyb-Seq enables efficient phylogenomic investigations. Here, we present Asparagaceae1726-a Hyb-Seq probe set targeting 1726 low-copy nuclear genes for phylogenomics in the angiosperm family Asparagaceae-which will aid the often-challenging delineation and resolution of evolutionary relationships within Asparagaceae. Methods Here we describe and validate the Asparagaceae1726 probe set (https://github.com/bentzpc/Asparagaceae1726) in six of the seven subfamilies of Asparagaceae. We perform phylogenomic analyses with these 1726 loci and evaluate how inclusion of paralogs and bycatch plastome sequences can enhance phylogenomic inference with target-enriched data sets. Results We recovered at least 82% of target orthologs from all sampled taxa, and phylogenomic analyses resulted in strong support for all subfamilial relationships. Additionally, topology and branch support were congruent between analyses with and without inclusion of target paralogs, suggesting that paralogs had limited effect on phylogenomic inference. Discussion Asparagaceae1726 is effective across the family and enables the generation of robust data sets for phylogenomics of any Asparagaceae taxon. Asparagaceae1726 establishes a standardized set of loci for phylogenomic analysis in Asparagaceae, which we hope will be widely used for extensible and reproducible investigations of diversification in the family.
Collapse
Affiliation(s)
- Philip C. Bentz
- Department of Plant BiologyUniversity of Georgia120 Carlton St.Athens30605GeorgiaUSA
| | - Jim Leebens‐Mack
- Department of Plant BiologyUniversity of Georgia120 Carlton St.Athens30605GeorgiaUSA
| |
Collapse
|
3
|
Naranjo JG, Sither CB, Conant GC. Shared single copy genes are generally reliable for inferring phylogenetic relationships among polyploid taxa. Mol Phylogenet Evol 2024; 196:108087. [PMID: 38677353 DOI: 10.1016/j.ympev.2024.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/22/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Polyploidy, or whole-genome duplication, is expected to confound the inference of species trees with phylogenetic methods for two reasons. First, the presence of retained duplicated genes requires the reconciliation of the inferred gene trees to a proposed species tree. Second, even if the analyses are restricted to shared single copy genes, the occurrence of reciprocal gene loss, where the surviving genes in different species are paralogs from the polyploidy rather than orthologs, will mean that such genes will not have evolved under the corresponding species tree and may not produce gene trees that allow inference of that species tree. Here we analyze three different ancient polyploidy events, using synteny-based inferences of orthology and paralogy to infer gene trees from nearly 17,000 sets of homologous genes. We find that the simple use of single copy genes from polyploid organisms provides reasonably robust phylogenetic signals, despite the presence of reciprocal gene losses. Such gene trees are also most often in accord with the inferred species relationships inferred from maximum likelihood models of gene loss after polyploidy: a completely distinct phylogenetic signal present in these genomes. As seen in other studies, however, we find that methods for inferring phylogenetic confidence yield high support values even in cases where the underlying data suggest meaningful conflict in the phylogenetic signals.
Collapse
Affiliation(s)
- Jaells G Naranjo
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Charles B Sither
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA; Genetics and Genomics Academy, North Carolina State University, Raleigh, NC, USA; Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
4
|
Cantu D, Massonnet M, Cochetel N. The wild side of grape genomics. Trends Genet 2024; 40:601-612. [PMID: 38777691 DOI: 10.1016/j.tig.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
With broad genetic diversity and as a source of key agronomic traits, wild grape species (Vitis spp.) are crucial to enhance viticulture's climatic resilience and sustainability. This review discusses how recent breakthroughs in the genome assembly and analysis of wild grape species have led to discoveries on grape evolution, from wild species' adaptation to environmental stress to grape domestication. We detail how diploid chromosome-scale genomes from wild Vitis spp. have enabled the identification of candidate disease-resistance and flower sex determination genes and the creation of the first Vitis graph-based pangenome. Finally, we explore how wild grape genomics can impact grape research and viticulture, including aspects such as data sharing, the development of functional genomics tools, and the acceleration of genetic improvement.
Collapse
Affiliation(s)
- Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA; Genome Center, University of California, Davis, Davis, CA 95616, USA.
| | - Mélanie Massonnet
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| | - Noé Cochetel
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
5
|
Muti RM, Barrett CF, Sinn BT. Evolution of Whirly1 in the angiosperms: sequence, splicing, and expression in a clade of early transitional mycoheterotrophic orchids. FRONTIERS IN PLANT SCIENCE 2024; 15:1241515. [PMID: 39006962 PMCID: PMC11239579 DOI: 10.3389/fpls.2024.1241515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
The plastid-targeted transcription factor Whirly1 (WHY1) has been implicated in chloroplast biogenesis, plastid genome stability, and fungal defense response, which together represent characteristics of interest for the study of autotrophic losses across the angiosperms. While gene loss in the plastid and nuclear genomes has been well studied in mycoheterotrophic plants, the evolution of the molecular mechanisms impacting genome stability is completely unknown. Here, we characterize the evolution of WHY1 in four early transitional mycoheterotrophic orchid species in the genus Corallorhiza by synthesizing the results of phylogenetic, transcriptomic, and comparative genomic analyses with WHY1 genomic sequences sampled from 21 orders of angiosperms. We found an increased number of non-canonical WHY1 isoforms assembled from all but the greenest Corallorhiza species, including intron retention in some isoforms. Within Corallorhiza, phylotranscriptomic analyses revealed the presence of tissue-specific differential expression of WHY1 in only the most photosynthetically capable species and a coincident increase in the number of non-canonical WHY1 isoforms assembled from fully mycoheterotrophic species. Gene- and codon-level tests of WHY1 selective regimes did not infer significant signal of either relaxed selection or episodic diversifying selection in Corallorhiza but did so for relaxed selection in the late-stage full mycoheterotrophic orchids Epipogium aphyllum and Gastrodia elata. Additionally, nucleotide substitutions that most likely impact the function of WHY1, such as nonsense mutations, were only observed in late-stage mycoheterotrophs. We propose that our findings suggest that splicing and expression changes may precede the selective shifts we inferred for late-stage mycoheterotrophic species, which therefore does not support a primary role for WHY1 in the transition to mycoheterotrophy in the Orchidaceae. Taken together, this study provides the most comprehensive view of WHY1 evolution across the angiosperms to date.
Collapse
Affiliation(s)
- Rachel M. Muti
- Department of Biology and Earth Science, Otterbein University, Westerville, OH, United States
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
| | - Craig F. Barrett
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Brandon T. Sinn
- Department of Biology and Earth Science, Otterbein University, Westerville, OH, United States
- Faculty of Biology, University of Latvia, Riga, Latvia
| |
Collapse
|
6
|
Khan R, Biffin E, van Dijk KJ, Hill RS, Liu J, Waycott M. Development of a Target Enrichment Probe Set for Conifer (REMcon). BIOLOGY 2024; 13:361. [PMID: 38927241 PMCID: PMC11200496 DOI: 10.3390/biology13060361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
Conifers are an ecologically and economically important seed plant group that can provide significant insights into the evolution of land plants. Molecular phylogenetics has developed as an important approach in evolutionary studies, although there have been relatively few studies of conifers that employ large-scale data sourced from multiple nuclear genes. Target enrichment sequencing (target capture, exon capture, or Hyb-Seq) has developed as a key approach in modern phylogenomic studies. However, until now, there has been no bait set that specifically targets the entire conifer clade. REMcon is a target sequence capture probe set intended for family- and species-level phylogenetic studies of conifers that target c. 100 single-copy nuclear loci. We tested the REMcon probe set using 69 species, including 44 conifer genera across six families and four other gymnosperm taxa, to evaluate the efficiency of target capture to efficiently generate comparable DNA sequence data across conifers. The recovery of target loci was high, with, on average, 94% of the targeted regions recovered across samples with high read coverage. A phylogenetic analysis of these data produced a well-supported topology that is consistent with the current understanding of relationships among conifers. The REMcon bait set will be useful in generating relatively large-scale nuclear data sets consistently for any conifer lineage.
Collapse
Affiliation(s)
- Raees Khan
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5005, Australia; (K.-j.v.D.); (R.S.H.); (M.W.)
- State Herbarium of South Australia, Adelaide, SA 5000, Australia;
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China;
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Ed Biffin
- State Herbarium of South Australia, Adelaide, SA 5000, Australia;
| | - Kor-jent van Dijk
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5005, Australia; (K.-j.v.D.); (R.S.H.); (M.W.)
| | - Robert S. Hill
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5005, Australia; (K.-j.v.D.); (R.S.H.); (M.W.)
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China;
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Michelle Waycott
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5005, Australia; (K.-j.v.D.); (R.S.H.); (M.W.)
- State Herbarium of South Australia, Adelaide, SA 5000, Australia;
| |
Collapse
|
7
|
Scali M, Spinsanti G, Vignani R. Validation of a simplified small-scale DNA extraction protocol from wine by quantitative real-time PCR. 3 Biotech 2024; 14:145. [PMID: 38706928 PMCID: PMC11065827 DOI: 10.1007/s13205-024-03992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
In the present study, we compared a simplified small-scale purification protocol to obtain DNA admixtures out of wine, with our large-scale published method. The extraction methods must provide DNA free of PCR inhibitors, that can interfere with DNA amplification. To evaluate the efficiency of grapevine's nuclear DNA extraction from wine, the new protocol was also compared in terms of purity and yield to the DNA obtained out of grapevine's (Vitis vinifera) leaf tissue, using a commercial kit. Two single-copy nuclear genes, nine-cis-epoxy carotenoid dioxygenase 2 (NCED2), and prefoldin subunit 5-like (PS5) were amplified in DNA extracted from wine and grapevine by real-time TaqMan PCR to determine the presence of inhibitors in relation to the diversity of starting biological matrix. This study showed that the small-scale, simpler method for extracting DNA from wine produced effective results in terms of inhibitor presence and purity. Furthermore, even though the initial biological matrix was more complicated, the grapevine nuclear DNA that was removed from wine was qualitatively equivalent to the DNA that was isolated from the leaves. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03992-x.
Collapse
Affiliation(s)
- Monica Scali
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Giacomo Spinsanti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Rita Vignani
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
8
|
Apodiakou A, Alseekh S, Hoefgen R, Whitcomb SJ. Overexpression of SLIM1 transcription factor accelerates vegetative development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:1327152. [PMID: 38571711 PMCID: PMC10988502 DOI: 10.3389/fpls.2024.1327152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
The transcription factor Sulfur Limitation 1 (SLIM1) belongs to the plant-specific Ethylene Insenstive3-Like transcription factor family and is known to coordinate gene expression in response to sulfur deficiency. However, the roles of SLIM1 in nutrient-sufficient conditions have not been characterized. Employing constitutive SLIM1 overexpression (35S::SLIM1) and CRISPR/Cas9 mutant plants (slim1-cr), we identified several distinct phenotypes in nutrient-sufficient conditions in Arabidopsis thaliana. Overexpression of SLIM1 results in plants with approximately twofold greater rosette area throughout vegetative development. 35S::SLIM1 plants also bolt earlier and exhibit earlier downregulation of photosynthesis-associated genes and earlier upregulation of senescence-associated genes than Col-0 and slim1-cr plants. This suggests that overexpression of SLIM1 accelerates development in A. thaliana. Genome-wide differential gene expression analysis relative to Col-0 at three time points with slim1-cr and two 35S::SLIM1 lines allowed us to identify 1,731 genes regulated directly or indirectly by SLIM1 in vivo.
Collapse
Affiliation(s)
- Anastasia Apodiakou
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Saleh Alseekh
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Rainer Hoefgen
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Sarah J. Whitcomb
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- Cereal Crops Research Unit, United States Department of Agriculture - Agricultural Research Service, Madison, WI, United States
| |
Collapse
|
9
|
Zwonitzer KD, Tressel LG, Wu Z, Kan S, Broz AK, Mower JP, Ruhlman TA, Jansen RK, Sloan DB, Havird JC. Genome copy number predicts extreme evolutionary rate variation in plant mitochondrial DNA. Proc Natl Acad Sci U S A 2024; 121:e2317240121. [PMID: 38427600 PMCID: PMC10927533 DOI: 10.1073/pnas.2317240121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
Nuclear and organellar genomes can evolve at vastly different rates despite occupying the same cell. In most bilaterian animals, mitochondrial DNA (mtDNA) evolves faster than nuclear DNA, whereas this trend is generally reversed in plants. However, in some exceptional angiosperm clades, mtDNA substitution rates have increased up to 5,000-fold compared with closely related lineages. The mechanisms responsible for this acceleration are generally unknown. Because plants rely on homologous recombination to repair mtDNA damage, we hypothesized that mtDNA copy numbers may predict evolutionary rates, as lower copy numbers may provide fewer templates for such repair mechanisms. In support of this hypothesis, we found that copy number explains 47% of the variation in synonymous substitution rates of mtDNA across 60 diverse seed plant species representing ~300 million years of evolution. Copy number was also negatively correlated with mitogenome size, which may be a cause or consequence of mutation rate variation. Both relationships were unique to mtDNA and not observed in plastid DNA. These results suggest that homologous recombinational repair plays a role in driving mtDNA substitution rates in plants and may explain variation in mtDNA evolution more broadly across eukaryotes. Our findings also contribute to broader questions about the relationships between mutation rates, genome size, selection efficiency, and the drift-barrier hypothesis.
Collapse
Affiliation(s)
- Kendra D. Zwonitzer
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Lydia G. Tressel
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
- Marine College, Shandong University, Weihai264209, China
| | - Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO80523
| | - Jeffrey P. Mower
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE68588
| | - Tracey A. Ruhlman
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Robert K. Jansen
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO80523
| | - Justin C. Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
10
|
Alves RM, de Abreu VAC, Oliveira RP, Almeida JVDA, de Oliveira MDM, Silva SR, Paschoal AR, de Almeida SS, de Souza PAF, Ferro JA, Miranda VFO, Figueira A, Domingues DS, Varani AM. Genomic decoding of Theobroma grandiflorum (cupuassu) at chromosomal scale: evolutionary insights for horticultural innovation. Gigascience 2024; 13:giae027. [PMID: 38837946 PMCID: PMC11152179 DOI: 10.1093/gigascience/giae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/21/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Theobroma grandiflorum (Malvaceae), known as cupuassu, is a tree indigenous to the Amazon basin, valued for its large fruits and seed pulp, contributing notably to the Amazonian bioeconomy. The seed pulp is utilized in desserts and beverages, and its seed butter is used in cosmetics. Here, we present the sequenced telomere-to-telomere genome of cupuassu, disclosing its genomic structure, evolutionary features, and phylogenetic relationships within the Malvaceae family. FINDINGS The cupuassu genome spans 423 Mb, encodes 31,381 genes distributed in 10 chromosomes, and exhibits approximately 65% gene synteny with the Theobroma cacao genome, reflecting a conserved evolutionary history, albeit punctuated with unique genomic variations. The main changes are pronounced by bursts of long-terminal repeat retrotransposons at postspecies divergence, retrocopied and singleton genes, and gene families displaying distinctive patterns of expansion and contraction. Furthermore, positively selected genes are evident, particularly among retained and dispersed tandem and proximal duplicated genes associated with general fruit and seed traits and defense mechanisms, supporting the hypothesis of potential episodes of subfunctionalization and neofunctionalization following duplication, as well as impact from distinct domestication process. These genomic variations may underpin the differences observed in fruit and seed morphology, ripening, and disease resistance between cupuassu and the other Malvaceae species. CONCLUSIONS The cupuassu genome offers a foundational resource for both breeding improvement and conservation biology, yielding insights into the evolution and diversity within the genus Theobroma.
Collapse
Affiliation(s)
| | - Vinicius A C de Abreu
- Laboratório de Bioinformática e Computação de Alto Desempenho (LaBioCad), Faculdade de Computação (FACOMP), Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Rafaely Pantoja Oliveira
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - João Victor dos Anjos Almeida
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Mauro de Medeiros de Oliveira
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Saura R Silva
- Departamento de Biologia, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Alexandre R Paschoal
- Departamento de Ciência da Computação (DACOM), Grupo de e Bioinformática e Reconhecimento de Padrões (bioinfo-cp), Universidade Tecnológica Federal do Paraná (UTFPR), 80230-901 Cornélio Procópio, PR, Brazil
- Artificial Intelligence and Informatics, The Rosalind Franklin Institute, OX110QX Didcot, UK
| | - Sintia S de Almeida
- Laboratório de Bioinformática e Computação de Alto Desempenho (LaBioCad), Faculdade de Computação (FACOMP), Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Pedro A F de Souza
- Laboratório de Bioinformática e Computação de Alto Desempenho (LaBioCad), Faculdade de Computação (FACOMP), Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Jesus A Ferro
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Vitor F O Miranda
- Departamento de Biologia, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, 13416-000 Piracicaba, SP, Brazil
| | - Douglas S Domingues
- Departamento de Genética, Universidade de São Paulo (USP), Escola Superior de Agricultura Luiz de Queiroz (ESALQ), 13418-900 Piracicaba, SP, Brazil
| | - Alessandro M Varani
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| |
Collapse
|
11
|
Huang L, Zeng Y, Li J, Deng Y, Su G, Zhang J. One hundred single-copy nuclear sequence markers for olive variety identification: a case of fingerprinting database construction in China. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:86. [PMID: 38028815 PMCID: PMC10678893 DOI: 10.1007/s11032-023-01434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Olive is an ancient oil-producing tree, widely cultivated in Mediterranean countries, and now spread to other areas of the world, including China. Recently, several molecular databases were constructed in different countries and platforms for olive identification using simple sequence repeats (SSRs) or single-nucleotide polymorphisms (SNPs). However, comparing their results across laboratories was difficult. Herein, hundreds of polymorphic single-copy nuclear sequence markers were developed from the olive genome. Using the advantage of multiplex PCR amplification and high-throughput sequencing, a fingerprint database was constructed for the majority of olives cultivated in China. We used 100 high-quality sequence loci and estimated the genetic diversity and structure among all these varieties. We found that compared with that based on SSRs, the constructed fingerprint database based on these 100 sequences or a few of them, could provide a reliable olive variety identification platform in China, with high discrimination among different varieties using the principle of BLAST algorithm. An example of such identification platform based on this study was displayed on the web for the olive database in China (http://olivedb.cn/jianding). After resolving redundant genotypes, we identified 126 olive varieties with distinct genotypes in China. These varieties could be divided into two clusters, and it was revealed that the grouping of the varieties has a certain relationship with their origin. Herein, it is concluded that these single-copy orthologous nuclear sequences could be used to construct a universal fingerprint database of olives across different laboratories and platforms inexpensively. Based on such a database, variety identification can be performed easily by any laboratory, which would further facilitate olive breeding and variety exchange globally. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01434-9.
Collapse
Affiliation(s)
- Lan Huang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian District, Beijing, 100091 China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Yanfei Zeng
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian District, Beijing, 100091 China
| | - Jinhua Li
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian District, Beijing, 100091 China
| | - Yu Deng
- Institute of Olive, Longnan Academy of Economic Forestry, Longnan, 746000 Gansu China
| | - Guangcan Su
- Liangshan Zhongze New Technology Development Co. Ltd., Xichang, 615042 Sichuan China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian District, Beijing, 100091 China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| |
Collapse
|
12
|
Liu L, Chen M, Folk RA, Wang M, Zhao T, Shang F, Soltis DE, Li P. Phylogenomic and syntenic data demonstrate complex evolutionary processes in early radiation of the rosids. Mol Ecol Resour 2023; 23:1673-1688. [PMID: 37449554 DOI: 10.1111/1755-0998.13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Some of the most vexing problems of deep level relationship that remain in angiosperms involve the superrosids. The superrosid clade contains a quarter of all angiosperm species, with 18 orders in three subclades (Vitales, Saxifragales and core rosids) exhibiting remarkable morphological and ecological diversity. To help resolve deep-level relationships, we constructed a high-quality chromosome-level genome assembly for Tiarella polyphylla (Saxifragaceae) thus providing broader genomic representation of Saxifragales. Whole genome microsynteny analysis of superrosids showed that Saxifragales shared more synteny clusters with core rosids than Vitales, further supporting Saxifragales as more closely related with core rosids. To resolve the ordinal phylogeny of superrosids, we screened 122 single copy nuclear genes from genomes of 36 species, representing all 18 superrosid orders. Vitales were recovered as sister to all other superrosids (Saxifragales + core rosids). Our data suggest dramatic differences in relationships compared to earlier studies within core rosids. Fabids should be restricted to the nitrogen-fixing clade, while Picramniales, the Celastrales-Malpighiales (CM) clade, Huerteales, Oxalidales, Sapindales, Malvales and Brassicales formed an "expanded" malvid clade. The Celastrales-Oxalidales-Malpighiales (COM) clade (sensu APG IV) was not monophyletic. Crossosomatales, Geraniales, Myrtales and Zygophyllales did not belong to either of our well-supported malvids or fabids. There is strong discordance between nuclear and plastid phylogenetic hypotheses for superrosid relationships; we show that this is best explained by a combination of incomplete lineage sorting and ancient reticulation.
Collapse
Affiliation(s)
- Luxian Liu
- Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengzhen Chen
- Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, USA
| | - Meizhen Wang
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fude Shang
- Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, Henan, China
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Pan Li
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Hu J, Qiu S, Wang F, Li Q, Xiang CL, Di P, Wu Z, Jiang R, Li J, Zeng Z, Wang J, Wang X, Zhang Y, Fang S, Qiao Y, Ding J, Jiang Y, Xu Z, Chen J, Chen W. Functional divergence of CYP76AKs shapes the chemodiversity of abietane-type diterpenoids in genus Salvia. Nat Commun 2023; 14:4696. [PMID: 37542034 PMCID: PMC10403556 DOI: 10.1038/s41467-023-40401-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
The genus Salvia L. (Lamiaceae) comprises myriad distinct medicinal herbs, with terpenoids as one of their major active chemical groups. Abietane-type diterpenoids (ATDs), such as tanshinones and carnosic acids, are specific to Salvia and exhibit taxonomic chemical diversity among lineages. To elucidate how ATD chemical diversity evolved, we carried out large-scale metabolic and phylogenetic analyses of 71 Salvia species, combined with enzyme function, ancestral sequence and chemical trait reconstruction, and comparative genomics experiments. This integrated approach showed that the lineage-wide ATD diversities in Salvia were induced by differences in the oxidation of the terpenoid skeleton at C-20, which was caused by the functional divergence of the cytochrome P450 subfamily CYP76AK. These findings present a unique pattern of chemical diversity in plants that was shaped by the loss of enzyme activity and associated catalytic pathways.
Collapse
Affiliation(s)
- Jiadong Hu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai, 200003, China
| | - Shi Qiu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Feiyan Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing Li
- Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai, 200003, China
| | - Chun-Lei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Peng Di
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Ziding Wu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rui Jiang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jinxing Li
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhen Zeng
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xingxing Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuchen Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shiyuan Fang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuqi Qiao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Ding
- Urban Horticulture Research and Extension Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yun Jiang
- Urban Horticulture Research and Extension Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Zhichao Xu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Junfeng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wansheng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai, 200003, China.
| |
Collapse
|
14
|
Guo X, Wang F, Fang D, Lin Q, Sahu SK, Luo L, Li J, Chen Y, Dong S, Chen S, Liu Y, Luo S, Guo Y, Liu H. The genome of Acorus deciphers insights into early monocot evolution. Nat Commun 2023; 14:3662. [PMID: 37339966 PMCID: PMC10281966 DOI: 10.1038/s41467-023-38836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/17/2023] [Indexed: 06/22/2023] Open
Abstract
Acorales is the sister lineage to all the other extant monocot plants. Genomic resource enhancement of this genus can help to reveal early monocot genomic architecture and evolution. Here, we assemble the genome of Acorus gramineus and reveal that it has ~45% fewer genes than the majority of monocots, although they have similar genome size. Phylogenetic analyses based on both chloroplast and nuclear genes consistently support that A. gramineus is the sister to the remaining monocots. In addition, we assemble a 2.2 Mb mitochondrial genome and observe many genes exhibit higher mutation rates than that of most angiosperms, which could be the reason leading to the controversies of nuclear genes- and mitochondrial genes-based phylogenetic trees existing in the literature. Further, Acorales did not experience tau (τ) whole-genome duplication, unlike majority of monocot clades, and no large-scale gene expansion is observed. Moreover, we identify gene contractions and expansions likely linking to plant architecture, stress resistance, light harvesting, and essential oil metabolism. These findings shed light on the evolution of early monocots and genomic footprints of wetland plant adaptations.
Collapse
Affiliation(s)
- Xing Guo
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, PR China
| | - Fang Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, PR China
| | - Qiongqiong Lin
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, PR China
- College of Life Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, PR China
| | - Liuming Luo
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, PR China
- College of Life Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Jiani Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, PR China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yewen Chen
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong, 518004, PR China
| | - Sisi Chen
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, The Chinese Academy of Sciences, South China Botanical Garden, Guangzhou, Guangdong, 510650, PR China
| | - Yang Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, PR China
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong, 518004, PR China
| | - Shixiao Luo
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, The Chinese Academy of Sciences, South China Botanical Garden, Guangzhou, Guangdong, 510650, PR China
| | - Yalong Guo
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, PR China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, PR China.
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China.
| |
Collapse
|
15
|
Zhao J, Zhou X, Fang S, Zhu Z, Li Y, Yu H, He Z. Transcriptome-Based Study on the Phylogeny and Hybridization of Marattialean Ferns (Marattiaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:2237. [PMID: 37375862 DOI: 10.3390/plants12122237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Marattiaceae is a phylogenetically isolated family of tropical eusporangiate ferns including six genera with more than one-hundred species. In Marattiaceae, monophyly of genera has been well-supported phylogenetically. However, the phylogenetic relationships among them were elusive and controversial. Here, a dataset of 26 transcriptomes (including 11 newly generated) were used to assess single-copy nuclear genes and to obtain the organelle gene sequences. Through phylotranscriptomic analysis, the phylogeny and hybridization events of Marattiaceae were explored and a robust phylogenomic framework for the evolution of Marattiaceae was provided. Using both concatenation- and coalescent-based phylogenies, the gene-tree discordance, incomplete lineage sorting (ILS) simulations, and network inference were examined. Except the low support with mitochondrial genes of Marattiaceae, nuclear genes and chloroplast genes strongly supported a sister relationship between Marattiaceae and leptosporangiate ferns. At the genus level, all phylogenetic analysis based on nuclear genes datasets recovered five genera in Marattiaceae as monophyletic with strong support. Danaea and Ptisana were the first two diverged clades in turn. Christensenia was a sister clade to the clade Marattia + Angiopteris s.l. In Angiopteris s.l., three clades (Angiopteris s.s., the Archangiopteris group, and An. sparsisora) were well identified with maximum support. The Archangiopteris group was derived from Angiopteris s.s. at ca. 18 Ma. The putative hybrid species An. sparsisora between Angiopteris s.s. and the Archangiopteris group was verified by the species network analyses and the maternal plastid genes. This study will improve our understanding for using the phylotranscriptomic method to explore phylogeny and investigate hybridization events for difficult taxa in ferns.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, China
| | - Xinmao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Shaoli Fang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhangming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yuxin Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhaorong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, China
| |
Collapse
|
16
|
Yuan J, Song Q. Polyploidy and diploidization in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:51. [PMID: 37313224 PMCID: PMC10244302 DOI: 10.1007/s11032-023-01396-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
Polyploidy is widespread and particularly common in angiosperms. The prevalence of polyploidy in the plant suggests it as a crucial driver of diversification and speciation. The paleopolyploid soybean (Glycine max) is one of the most important crops of plant protein and oil for humans and livestock. Soybean experienced two rounds of whole genome duplication around 13 and 59 million years ago. Due to the relatively slow process of post-polyploid diploidization, most genes are present in multiple copies across the soybean genome. Growing evidence suggests that polyploidization and diploidization could cause rapid and dramatic changes in genomic structure and epigenetic modifications, including gene loss, transposon amplification, and reorganization of chromatin architecture. This review is focused on recent progresses about genetic and epigenetic changes during polyploidization and diploidization of soybean and represents the challenges and potentials for application of polyploidy in soybean breeding.
Collapse
Affiliation(s)
- Jingya Yuan
- College of Life Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 Jiangsu China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 Jiangsu China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 Jiangsu China
| |
Collapse
|
17
|
Stull GW, Pham KK, Soltis PS, Soltis DE. Deep reticulation: the long legacy of hybridization in vascular plant evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:743-766. [PMID: 36775995 DOI: 10.1111/tpj.16142] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 05/27/2023]
Abstract
Hybridization has long been recognized as a fundamental evolutionary process in plants but, until recently, our understanding of its phylogenetic distribution and biological significance across deep evolutionary scales has been largely obscure. Over the past decade, genomic and phylogenomic datasets have revealed, perhaps not surprisingly, that hybridization, often associated with polyploidy, has been common throughout the evolutionary history of plants, particularly in various lineages of flowering plants. However, phylogenomic studies have also highlighted the challenges of disentangling signals of ancient hybridization from other sources of genomic conflict (in particular, incomplete lineage sorting). Here, we provide a critical review of ancient hybridization in vascular plants, outlining well-documented cases of ancient hybridization across plant phylogeny, as well as the challenges unique to documenting ancient versus recent hybridization. We provide a definition for ancient hybridization, which, to our knowledge, has not been explicitly attempted before. Further documenting the extent of deep reticulation in plants should remain an important research focus, especially because published examples likely represent the tip of the iceberg in terms of the total extent of ancient hybridization. However, future research should increasingly explore the macroevolutionary significance of this process, in terms of its impact on evolutionary trajectories (e.g. how does hybridization influence trait evolution or the generation of biodiversity over long time scales?), as well as how life history and ecological factors shape, or have shaped, the frequency of hybridization across geologic time and plant phylogeny. Finally, we consider the implications of ubiquitous ancient hybridization for how we conceptualize, analyze, and classify plant phylogeny. Networks, as opposed to bifurcating trees, represent more accurate representations of evolutionary history in many cases, although our ability to infer, visualize, and use networks for comparative analyses is highly limited. Developing improved methods for the generation, visualization, and use of networks represents a critical future direction for plant biology. Current classification systems also do not generally allow for the recognition of reticulate lineages, and our classifications themselves are largely based on evidence from the chloroplast genome. Updating plant classification to better reflect nuclear phylogenies, as well as considering whether and how to recognize hybridization in classification systems, will represent an important challenge for the plant systematics community.
Collapse
Affiliation(s)
- Gregory W Stull
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Kasey K Pham
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
18
|
Yang L, Deng S, Zhu Y, Da Q. Comparative chloroplast genomics of 34 species in subtribe Swertiinae (Gentianaceae) with implications for its phylogeny. BMC PLANT BIOLOGY 2023; 23:164. [PMID: 36977991 PMCID: PMC10044379 DOI: 10.1186/s12870-023-04183-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Subtribe Swertiinae, a medicinally significant and highly speciose Subtribe of family Gentianaceae. Despite previous extensive studies based on both morphology and molecular data, intergeneric and infrageneric relationships within subtribe Swertiinae remain controversial. METHODS Here, we employed four newly generated Swertia chloroplast genomes with thirty other published genomes to elucidate their genomic characteristics. RESULTS The 34 chloroplast genomes were small and ranged in size from 149,036 to 154,365 bp, each comprising two inverted repeat regions (size range 25,069-26,126 bp) that separated large single-copy (80,432-84,153 bp) and small single-copy (17,887-18,47 bp) regions, and all the chloroplast genomes showed similar gene orders, contents, and structures. These chloroplast genomes contained 129-134 genes each, including 84-89 protein-coding genes, 37 tRNAs, and 8 rRNAs. The chloroplast genomes of subtribe Swertiinae appeared to have lost some genes, such as rpl33, rpl2 and ycf15 genes. Comparative analyses revealed that two mutation hotspot regions (accD-psaI and ycf1) could serve as effective molecular markers for further phylogenetic analyses and species identification in subtribe Swertiinae. Positive selection analyses showed that two genes (ccsA and psbB) had high Ka/Ks ratios, indicating that chloroplast genes may have undergone positive selection in their evolutionary history. Phylogenetic analysis showed that the 34 subtribe Swertiinae species formed a monophyletic clade, with Veratrilla, Gentianopsis and Pterygocalyx located at the base of the phylogenetic tree. Some genera of this subtribe, however, were not monophyletic, including Swertia, Gentianopsis, Lomatogonium, Halenia, Veratrilla and Gentianopsis. In addition, our molecular phylogeny was consistent with taxonomic classification of subtribe Swertiinae in the Roate group and Tubular group. The results of molecular dating showed that the divergence between subtrib Gentianinae and subtrib Swertiinae was estimated to occur in 33.68 Ma. Roate group and Tubular group in subtribe Swertiinae approximately diverged in 25.17 Ma. CONCLUSION Overall, our study highlighted the taxonomic utility of chloroplast genomes in subtribe Swertiinae, and the genetic markers identified here will facilitate future studies on the evolution, conservation, population genetics, and phylogeography of subtribe Swertiinae species.
Collapse
Affiliation(s)
- Lucun Yang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining, 81008, China.
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resource, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
| | - Shengxue Deng
- Qinghai Environmental Science Research and Design Institute Co. Ltd, Xining, 810007, China
| | - Yongqing Zhu
- Maqin County Forestry and Grassland Station, Maqin, 814000, China
| | - Qilin Da
- Bureau of Forestry in Hualong County, Hualong, 810900, China
| |
Collapse
|
19
|
Comparative transcriptome analyses of three Gentiana species provides signals for the molecular footprints of selection effects and the phylogenetic relationships. Mol Genet Genomics 2023; 298:399-411. [PMID: 36592219 DOI: 10.1007/s00438-022-01991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Species in Gentiana section Cruciata are important alpine plants with a center of diversity and speciation in Qinghai-Tibet Plateau (QTP), and some of these species are sympatrically distributed in northeastern QTP. Studies on genome features and natural selection signatures of sympatric species in section Crucata have been impeded by a lack of genomic resources. Here, we showed transcript characterizations and molecular footprints of selection effects on G. straminea, G. dahurica and G. officinalis based on the comparative transcriptome. A total of 62.97 Gb clean reads were obtained with unigene numbers per species ranging from 141,819 to 236,408 after assembly. We found that these three species had similar distribution of functional categories in different databases, and key enzyme-encoding genes involved in the iridoids biosynthesis were also obtained. The selective pressure analyses indicated that most paired orthologs between these three species were subject to negative selection, and only a low proportion of the orthologs that underwent positive selection were detected. We found that some positive selected genes were involved in "catalytic activity", "metabolic process", "response to stimulus" and "response to stress". Besides, large numbers of SSR primer pairs with transferabilities were successfully designed based on the available transcriptome datasets of three Gentiana species. The phylogenetic relationships reconstructed based on 352 single-copy nuclear genes provided a rough phylogenetic framework for this genus and confirmed the monophyly of section Cruciata. Our study not only provides insights for the natural selection effects on sympatric Gentiana species, but also enhances future genetic breeding or evolutionary studies on Qinjiao species.
Collapse
|
20
|
Timilsena PR, Barrett CF, Piñeyro-Nelson A, Wafula EK, Ayyampalayam S, McNeal JR, Yukawa T, Givnish TJ, Graham SW, Pires JC, Davis JI, Ané C, Stevenson DW, Leebens-Mack J, Martínez-Salas E, Álvarez-Buylla ER, dePamphilis CW. Phylotranscriptomic Analyses of Mycoheterotrophic Monocots Show a Continuum of Convergent Evolutionary Changes in Expressed Nuclear Genes From Three Independent Nonphotosynthetic Lineages. Genome Biol Evol 2023; 15:evac183. [PMID: 36582124 PMCID: PMC9887272 DOI: 10.1093/gbe/evac183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022] Open
Abstract
Mycoheterotrophy is an alternative nutritional strategy whereby plants obtain sugars and other nutrients from soil fungi. Mycoheterotrophy and associated loss of photosynthesis have evolved repeatedly in plants, particularly in monocots. Although reductive evolution of plastomes in mycoheterotrophs is well documented, the dynamics of nuclear genome evolution remains largely unknown. Transcriptome datasets were generated from four mycoheterotrophs in three families (Orchidaceae, Burmanniaceae, Triuridaceae) and related green plants and used for phylogenomic analyses to resolve relationships among the mycoheterotrophs, their relatives, and representatives across the monocots. Phylogenetic trees based on 602 genes were mostly congruent with plastome phylogenies, except for an Asparagales + Liliales clade inferred in the nuclear trees. Reduction and loss of chlorophyll synthesis and photosynthetic gene expression and relaxation of purifying selection on retained genes were progressive, with greater loss in older nonphotosynthetic lineages. One hundred seventy-four of 1375 plant benchmark universally conserved orthologous genes were undetected in any mycoheterotroph transcriptome or the genome of the mycoheterotrophic orchid Gastrodia but were expressed in green relatives, providing evidence for massively convergent gene loss in nonphotosynthetic lineages. We designate this set of deleted or undetected genes Missing in Mycoheterotrophs (MIM). MIM genes encode not only mainly photosynthetic or plastid membrane proteins but also a diverse set of plastid processes, genes of unknown function, mitochondrial, and cellular processes. Transcription of a photosystem II gene (psb29) in all lineages implies a nonphotosynthetic function for this and other genes retained in mycoheterotrophs. Nonphotosynthetic plants enable novel insights into gene function as well as gene expression shifts, gene loss, and convergence in nuclear genomes.
Collapse
Affiliation(s)
- Prakash Raj Timilsena
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Craig F Barrett
- Department of Biology, West Virginia University, Morgantown, West Virginia
| | - Alma Piñeyro-Nelson
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| | | | - Joel R McNeal
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Georgia
| | - Tomohisa Yukawa
- Tsukuba Botanical Garden, National Museum of Nature and Science, 1-1, Amakubo 4, Tsukuba, 305-0005, Japan
| | - Thomas J Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4Canada
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri–Columbia, Columbia, Missouri
| | - Jerrold I Davis
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Cornell University, Ithaca, New York, 1485
| | - Cécile Ané
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin
| | | | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, Georgia, 3060
| | - Esteban Martínez-Salas
- Departmento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Elena R Álvarez-Buylla
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
21
|
De Silva NP, Lee C, Battlay P, Fournier-Level A, Moore JL, Hodgins KA. Genome assembly of an Australian native grass species reveals a recent whole-genome duplication and biased gene retention of genes involved in stress response. Gigascience 2022; 12:giad034. [PMID: 37171129 PMCID: PMC10176504 DOI: 10.1093/gigascience/giad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/04/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The adaptive significance of polyploidy has been extensively debated, and chromosome-level genome assemblies of polyploids can provide insight into this. The Australian grass Bothriochloa decipiens belongs to the BCD clade, a group with a complex history of hybridization and polyploid. This is the first genome assembly and annotation of a species that belongs to this fascinating yet complex group. FINDINGS Using Illumina short reads, 10X Genomics linked reads, and Hi-C sequencing data, we assembled a highly contiguous genome of B. decipiens, with a total length of 1,218.22 Mb and scaffold N50 of 42.637 Mb. Comparative analysis revealed that the species experienced a relatively recent whole-genome duplication. We clustered the 20 major scaffolds, representing the 20 chromosomes, into the 2 subgenomes of the parental species using unique repeat signatures. We found evidence of biased fractionation and differences in the activity of transposable elements between the subgenomes prior to hybridization. Duplicates were enriched for genes involved in transcription and response to external stimuli, supporting a biased retention of duplicated genes following whole-genome duplication. CONCLUSIONS Our results support the hypotheses of a biased retention of duplicated genes following polyploidy and point to differences in repeat activity associated with subgenome dominance. B. decipiens is a widespread species with the ability to establish across many soil types, making it a prime candidate for climate change- resilient ecological restoration of Australian grasslands. This reference genome is a valuable resource for future population genomic research on Australian grasses.
Collapse
Affiliation(s)
- Nissanka P De Silva
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
| | - Christopher Lee
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
| | - Paul Battlay
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
| | - A Fournier-Level
- School of BioSciences, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - Joslin L Moore
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
- Arthur Rylah Institute for Environment Research, Heidelberg, 3084 Victoria, Australia
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
| |
Collapse
|
22
|
Reginato M. A pipeline for assembling low copy nuclear markers from plant genome skimming data for phylogenetic use. PeerJ 2022; 10:e14525. [PMID: 36523475 PMCID: PMC9745922 DOI: 10.7717/peerj.14525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Genome skimming is a popular method in plant phylogenomics that do not include a biased enrichment step, relying on random shallow sequencing of total genomic DNA. From these data the plastome is usually readily assembled and constitutes the bulk of phylogenetic information generated in these studies. Despite a few attempts to use genome skims to recover low copy nuclear loci for direct phylogenetic use, such endeavor remains neglected. Causes might include the trade-off between libraries with few reads and species with large genomes (i.e., missing data caused by low coverage), but also might relate to the lack of pipelines for data assembling. Methods A pipeline and its companion R package designed to automate the recovery of low copy nuclear markers from genome skimming libraries are presented. Additionally, a series of analyses aiming to evaluate the impact of key assembling parameters, reference selection and missing data are presented. Results A substantial amount of putative low copy nuclear loci was assembled and proved useful to base phylogenetic inference across the libraries tested (4 to 11 times more data than previously assembled plastomes from the same libraries). Discussion Critical aspects of assembling low copy nuclear markers from genome skims include the minimum coverage and depth of a sequence to be used. More stringent values of these parameters reduces the amount of assembled data and increases the relative amount of missing data, which can compromise phylogenetic inference, in turn relaxing the same parameters might increase sequence error. These issues are discussed in the text, and parameter tuning through multiple comparisons tracking their effects on support and congruence is highly recommended when using this pipeline. The skimmingLoci pipeline (https://github.com/mreginato/skimmingLoci) might stimulate the use of genome skims to recover nuclear loci for direct phylogenetic use, increasing the power of genome skimming data to resolve phylogenetic relationships, while reducing the amount of sequenced DNA that is commonly wasted.
Collapse
|
23
|
Ceriotti LF, Gatica-Soria L, Sanchez-Puerta MV. Cytonuclear coevolution in a holoparasitic plant with highly disparate organellar genomes. PLANT MOLECULAR BIOLOGY 2022; 109:673-688. [PMID: 35359176 DOI: 10.1007/s11103-022-01266-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Contrasting substitution rates in the organellar genomes of Lophophytum agree with the DNA repair, replication, and recombination gene content. Plastid and nuclear genes whose products form multisubunit complexes co-evolve. The organellar genomes of the holoparasitic plant Lophophytum (Balanophoraceae) show disparate evolution. In the plastid, the genome has been severely reduced and presents a > 85% AT content, while in the mitochondria most protein-coding genes have been replaced by homologs acquired by horizontal gene transfer (HGT) from their hosts (Fabaceae). Both genomes carry genes whose products form multisubunit complexes with those of nuclear genes, creating a possible hotspot of cytonuclear coevolution. In this study, we assessed the evolutionary rates of plastid, mitochondrial and nuclear genes, and their impact on cytonuclear evolution of genes involved in multisubunit complexes related to lipid biosynthesis and proteolysis in the plastid and those in charge of the oxidative phosphorylation in the mitochondria. Genes from the plastid and the mitochondria (both native and foreign) of Lophophytum showed extremely high and ordinary substitution rates, respectively. These results agree with the biased loss of plastid-targeted proteins involved in angiosperm organellar repair, replication, and recombination machinery. Consistent with the high rate of evolution of plastid genes, nuclear-encoded subunits of plastid complexes showed disproportionate increases in non-synonymous substitution rates, while those of the mitochondrial complexes did not show different rates than the control (i.e. non-organellar nuclear genes). Moreover, the increases in the nuclear-encoded subunits of plastid complexes were positively correlated with the level of physical interaction they possess with the plastid-encoded ones. Overall, these results suggest that a structurally-mediated compensatory factor may be driving plastid-nuclear coevolution in Lophophytum, and that mito-nuclear coevolution was not altered by HGT.
Collapse
Affiliation(s)
- Luis F Ceriotti
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - Leonardo Gatica-Soria
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - M Virginia Sanchez-Puerta
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina.
| |
Collapse
|
24
|
Santos MDL, de Resende MLV, Alves GSC, Huguet-Tapia JC, Resende MFRDJ, Brawner JT. Genome-Wide Identification, Characterization, and Comparative Analysis of NLR Resistance Genes in Coffea spp. FRONTIERS IN PLANT SCIENCE 2022; 13:868581. [PMID: 35874027 PMCID: PMC9301388 DOI: 10.3389/fpls.2022.868581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The largest family of disease resistance genes in plants are nucleotide-binding site leucine-rich repeat genes (NLRs). The products of these genes are responsible for recognizing avirulence proteins (Avr) of phytopathogens and triggering specific defense responses. Identifying NLRs in plant genomes with standard gene annotation software is challenging due to their multidomain nature, sequence diversity, and clustered genomic distribution. We present the results of a genome-wide scan and comparative analysis of NLR loci in three coffee species (Coffea canephora, Coffea eugenioides and their interspecific hybrid Coffea arabica). A total of 1311 non-redundant NLR loci were identified in C. arabica, 927 in C. canephora, and 1079 in C. eugenioides, of which 809, 562, and 695 are complete loci, respectively. The NLR-Annotator tool used in this study showed extremely high sensitivities and specificities (over 99%) and increased the detection of putative NLRs in the reference coffee genomes. The NLRs loci in coffee are distributed among all chromosomes and are organized mostly in clusters. The C. arabica genome presented a smaller number of NLR loci when compared to the sum of the parental genomes (C. canephora, and C. eugenioides). There are orthologous NLRs (orthogroups) shared between coffee, tomato, potato, and reference NLRs and those that are shared only among coffee species, which provides clues about the functionality and evolutionary history of these orthogroups. Phylogenetic analysis demonstrated orthologous NLRs shared between C. arabica and the parental genomes and those that were possibly lost. The NLR family members in coffee are subdivided into two main groups: TIR-NLR (TNL) and non-TNL. The non-TNLs seem to represent a repertoire of resistance genes that are important in coffee. These results will support functional studies and contribute to a more precise use of these genes for breeding disease-resistant coffee cultivars.
Collapse
Affiliation(s)
- Mariana de Lima Santos
- Laboratório de Fisiologia do Parasitismo, Faculdade de Ciências Agrárias, Departamento de Fitopatologia, Universidade Federal de Lavras, Lavras, Brazil
| | - Mário Lúcio Vilela de Resende
- Laboratório de Fisiologia do Parasitismo, Faculdade de Ciências Agrárias, Departamento de Fitopatologia, Universidade Federal de Lavras, Lavras, Brazil
| | - Gabriel Sérgio Costa Alves
- Laboratório de Processos Biológicos e Produtos Biotecnológicos, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Jose Carlos Huguet-Tapia
- Institute of Food and Agricultural Sciences, Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | | | - Jeremy Todd Brawner
- Institute of Food and Agricultural Sciences, Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
25
|
Sianta SA, Kay KM. Phylogenomic analysis does not support a classic but controversial hypothesis of progenitor-derivative origins for the serpentine endemic Clarkia franciscana. Evolution 2022; 76:1246-1259. [PMID: 35403214 PMCID: PMC9322428 DOI: 10.1111/evo.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 01/21/2023]
Abstract
Budding speciation involves isolation of marginal populations at the periphery of a species range and is thought to be a prominent mode of speciation in organisms with low dispersal and/or strong local adaptation among populations. Budding speciation is typically evidenced by abutting, asymmetric ranges of ecologically divergent sister species and low genetic diversity in putative budded species. Yet these indirect patterns may be unreliable, instead caused by postspeciation processes such as range or demographic shifts. Nested phylogenetic relationships provide the most conclusive evidence of budding speciation. A putative case of budding speciation in the serpentine endemic Clarkia franciscana and two closely related widespread congeners was studied by Harlan Lewis, Peter Raven, Leslie Gottlieb, and others over a 20-year period, yet the origin of C. franciscana remains controversial. Here, we reinvestigate this system with phylogenomic analyses to determine whether C. franciscana is a recently derived budded species, phylogenetically nested within one of the other two putative progenitor species. In contrast to the hypothesized pattern of relatedness among the three Clarkia species, we find no evidence for recent budding speciation. Instead, the data suggest the three species diverged simultaneously. We urge caution in using contemporary range patterns to infer geographic modes of speciation.
Collapse
Affiliation(s)
- Shelley A. Sianta
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCalifornia95060,Current Address: Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesota55108
| | - Kathleen M. Kay
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCalifornia95060
| |
Collapse
|
26
|
Cooper BJ, Moore MJ, Douglas NA, Wagner WL, Johnson MG, Overson RP, Kinosian SP, McDonnell AJ, Levin RA, Raguso RA, Flores Olvera H, Ochoterena H, Fant JB, Skogen KA, Wickett NJ. Target enrichment and extensive population sampling help untangle the recent, rapid radiation of Oenothera sect. Calylophus. Syst Biol 2022:6588089. [PMID: 35583314 DOI: 10.1093/sysbio/syac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/14/2022] Open
Abstract
Oenothera sect. Calylophus is a North American group of 13 recognized taxa in the evening primrose family (Onagraceae) with an evolutionary history that may include independent origins of bee pollination, edaphic endemism, and permanent translocation heterozygosity. Like other groups that radiated relatively recently and rapidly, taxon boundaries within Oenothera sect. Calylophus have remained challenging to circumscribe. In this study, we used target enrichment, flanking non-coding regions, gene tree/species tree methods, tests for gene flow modified for target-enrichment data, and morphometric analysis to reconstruct phylogenetic hypotheses, evaluate current taxon circumscriptions, and examine character evolution in Oenothera sect. Calylophus. Because sect. Calylophus comprises a clade with a relatively restricted geographic range, we were able to extensively sample across the range of geographic, edaphic and morphological diversity in the group. We found that the combination of exons and flanking non-coding regions led to improved support for species relationships. We reconstructed potential hybrid origins of some accessions and note that if processes such as hybridization are not taken into account, the number of inferred evolutionary transitions may be artificially inflated. We recovered strong evidence for multiple evolutionary origins of bee pollination from ancestral hawkmoth pollination, edaphic specialization on gypsum, and permanent translocation heterozygosity. This study applies newly emerging techniques alongside dense infraspecific sampling and morphological analyses to effectively reconstruct the recalcitrant history of a rapid radiation.
Collapse
Affiliation(s)
- Benjamin J Cooper
- The Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Rd., Glencoe, IL 60022, USA.,Northwestern University,Program in Plant Biology and Conservation,O.T. Hogan Hall, Room, 6-140B, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Michael J Moore
- Oberlin College, Department of Biology, 119 Woodland St., Oberlin, OH 44074, USA
| | - Norman A Douglas
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Warren L Wagner
- Department of Botany, MRC-166, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA
| | - Matthew G Johnson
- The Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Rd., Glencoe, IL 60022, USA.,Department of Biological Sciences, Texas Tech University, Box 43131 Lubbock, TX 79409, USA
| | - Rick P Overson
- The Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Rd., Glencoe, IL 60022, USA.,School of Sustainability, Arizona State University, PO Box 875502, Tempe, AZ 85287-5502, USA
| | - Sylvia P Kinosian
- The Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Rd., Glencoe, IL 60022, USA
| | - Angela J McDonnell
- The Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Rd., Glencoe, IL 60022, USA
| | - Rachel A Levin
- Department of Biology, Amherst College, 25 East Drive, Amherst, MA, 01002, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA
| | - Hilda Flores Olvera
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Helga Ochoterena
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jeremie B Fant
- The Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Rd., Glencoe, IL 60022, USA.,Northwestern University,Program in Plant Biology and Conservation,O.T. Hogan Hall, Room, 6-140B, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Krissa A Skogen
- The Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Rd., Glencoe, IL 60022, USA.,Northwestern University,Program in Plant Biology and Conservation,O.T. Hogan Hall, Room, 6-140B, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Norman J Wickett
- The Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Rd., Glencoe, IL 60022, USA.,Northwestern University,Program in Plant Biology and Conservation,O.T. Hogan Hall, Room, 6-140B, 2205 Tech Drive, Evanston, IL 60208, USA
| |
Collapse
|
27
|
Zhang L, Zhu X, Zhao Y, Guo J, Zhang T, Huang W, Huang J, Hu Y, Huang CH, Ma H. Phylotranscriptomics Resolves the Phylogeny of Pooideae and Uncovers Factors for Their Adaptive Evolution. Mol Biol Evol 2022; 39:6521033. [PMID: 35134207 PMCID: PMC8844509 DOI: 10.1093/molbev/msac026] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Adaptation to cool climates has occurred several times in different angiosperm groups. Among them, Pooideae, the largest grass subfamily with ∼3,900 species including wheat and barley, have successfully occupied many temperate regions and play a prominent role in temperate ecosystems. To investigate possible factors contributing to Pooideae adaptive evolution to cooling climates, we performed phylogenetic reconstruction using five gene sets (with 1,234 nuclear genes and their subsets) from 157 transcriptomes/genomes representing all 15 tribes and 24 of 26 subtribes. Our phylogeny supports the monophyly of all tribes (except Diarrheneae) and all subtribes with at least two species, with strongly supported resolution of their relationships. Molecular dating suggests that Pooideae originated in the late Cretaceous, with subsequent divergences under cooling conditions first among many tribes from the early middle to late Eocene and again among genera in the middle Miocene and later periods. We identified a cluster of gene duplications (CGD5) shared by the core Pooideae (with 80% Pooideae species) near the Eocene–Oligocene transition, coinciding with the transition from closed to open habitat and an upshift of diversification rate. Molecular evolutionary analyses homologs of CBF for cold resistance uncovered tandem duplications during the core Pooideae history, dramatically increasing their copy number and possibly promoting adaptation to cold habitats. Moreover, duplication of AP1/FUL-like genes before the Pooideae origin might have facilitated the regulation of the vernalization pathway under cold environments. These and other results provide new insights into factors that likely have contributed to the successful adaptation of Pooideae members to temperate regions.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xinxin Zhu
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jing Guo
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Weichen Huang
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Jie Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yi Hu
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
28
|
Comparative Genome Analysis Reveals Phylogenetic Identity of Bacillus velezensis HNA3 and Genomic Insights into Its Plant Growth Promotion and Biocontrol Effects. Microbiol Spectr 2022; 10:e0216921. [PMID: 35107331 PMCID: PMC8809340 DOI: 10.1128/spectrum.02169-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined Bacillus strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. IMPORTANCE This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, B. amyloliquefaciens DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the Bacillus genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree.
Collapse
|
29
|
Balbinott N, Rodrigues NF, Guzman FL, Turchetto-Zolet AC, Margis R. Perspectives in Myrtaceae evolution from plastomes and nuclear phylogenies. Genet Mol Biol 2022; 45:e20210191. [PMID: 35088818 PMCID: PMC8796035 DOI: 10.1590/1678-4685-gmb-2021-0191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/20/2021] [Indexed: 05/05/2023] Open
Abstract
Myrtaceae is a large and species-rich family of woody eudicots, with prevalent
distribution in the Southern Hemisphere. Classification and taxonomy of species
belonging to this family is quite challenging, sometimes with difficulty in
species identification and producing phylogenies with low support for species
relationships. Most of the current knowledge comes from few molecular markers,
such as plastid genes and intergenic regions, which can be difficult to handle
and produce conflicting results. Based on plastid protein-coding sequences and
nuclear markers, we present a topology for the phylogenetic relationships among
Myrtaceae tribes. Our phylogenetic estimate offers a contrasting topology over
previous analysis with fewer markers. Plastome phylogeny groups the tribes
Syzygieae and Eucalypteae and individual chloroplast genes produce divergent
topologies, especially among species within Myrteae tribe, but also in regard to
the grouping of Syzygieae and Eucalypteae. Results are consistent and
reproducible with both nuclear and organellar datasets. It confronts previous
data about the deep nodes of Myrtaceae phylogeny.
Collapse
Affiliation(s)
- Natalia Balbinott
- Universidade Federal do Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Brazil
| | | | - Frank Lino Guzman
- Universidade Federal do Rio Grande do Sul, Brazil; Instituto Nacional de Innovación Agraria, Perú
| | | | - Rogerio Margis
- Universidade Federal do Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
30
|
Chen S, Milne R, Zhou R, Meng K, Yin Q, Guo W, Ma Y, Mao K, Xu K, Kim YD, Do TV, Liao W, Fan Q. When tropical and subtropical congeners met: Multiple ancient hybridization events within Eriobotrya in the Yunnan-Guizhou Plateau, a tropical-subtropical transition area in China. Mol Ecol 2021; 31:1543-1561. [PMID: 34910340 DOI: 10.1111/mec.16325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023]
Abstract
Global climate changes during the Miocene may have created ample opportunities for hybridization between members of tropical and subtropical biomes at the boundary between these zones. Yet, very few studies have explored this possibility. The Yunnan-Guizhou Plateau (YGP) in Southwest China is a biodiversity hotspot for vascular plants, located in a transitional area between the floristic regions of tropical Southeast Asia and subtropical East Asia. The genus Eriobotrya (Rosaceae) comprises both tropical and subtropical taxa, with 12 species recorded in the YGP, making it a suitable basis for testing the hypothesis of between-biome hybridization. Therefore, we surveyed the evolutionary history of Eriobotrya by examining three chloroplast regions and five nuclear genes for 817 individuals (47 populations) of 23 Eriobotrya species (including 19 populations of 12 species in the YGP), plus genome re-sequencing of 33 representative samples. We concluded that: (1) phylogenetic positions for 16 species exhibited strong cytonuclear conflicts, most probably due to ancient hybridization; (2) the YGP is a hotspot for hybridization, with 11 species showing clear evidence of chloroplast capture; and (3) Eriobotrya probably originated in tropical Asia during the Eocene. From the Miocene onwards, the intensification of the Eastern Asia monsoon and global cooling may have shifted the tropical-subtropical boundary and caused secondary contact between species, thus providing ample opportunity for hybridization and diversification of Eriobotrya, especially in the YGP. Our study highlights the significant role that paleoclimate changes probably played in driving hybridization and generating rich species diversity in climate transition zones.
Collapse
Affiliation(s)
- Sufang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Richard Milne
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kaikai Meng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qianyi Yin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wei Guo
- Department of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongpeng Ma
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Kewang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Young-Dong Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon City, South Korea
| | - Truong Van Do
- Vietnam National Museum of Nature, Vietnam Academy of Science & Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science & Technology, Hanoi, Vietnam
| | - Wenbo Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
31
|
Bedoya AM, Leaché AD, Olmstead RG. Andean uplift, drainage basin formation, and the evolution of plants living in fast-flowing aquatic ecosystems in northern South America. THE NEW PHYTOLOGIST 2021; 232:2175-2190. [PMID: 34318482 DOI: 10.1111/nph.17649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Northern South America is a geologically dynamic and species-rich region. Fossil and stratigraphic data show that mountain uplift in the tropical Andes reconfigured river drainages. These landscape changes shaped the evolution of the flora in the region, yet the impacts on aquatic taxa have been overlooked. We explore the role of landscape change on the evolution of plants living strictly in rivers across drainage basins in northern South America by conducting population structure, phylogenetic inference, and divergence-dating analyses for two species in the genus Marathrum (Podostemaceae). Mountain uplift and drainage basin formation isolated populations of M. utile and M. foeniculaceum in northern South America and created barriers to gene flow across river drainages. Sympatric species hybridize and the hybrids show the phenotype of one parental line. We propose that the pattern of divergence of populations reflects the formation of river drainages, which was not complete until < 4.1 million yr ago (Ma). Our study provides a clear picture of the role of landscape change on the evolution of plants living strictly in rivers in northern South America. By shifting the focus to aquatic taxa, we provide a novel perspective on the processes shaping the evolution of the Neotropical flora.
Collapse
Affiliation(s)
- Ana M Bedoya
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, 98195, USA
| | - Adam D Leaché
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, 98195, USA
| | - Richard G Olmstead
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
32
|
Comparative transcriptomics provides a strategy for phylogenetic analysis and SSR marker development in Chaenomeles. Sci Rep 2021; 11:16441. [PMID: 34385515 PMCID: PMC8361139 DOI: 10.1038/s41598-021-95776-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
The genus Chaenomeles has long been considered an important ornamental, herbal and cash crop and is widely cultivated in East Asia. Traditional studies of Chaenomeles mainly focus on evolutionary relationships at the phenotypic level. In this study, we conducted RNA-seq on 10 Chaenomeles germplasms supplemented with one outgroup species, Docynia delavayi (D. delavayi), on the Illumina HiSeq2500 platform. After de novo assemblies, we generated from 40,084 to 49,571 unigenes for each germplasm. After pairwise comparison of the orthologous sequences, 9,659 orthologues within the 11 germplasms were obtained, with 6,154 orthologous genes identified as single-copy genes. The phylogenetic tree was visualized to reveal evolutionary relationships for these 11 germplasms. GO and KEGG analyses were performed for these common single-copy genes to compare their functional similarities and differences. Selective pressure analysis based on 6,154 common single-copy genes revealed that 45 genes were under positive selection. Most of these genes are involved in building the plant disease defence system. A total of 292 genes containing simple sequence repeats (SSRs) were used to develop SSR markers and compare their functions in secondary metabolism pathways. Finally, 10 primers were chosen as SSR marker candidates for Chaenomeles germplasms by comprehensive standards. Our research provides a new methodology and reference for future related research in Chaenomeles and is also useful for improvement, breeding and selection projects in other related species.
Collapse
|
33
|
Lundberg DS, Pramoj Na Ayutthaya P, Strauß A, Shirsekar G, Lo WS, Lahaye T, Weigel D. Host-associated microbe PCR (hamPCR) enables convenient measurement of both microbial load and community composition. eLife 2021; 10:e66186. [PMID: 34292157 PMCID: PMC8387020 DOI: 10.7554/elife.66186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
The ratio of microbial population size relative to the amount of host tissue, or 'microbial load', is a fundamental metric of colonization and infection, but it cannot be directly deduced from microbial amplicon data such as 16S rRNA gene counts. Because existing methods to determine load, such as serial dilution plating, quantitative PCR, and whole metagenome sequencing add substantial cost and/or experimental burden, they are only rarely paired with amplicon sequencing. We introduce host-associated microbe PCR (hamPCR), a robust strategy to both quantify microbial load and describe interkingdom microbial community composition in a single amplicon library. We demonstrate its accuracy across multiple study systems, including nematodes and major crops, and further present a cost-saving technique to reduce host overrepresentation in the library prior to sequencing. Because hamPCR provides an accessible experimental solution to the well-known limitations and statistical challenges of compositional data, it has far-reaching potential in culture-independent microbiology.
Collapse
Affiliation(s)
- Derek S Lundberg
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingenGermany
| | | | - Annett Strauß
- Department of Evolutionary Biology, Max Planck Institute for Developmental BiologyTübingenGermany
| | - Gautam Shirsekar
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingenGermany
| | - Wen-Sui Lo
- ZMBP-General Genetics, University of TübingenTübingenGermany
| | - Thomas Lahaye
- ZMBP-General Genetics, University of TübingenTübingenGermany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingenGermany
| |
Collapse
|
34
|
McDonnell AJ, Baker WJ, Dodsworth S, Forest F, Graham SW, Johnson MG, Pokorny L, Tate J, Wicke S, Wickett NJ. Exploring Angiosperms353: Developing and applying a universal toolkit for flowering plant phylogenomics. APPLICATIONS IN PLANT SCIENCES 2021; 9:APS311443. [PMID: 34336400 PMCID: PMC8312743 DOI: 10.1002/aps3.11443] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 05/30/2023]
Affiliation(s)
- Angela J. McDonnell
- Negaunee Institute for Plant Conservation Science and ActionChicago Botanic Garden1000 Lake Cook RoadGlencoeIllinois60022USA
| | | | - Steven Dodsworth
- School of Life SciencesUniversity of BedfordshireUniversity SquareLutonLU1 3JUUnited Kingdom
| | - Félix Forest
- Royal Botanic Gardens, KewRichmondSurreyTW9 3AEUnited Kingdom
| | - Sean W. Graham
- Department of BotanyUniversity of British Columbia6270 University BoulevardVancouverBritish ColumbiaV6T 1Z4Canada
| | - Matthew G. Johnson
- Department of Biological SciencesTexas Tech UniversityLubbockTexas79409USA
| | - Lisa Pokorny
- Royal Botanic Gardens, KewRichmondSurreyTW9 3AEUnited Kingdom
- Centre for Plant Biotechnology and Genomics (CBGP) UPM‐INIA‐CSIC28223Pozuelo de Alarcón (Madrid)Spain
| | - Jennifer Tate
- School of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
| | - Susann Wicke
- Plant Evolutionary BiologyInstitute for Evolution and BiodiversityUniversity of MünsterMünsterGermany
- Plant Systematics and BiodiversityInstitute for BiologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Norman J. Wickett
- Negaunee Institute for Plant Conservation Science and ActionChicago Botanic Garden1000 Lake Cook RoadGlencoeIllinois60022USA
| |
Collapse
|
35
|
Slimp M, Williams LD, Hale H, Johnson MG. On the potential of Angiosperms353 for population genomic studies. APPLICATIONS IN PLANT SCIENCES 2021; 9:APS311419. [PMID: 34336401 PMCID: PMC8312745 DOI: 10.1002/aps3.11419] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/15/2021] [Indexed: 05/11/2023]
Abstract
PREMISE The successful application of universal targeted sequencing markers, such as those developed for the Angiosperms353 probe set, within populations could reduce or eliminate the need for specific marker development, while retaining the benefits of full-gene sequences in population-level analyses. However, whether the Angiosperms353 markers provide sufficient variation within species to calculate demographic parameters is untested. METHODS Using herbarium specimens from a 50-year-old floristic survey in Texas, we sequenced 95 samples from 24 species using the Angiosperms353 probe set. Our data workflow calls variants within species and prepares data for population genetic analysis using standard metrics. In our case study, gene recovery was affected by genomic library concentration only at low concentrations and displayed limited phylogenetic bias. RESULTS We identified over 1000 segregating variants with zero missing data for 92% of species and demonstrate that Angiosperms353 markers contain sufficient variation to estimate pairwise nucleotide diversity (π)-typically between 0.002 and 0.010, with most variation found in flanking non-coding regions. In a subset of variants that were filtered to reduce linkage, we uncovered high heterozygosity in many species, suggesting that denser sampling within species should permit estimation of gene flow and population dynamics. DISCUSSION Angiosperms353 should benefit conservation genetic studies by providing universal repeatable markers, low missing data, and haplotype information, while permitting inclusion of decades-old herbarium specimens.
Collapse
Affiliation(s)
- Madeline Slimp
- Department of Biological SciencesTexas Tech University2901 Main StreetLubbockTexas79409USA
| | - Lindsay D. Williams
- Department of Biological SciencesTexas Tech University2901 Main StreetLubbockTexas79409USA
| | - Haley Hale
- Department of Biological SciencesTexas Tech University2901 Main StreetLubbockTexas79409USA
| | - Matthew G. Johnson
- Department of Biological SciencesTexas Tech University2901 Main StreetLubbockTexas79409USA
| |
Collapse
|
36
|
Genau AC, Li Z, Renzaglia KS, Fernandez Pozo N, Nogué F, Haas FB, Wilhelmsson PKI, Ullrich KK, Schreiber M, Meyberg R, Grosche C, Rensing SA. HAG1 and SWI3A/B control of male germ line development in P. patens suggests conservation of epigenetic reproductive control across land plants. PLANT REPRODUCTION 2021; 34:149-173. [PMID: 33839924 PMCID: PMC8128824 DOI: 10.1007/s00497-021-00409-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/02/2021] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Bryophytes as models to study the male germ line: loss-of-function mutants of epigenetic regulators HAG1 and SWI3a/b demonstrate conserved function in sexual reproduction. With the water-to-land transition, land plants evolved a peculiar haplodiplontic life cycle in which both the haploid gametophyte and the diploid sporophyte are multicellular. The switch between these phases was coined alternation of generations. Several key regulators that control the bauplan of either generation are already known. Analyses of such regulators in flowering plants are difficult due to the highly reduced gametophytic generation, and the fact that loss of function of such genes often is embryo lethal in homozygous plants. Here we set out to determine gene function and conservation via studies in bryophytes. Bryophytes are sister to vascular plants and hence allow evolutionary inferences. Moreover, embryo lethal mutants can be grown and vegetatively propagated due to the dominance of the bryophyte gametophytic generation. We determined candidates by selecting single copy orthologs that are involved in transcriptional control, and of which flowering plant mutants show defects during sexual reproduction, with a focus on the under-studied male germ line. We selected two orthologs, SWI3a/b and HAG1, and analyzed loss-of-function mutants in the moss P. patens. In both mutants, due to lack of fertile spermatozoids, fertilization and hence the switch to the diploid generation do not occur. Pphag1 additionally shows arrested male and impaired female gametangia development. We analyzed HAG1 in the dioecious liverwort M. polymorpha and found that in Mphag1 the development of gametangiophores is impaired. Taken together, we find that involvement of both regulators in sexual reproduction is conserved since the earliest divergence of land plants.
Collapse
Affiliation(s)
- Anne C Genau
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Zhanghai Li
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Karen S Renzaglia
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Noe Fernandez Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, Université Paris-Saclay, 78000, Versailles, AgroParisTech, France
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Per K I Wilhelmsson
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Kristian K Ullrich
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Mona Schreiber
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Rabea Meyberg
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Christopher Grosche
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany.
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Marburg, Germany.
| |
Collapse
|
37
|
Genetic Polymorphism and Lineage of Pigeon Pea [Cajanus cajan (L.) Millsp.] inferred from Chloroplast and Nuclear DNA gene regions. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Forsythe ES, Williams AM, Sloan DB. Genome-wide signatures of plastid-nuclear coevolution point to repeated perturbations of plastid proteostasis systems across angiosperms. THE PLANT CELL 2021; 33:980-997. [PMID: 33764472 PMCID: PMC8226287 DOI: 10.1093/plcell/koab021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/16/2021] [Indexed: 05/05/2023]
Abstract
Nuclear and plastid (chloroplast) genomes experience different mutation rates, levels of selection, and transmission modes, yet key cellular functions depend on their coordinated interactions. Functionally related proteins often show correlated changes in rates of sequence evolution across a phylogeny [evolutionary rate covariation (ERC)], offering a means to detect previously unidentified suites of coevolving and cofunctional genes. We performed phylogenomic analyses across angiosperm diversity, scanning the nuclear genome for genes that exhibit ERC with plastid genes. As expected, the strongest hits were highly enriched for genes encoding plastid-targeted proteins, providing evidence that cytonuclear interactions affect rates of molecular evolution at genome-wide scales. Many identified nuclear genes functioned in post-transcriptional regulation and the maintenance of protein homeostasis (proteostasis), including protein translation (in both the plastid and cytosol), import, quality control, and turnover. We also identified nuclear genes that exhibit strong signatures of coevolution with the plastid genome, but their encoded proteins lack organellar-targeting annotations, making them candidates for having previously undescribed roles in plastids. In sum, our genome-wide analyses reveal that plastid-nuclear coevolution extends beyond the intimate molecular interactions within chloroplast enzyme complexes and may be driven by frequent rewiring of the machinery responsible for maintenance of plastid proteostasis in angiosperms.
Collapse
Affiliation(s)
- Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
39
|
Jost M, Samain MS, Marques I, Graham SW, Wanke S. Discordant Phylogenomic Placement of Hydnoraceae and Lactoridaceae Within Piperales Using Data From All Three Genomes. FRONTIERS IN PLANT SCIENCE 2021; 12:642598. [PMID: 33912209 PMCID: PMC8072514 DOI: 10.3389/fpls.2021.642598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/17/2021] [Indexed: 05/08/2023]
Abstract
Phylogenetic relationships within the magnoliid order Piperales have been studied extensively, yet the relationships of the monotypic family Lactoridaceae and the holoparasitic Hydnoraceae to the remainder of the order remain a matter of debate. Since the first confident molecular phylogenetic placement of Hydnoraceae among Piperales, different studies have recovered various contradictory topologies. Most phylogenetic hypotheses were inferred using only a few loci and have had incomplete taxon sampling at the genus level. Based on these results and an online survey of taxonomic opinion, the Angiosperm Phylogeny Group lumped both Hydnoraceae and Lactoridaceae in Aristolochiaceae; however, the latter family continues to have unclear relationships to the aforementioned taxa. Here we present extensive phylogenomic tree reconstructions based on up to 137 loci from all three subcellular genomes for all genera of Piperales. We infer relationships based on a variety of phylogenetic methods, explore instances of phylogenomic discordance between the subcellular genomes, and test alternative topologies. Consistent with these phylogenomic results and a consideration of the principles of phylogenetic classification, we propose to exclude Hydnoraceae and Lactoridaceae from the broad circumscription of Aristolochiaceae, and instead favor recognition of four monophyletic and morphologically well circumscribed families in the perianth-bearing Piperales: Aristolochiaceae, Asaraceae, Hydnoraceae, and Lactoridaceae, with a total of six families in the order.
Collapse
Affiliation(s)
- Matthias Jost
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Marie-Stéphanie Samain
- Instituto de Ecología, A.C., Red de Diversidad Biológica del Occidente Mexicano, Pátzcuaro, Mexico
| | - Isabel Marques
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre, Instituto Superior de Agronomia, Universidadede Lisboa, Lisbon, Portugal
| | - Sean W. Graham
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
40
|
Zajac N, Zoller S, Seppälä K, Moi D, Dessimoz C, Jokela J, Hartikainen H, Glover N. Gene Duplication and Gain in the Trematode Atriophallophorus winterbourni Contributes to Adaptation to Parasitism. Genome Biol Evol 2021; 13:evab010. [PMID: 33484570 PMCID: PMC7936022 DOI: 10.1093/gbe/evab010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2021] [Indexed: 01/10/2023] Open
Abstract
Gene duplications and novel genes have been shown to play a major role in helminth adaptation to a parasitic lifestyle because they provide the novelty necessary for adaptation to a changing environment, such as living in multiple hosts. Here we present the de novo sequenced and annotated genome of the parasitic trematode Atriophallophorus winterbourni and its comparative genomic analysis to other major parasitic trematodes. First, we reconstructed the species phylogeny, and dated the split of A. winterbourni from the Opisthorchiata suborder to approximately 237.4 Ma (±120.4 Myr). We then addressed the question of which expanded gene families and gained genes are potentially involved in adaptation to parasitism. To do this, we used hierarchical orthologous groups to reconstruct three ancestral genomes on the phylogeny leading to A. winterbourni and performed a GO (Gene Ontology) enrichment analysis of the gene composition of each ancestral genome, allowing us to characterize the subsequent genomic changes. Out of the 11,499 genes in the A. winterbourni genome, as much as 24% have arisen through duplication events since the speciation of A. winterbourni from the Opisthorchiata, and as much as 31.9% appear to be novel, that is, newly acquired. We found 13 gene families in A. winterbourni to have had more than ten genes arising through these recent duplications; all of which have functions potentially relating to host behavioral manipulation, host tissue penetration, and hiding from host immunity through antigen presentation. We identified several families with genes evolving under positive selection. Our results provide a valuable resource for future studies on the genomic basis of adaptation to parasitism and point to specific candidate genes putatively involved in antagonistic host-parasite adaptation.
Collapse
Affiliation(s)
- Natalia Zajac
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Integrative Biology, Zurich, Switzerland
| | - Stefan Zoller
- ETH Zurich, Department of Environmental Systems Science, Institute of Integrative Biology, Zurich, Switzerland
| | - Katri Seppälä
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - David Moi
- Department of Computational Biology, University of Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Integrative Genomics, Lausanne, Switzerland
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Integrative Genomics, Lausanne, Switzerland
- Centre for Life’s Origins and Evolution, Department of Genetics Evolution and Environment, University College London, United Kingdom
- Department of Computer Science, University College London, United Kingdom
| | - Jukka Jokela
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Integrative Biology, Zurich, Switzerland
| | - Hanna Hartikainen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Integrative Biology, Zurich, Switzerland
- School of Life Sciences, University of Nottingham, University Park, United Kingdom
| | - Natasha Glover
- Department of Computational Biology, University of Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Integrative Genomics, Lausanne, Switzerland
| |
Collapse
|
41
|
Restrepo-Montoya D, McClean PE, Osorno JM. Orthology and synteny analysis of receptor-like kinases "RLK" and receptor-like proteins "RLP" in legumes. BMC Genomics 2021; 22:113. [PMID: 33568053 PMCID: PMC7874474 DOI: 10.1186/s12864-021-07384-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Legume species are an important plant model because of their protein-rich physiology. The adaptability and productivity of legumes are limited by major biotic and abiotic stresses. Responses to these stresses directly involve plasma membrane receptor proteins known as receptor-like kinases and receptor-like proteins. Evaluating the homology relations among RLK and RLP for seven legume species, and exploring their presence among synteny blocks allow an increased understanding of evolutionary relations, physical position, and chromosomal distribution in related species and their shared roles in stress responses. RESULTS Typically, a high proportion of RLK and RLP legume proteins belong to orthologous clusters, which is confirmed in this study, where between 66 to 90% of the RLKs and RLPs per legume species were classified in orthologous clusters. One-third of the evaluated syntenic blocks had shared RLK/RLP genes among both legumes and non-legumes. Among the legumes, between 75 and 98% of the RLK/RLP were present in syntenic blocks. The distribution of chromosomal segments between Phaseolus vulgaris and Vigna unguiculata, two species that diverged ~ 8 mya, were highly similar. Among the RLK/RLP synteny clusters, seven experimentally validated resistance RLK/RLP genes were identified in syntenic blocks. The RLK resistant genes FLS2, BIR2, ERECTA, IOS1, and AtSERK1 from Arabidopsis and SLSERK1 from Solanum lycopersicum were present in different pairwise syntenic blocks among the legume species. Meanwhile, only the LYM1- RLP resistant gene from Arabidopsis shared a syntenic blocks with Glycine max. CONCLUSIONS The orthology analysis of the RLK and RLP suggests a dynamic evolution in the legume family, with between 66 to 85% of RLK and 83 to 88% of RLP belonging to orthologous clusters among the species evaluated. In fact, for the 10-species comparison, a lower number of singleton proteins were reported among RLP compared to RLK, suggesting that RLP positions are more physically conserved compared to RLK. The identification of RLK and RLP genes among the synteny blocks in legumes revealed multiple highly conserved syntenic blocks on multiple chromosomes. Additionally, the analysis suggests that P. vulgaris is an appropriate anchor species for comparative genomics among legumes.
Collapse
Affiliation(s)
- Daniel Restrepo-Montoya
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, 58108-6050, USA.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| | - Phillip E McClean
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, 58108-6050, USA.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| | - Juan M Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
42
|
Nge FJ, Kellermann J, Biffin E, Waycott M, Thiele KR. Historical biogeography of Pomaderris (Rhamnaceae): Continental vicariance in Australia and repeated independent dispersals to New Zealand. Mol Phylogenet Evol 2021; 158:107085. [PMID: 33540078 DOI: 10.1016/j.ympev.2021.107085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
AIM Gondwanan biogeographic patterns include a combination of old vicariance events following the breakup of the supercontinent, and more recent long-distance dispersals across the southern landmasses. Floristic relationships between Australia and New Zealand have mostly been attributed to recent dispersal events rather than vicariance. We assessed the biogeographic history of Pomaderris (Rhamnaceae), which occurs in both Australia and New Zealand, by constructing a time-calibrated molecular phylogeny to infer (1) phylogenetic relationships and (2) the relative contributions of vicariance and dispersal events in the biogeographic history of the genus. LOCATION Australia and New Zealand. METHODS Using hybrid capture and high throughput sequencing, we generated nuclear and plastid data sets to estimate phylogenetic relationships and fossil calibrated divergence time estimates for Pomaderris. BioGeoBEARS and biogeographical stochastic mapping (BSM) were used to assess the ancestral area of the genus and the relative contributions of vicariance vs dispersal, and the directionality of dispersal events. RESULTS Our analyses indicate that Pomaderris originated in the Oligocene and had a widespread Australian distribution. Vicariance of western and eastern Australian clades coincides with the uplift of the Nullarbor Plain c. 14 Ma, followed by subsequent in-situ and within-biome diversification with little exchange across regions. A rapid radiation of southeastern Australian taxa beginning c. 10 Ma was the source for at least six independent long-distance dispersal events to New Zealand during the Pliocene-Pleistocene. MAIN CONCLUSIONS Our study demonstrates the importance of dispersal in explaining not only the current cross-Tasman distributions of Pomaderris, but for the New Zealand flora more broadly. The pattern of multiple independent long-distance dispersal events for Pomaderris, without significant radiation within New Zealand, is congruent with other lowland plant groups, suggesting that this biome has a different evolutionary history compared with the younger alpine flora of New Zealand, which exhibits extensive radiations often following single long distance dispersal events.
Collapse
Affiliation(s)
- Francis J Nge
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, South Australia, 5005, Australia; State Herbarium of South Australia, Botanic Gardens and State Herbarium, Hackney Road, Adelaide, South Australia 5000, Australia.
| | - Jürgen Kellermann
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, South Australia, 5005, Australia; State Herbarium of South Australia, Botanic Gardens and State Herbarium, Hackney Road, Adelaide, South Australia 5000, Australia
| | - Ed Biffin
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, South Australia, 5005, Australia; State Herbarium of South Australia, Botanic Gardens and State Herbarium, Hackney Road, Adelaide, South Australia 5000, Australia
| | - Michelle Waycott
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, South Australia, 5005, Australia; State Herbarium of South Australia, Botanic Gardens and State Herbarium, Hackney Road, Adelaide, South Australia 5000, Australia.
| | - Kevin R Thiele
- School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley (Perth), WA 6009, Australia
| |
Collapse
|
43
|
Meng KK, Chen SF, Xu KW, Zhou RC, Li MW, Dhamala MK, Liao WB, Fan Q. Phylogenomic analyses based on genome-skimming data reveal cyto-nuclear discordance in the evolutionary history of Cotoneaster (Rosaceae). Mol Phylogenet Evol 2021; 158:107083. [PMID: 33516804 DOI: 10.1016/j.ympev.2021.107083] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/16/2020] [Accepted: 01/12/2021] [Indexed: 11/19/2022]
Abstract
As a consequence of hybridization, polyploidization, and apomixis, the genus Cotoneaster (Rosaceae) represents one of the most complicated and controversial lineages in Rosaceae, with ca. 370 species which have been classified into two subgenera and several sections, and is notorious for its taxonomic difficulty. The infrageneric relationships and taxonomy of Cotoneaster have remained poorly understood. Previous studies have focused mainly on natural hybridization involving only several species, and phylogeny based on very limited markers. In the present study, the sequences of complete chloroplast genomes and 204 low-copy nuclear genes of 72 accessions, representing 69 species as ingroups, were used to conduct the most comprehensive phylogenetic analysis so far for Cotoneaster. Based on the sequences of complete chloroplast genomes and many nuclear genes, our analyses yield two robust phylogenetic trees respectively. Chloroplast genome and nuclear data confidently resolved relationships of this genus into two major clades which largely supported current classification based on morphological evidence. However, conflicts between the chloroplast genome and low-copy nuclear phylogenies were observed in both the species level and clade level. Cyto-nuclear discordance in the phylogeny could be caused by frequent hybridization events and incomplete sorting lineage (ILS). In addition, our divergence-time analysis revealed an evolutionary radiation of the genus from late Miocene to date.
Collapse
Affiliation(s)
- Kai-Kai Meng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Su-Fang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ke-Wang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Ren-Chao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ming-Wan Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Man Kumar Dhamala
- Central Department of Environmental Science, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Wen-Bo Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
44
|
Peng Z, Bredeson JV, Wu GA, Shu S, Rawat N, Du D, Parajuli S, Yu Q, You Q, Rokhsar DS, Gmitter FG, Deng Z. A chromosome-scale reference genome of trifoliate orange (Poncirus trifoliata) provides insights into disease resistance, cold tolerance and genome evolution in Citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1215-1232. [PMID: 32985030 PMCID: PMC7756384 DOI: 10.1111/tpj.14993] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/17/2020] [Indexed: 05/19/2023]
Abstract
Trifoliate orange (Poncirus trifoliata), a deciduous close relative of evergreen Citrus, has important traits for citrus production, including tolerance/resistance to citrus greening disease (Huanglongbing, HLB) and other major diseases, and cold tolerance. It has been one of the most important rootstocks, and one of the most valuable sources of resistance and tolerance genes for citrus. Here we present a high-quality, chromosome-scale genome assembly of P. trifoliata. The 264.9-Mb assembly contains nine chromosomal pseudomolecules with 25 538 protein-coding genes, covering 97.2% of the estimated gene space. Comparative analyses of P. trifoliata and nine Citrus genomes revealed 605 species-specific genes and six rapidly evolving gene families in the P. trifoliata genome. Poncirus trifoliata has evolved specific adaptation in the C-repeat/DREB binding factor (CBF)-dependent and CBF-independent cold signaling pathways to tolerate cold. We identified candidate genes within quantitative trait loci for HLB tolerance, and at the loci for resistance to citrus tristeza virus and citrus nematode. Genetic diversity analysis of Poncirus accessions and Poncirus/Citrus hybrids shows a narrow genetic base in the US germplasm collection, and points to the importance of collecting and preserving more natural genetic variation. Two phenotypically divergent Poncirus accessions are found to be clonally related, supporting a previous conjecture that dwarf Flying Dragon originated as a mutant of a non-dwarfing type. The high-quality genome reveals features and evolutionary insights of Poncirus, and it will serve as a valuable resource for genetic, genomic and molecular research and manipulation in citrus.
Collapse
Affiliation(s)
- Ze Peng
- Department of Environmental HorticultureGulf Coast Research and Education CenterUniversity of FloridaIFAS14625 County Road 672WimaumaFL33598USA
| | - Jessen V. Bredeson
- Molecular and Cell Biology DepartmentUniversity of California, BerkeleyBerkeleyCA94720USA
| | - Guohong A. Wu
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Lab1 Cyclotron RoadBerkeleyCA94720USA
| | - Shengqiang Shu
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Lab1 Cyclotron RoadBerkeleyCA94720USA
| | - Nidhi Rawat
- Department of Environmental HorticultureGulf Coast Research and Education CenterUniversity of FloridaIFAS14625 County Road 672WimaumaFL33598USA
| | - Dongliang Du
- Citrus Research and Education CenterUniversity of Florida, IFAS700 Experiment Station RdLake AlfredFL33850USA
| | - Saroj Parajuli
- Department of Environmental HorticultureGulf Coast Research and Education CenterUniversity of FloridaIFAS14625 County Road 672WimaumaFL33598USA
| | - Qibin Yu
- Citrus Research and Education CenterUniversity of Florida, IFAS700 Experiment Station RdLake AlfredFL33850USA
| | - Qian You
- Department of Environmental HorticultureGulf Coast Research and Education CenterUniversity of FloridaIFAS14625 County Road 672WimaumaFL33598USA
| | - Daniel S. Rokhsar
- Molecular and Cell Biology DepartmentUniversity of California, BerkeleyBerkeleyCA94720USA
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Lab1 Cyclotron RoadBerkeleyCA94720USA
| | - Frederick G. Gmitter
- Citrus Research and Education CenterUniversity of Florida, IFAS700 Experiment Station RdLake AlfredFL33850USA
| | - Zhanao Deng
- Department of Environmental HorticultureGulf Coast Research and Education CenterUniversity of FloridaIFAS14625 County Road 672WimaumaFL33598USA
| |
Collapse
|
45
|
Zhao N, Dong Q, Nadon BD, Ding X, Wang X, Dong Y, Liu B, Jackson SA, Xu C. Evolution of Homeologous Gene Expression in Polyploid Wheat. Genes (Basel) 2020; 11:genes11121401. [PMID: 33255795 PMCID: PMC7759873 DOI: 10.3390/genes11121401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 11/17/2022] Open
Abstract
Polyploidization has played a prominent role in the evolutionary history of plants. Two recent and sequential allopolyploidization events have resulted in the formation of wheat species with different ploidies, and which provide a model to study the effects of polyploidization on the evolution of gene expression. In this study, we identified differentially expressed genes (DEGs) between four BBAA tetraploid wheats of three different ploidy backgrounds. DEGs were found to be unevenly distributed among functional categories and duplication modes. We observed more DEGs in the extracted tetraploid wheat (ETW) than in natural tetraploid wheats (TD and TTR13) as compared to a synthetic tetraploid (AT2). Furthermore, DEGs showed higher Ka/Ks ratios than those that did not show expression changes (non-DEGs) between genotypes, indicating DEGs and non-DEGs experienced different selection pressures. For A-B homeolog pairs with DEGs, most of them had only one differentially expressed copy, however, when both copies of a homeolog pair were DEGs, the A and B copies were more likely to be regulated to the same direction. Our results suggest that both cis- and inter-subgenome trans-regulatory changes are important drivers in the evolution of homeologous gene expression in polyploid wheat, with ploidy playing a significant role in the process.
Collapse
Affiliation(s)
- Na Zhao
- Department of Agronomy, Jilin Agricultural University, Changchun 130118, China;
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA;
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (Q.D.); (X.W.); (Y.D.); (B.L.)
| | - Brian D. Nadon
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA;
| | - Xiaoyang Ding
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Xutong Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (Q.D.); (X.W.); (Y.D.); (B.L.)
| | - Yuzhu Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (Q.D.); (X.W.); (Y.D.); (B.L.)
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (Q.D.); (X.W.); (Y.D.); (B.L.)
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA;
- Bayer Crop Science, Chesterfield, MO 63017, USA
- Correspondence: or (S.A.J.); (C.X.); Tel.: +86-0431-8509-9367 (C.X.)
| | - Chunming Xu
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA;
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (Q.D.); (X.W.); (Y.D.); (B.L.)
- Correspondence: or (S.A.J.); (C.X.); Tel.: +86-0431-8509-9367 (C.X.)
| |
Collapse
|
46
|
Forsythe ES, Nelson ADL, Beilstein MA. Biased Gene Retention in the Face of Introgression Obscures Species Relationships. Genome Biol Evol 2020; 12:1646-1663. [PMID: 33011798 PMCID: PMC7533067 DOI: 10.1093/gbe/evaa149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Phylogenomic analyses are recovering previously hidden histories of hybridization, revealing the genomic consequences of these events on the architecture of extant genomes. We applied phylogenomic techniques and several complementary statistical tests to show that introgressive hybridization appears to have occurred between close relatives of Arabidopsis, resulting in cytonuclear discordance and impacting our understanding of species relationships in the group. The composition of introgressed and retained genes indicates that selection against incompatible cytonuclear and nuclear-nuclear interactions likely acted during introgression, whereas linkage also contributed to genome composition through the retention of ancient haplotype blocks. We also applied divergence-based tests to determine the species branching order and distinguish donor from recipient lineages. Surprisingly, these analyses suggest that cytonuclear discordance arose via extensive nuclear, rather than cytoplasmic, introgression. If true, this would mean that most of the nuclear genome was displaced during introgression whereas only a small proportion of native alleles were retained.
Collapse
|
47
|
Yang C, Ma Y, Cheng B, Zhou L, Yu C, Luo L, Pan H, Zhang Q. Molecular Evidence for Hybrid Origin and Phenotypic Variation of Rosa Section Chinenses. Genes (Basel) 2020; 11:genes11090996. [PMID: 32854427 PMCID: PMC7564265 DOI: 10.3390/genes11090996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/01/2020] [Accepted: 08/18/2020] [Indexed: 11/18/2022] Open
Abstract
Rosa sect. Chinenses (Rosaceae) is an important parent of modern rose that is widely distributed throughout China and plays an important role in breeding and molecular biological research. R. sect. Chinenses has variable morphological traits and mixed germplasm. However, the taxonomic status and genetic background of sect. Chinenses varieties remain unclear. In this study, we collected germplasm resources from sect. Chinenses varieties with different morphological traits. Simple sequence repeat (SSR) markers, chloroplast markers, and single copy nuclear markers were used to explore the genetic background of these germplasm resources. We described the origin of hybridization of rose germplasm resources by combining different molecular markers. The results showed that the flower and hip traits of different species in R. sect. Chinenses were significantly different. The SSR analysis showed that the two wild type varieties have different genetic backgrounds. The double petal varieties of R. sect. Chinenses could be hybrids of two wild type varieties. A phylogenetic analysis showed that the maternal inheritance of sect. Chinenses varieties had two different origins. To some extent, variation in the morphological traits of double petal species of R. sect. Chinenses reflects the influence of cultivation process. This study emphasizes that different genetic markers vary in their characteristics. Therefore, analyzing different genetic markers in could provide an insight into highly heterozygous species.
Collapse
|
48
|
Mabry ME, Brose JM, Blischak PD, Sutherland B, Dismukes WT, Bottoms CA, Edger PP, Washburn JD, An H, Hall JC, McKain MR, Al‐Shehbaz I, Barker MS, Schranz ME, Conant GC, Pires JC. Phylogeny and multiple independent whole-genome duplication events in the Brassicales. AMERICAN JOURNAL OF BOTANY 2020; 107:1148-1164. [PMID: 32830865 PMCID: PMC7496422 DOI: 10.1002/ajb2.1514] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/05/2020] [Indexed: 05/04/2023]
Abstract
PREMISE Whole-genome duplications (WGDs) are prevalent throughout the evolutionary history of plants. For example, dozens of WGDs have been phylogenetically localized across the order Brassicales, specifically, within the family Brassicaceae. A WGD event has also been identified in the Cleomaceae, the sister family to Brassicaceae, yet its placement, as well as that of WGDs in other families in the order, remains unclear. METHODS Phylo-transcriptomic data were generated and used to infer a nuclear phylogeny for 74 Brassicales taxa. Genome survey sequencing was also performed on 66 of those taxa to infer a chloroplast phylogeny. These phylogenies were used to assess and confirm relationships among the major families of the Brassicales and within Brassicaceae. Multiple WGD inference methods were then used to assess the placement of WGDs on the nuclear phylogeny. RESULTS Well-supported chloroplast and nuclear phylogenies for the Brassicales and the putative placement of the Cleomaceae-specific WGD event Th-ɑ are presented. This work also provides evidence for previously hypothesized WGDs, including a well-supported event shared by at least two members of the Resedaceae family, and a possible event within the Capparaceae. CONCLUSIONS Phylogenetics and the placement of WGDs within highly polyploid lineages continues to be a major challenge. This study adds to the conversation on WGD inference difficulties by demonstrating that sampling is especially important for WGD identification and phylogenetic placement. Given its economic importance and genomic resources, the Brassicales continues to be an ideal group for assessing WGD inference methods.
Collapse
Affiliation(s)
- Makenzie E. Mabry
- Division of Biological Sciences and Christopher S. Bond Life Sciences CenterUniversity of MissouriColumbiaMissouri65211USA
| | - Julia M. Brose
- Division of Biological Sciences and Christopher S. Bond Life Sciences CenterUniversity of MissouriColumbiaMissouri65211USA
| | - Paul D. Blischak
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona85719USA
| | - Brittany Sutherland
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona85719USA
| | - Wade T. Dismukes
- Division of Biological Sciences and Christopher S. Bond Life Sciences CenterUniversity of MissouriColumbiaMissouri65211USA
| | - Christopher A. Bottoms
- Informatics Research Core Facility and Christopher S. Bond Life Sciences CenterUniversity of MissouriColumbiaMissouri65211USA
| | - Patrick P. Edger
- Department of HorticultureMichigan State UniversityEast LansingMichigan48824USA
| | | | - Hong An
- Division of Biological Sciences and Christopher S. Bond Life Sciences CenterUniversity of MissouriColumbiaMissouri65211USA
| | - Jocelyn C. Hall
- Department of Biological SciencesUniversity of AlbertaEdmontonT6G 2E9Canada
| | - Michael R. McKain
- Department of Biological SciencesThe University of AlabamaTuscaloosaAlabama35401USA
| | | | - Michael S. Barker
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona85719USA
| | | | - Gavin C. Conant
- Bioinformatics Research CenterProgram in Genetics and Department of Biological SciencesNorth Carolina State UniversityRaleighNorth Carolina27695USA
| | - J. Chris Pires
- Division of Biological Sciences and Christopher S. Bond Life Sciences CenterUniversity of MissouriColumbiaMissouri65211USA
| |
Collapse
|
49
|
Wen J, Yu Y, Xie DF, Peng C, Liu Q, Zhou SD, He XJ. A transcriptome-based study on the phylogeny and evolution of the taxonomically controversial subfamily Apioideae (Apiaceae). ANNALS OF BOTANY 2020; 125:937-953. [PMID: 32016402 PMCID: PMC7218814 DOI: 10.1093/aob/mcaa011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/28/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS A long-standing controversy in the subfamily Apioideae concerns relationships among the major lineages, which has prevented a comprehensive study of their fruits and evolutionary history. Here we use single copy genes (SCGs) generated from transcriptome datasets to generate a reliable species tree and explore the evolutionary history of Apioideae. METHODS In total, 3351 SCGs were generated from 27 transcriptome datasets and one genome, and further used for phylogenetic analysis using coalescent-based methods. Fruit morphology and anatomy were studied in combination with the species tree. Eleven SCGs were screened out for dating analysis with two fossils selected for calibration. KEY RESULTS A well-supported species tree was generated with a topology [Chamaesieae, (Bupleureae, (Pleurospermeae, (Physospermopsis Clade, (Group C, (Group A, Group B)))))] that differed from previous trees. Daucinae and Torilidinae were not in the tribe Scandiceae and existed as sister groups to the Acronema Clade. Five branches (I-V) of the species tree showed low quartet support but strong local posterior probabilities. Dating analysis suggested that Apioideae originated around 56.64 Mya (95 % highest posterior density interval, 45.18-73.53 Mya). CONCLUSIONS This study resolves a controversial phylogenetic relationship in Apioideae based on 3351 SCGs and coalescent-based species tree estimation methods. Gene trees that contributed to the species tree may undergoing rapid evolutionary divergence and incomplete lineage sorting. Fruits of Apioideae might have evolved in two directions, anemochorous and hydrochorous, with epizoochorous as a derived mode. Molecular and morphological evidence suggests that Daucinae and Torilidinae should be restored to the tribe level. Our results provide new insights into the morphological evolution of this subfamily, which may contribute to a better understanding of species diversification in Apioideae. Molecular dating analysis suggests that uplift of the Qinghai-Tibetan Plateau (QTP) and climate changes probably drove rapid speciation and diversification of Apioideae in the QTP region.
Collapse
Affiliation(s)
- Jun Wen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, P.R. China
| | - Yan Yu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Chang Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qing Liu
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, P.R. China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xing-Jin He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
50
|
Granados Mendoza C, Jost M, Hágsater E, Magallón S, van den Berg C, Lemmon EM, Lemmon AR, Salazar GA, Wanke S. Target Nuclear and Off-Target Plastid Hybrid Enrichment Data Inform a Range of Evolutionary Depths in the Orchid Genus Epidendrum. FRONTIERS IN PLANT SCIENCE 2020; 10:1761. [PMID: 32063915 PMCID: PMC7000662 DOI: 10.3389/fpls.2019.01761] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/16/2019] [Indexed: 05/12/2023]
Abstract
Universal angiosperm enrichment probe sets designed to enrich hundreds of putatively orthologous nuclear single-copy loci are increasingly being applied to infer phylogenetic relationships of different lineages of angiosperms at a range of evolutionary depths. Studies applying such probe sets have focused on testing the universality and performance of the target nuclear loci, but they have not taken advantage of off-target data from other genome compartments generated alongside the nuclear loci. Here we do so to infer phylogenetic relationships in the orchid genus Epidendrum and closely related genera of subtribe Laeliinae. Our aims are to: 1) test the technical viability of applying the plant anchored hybrid enrichment (AHE) method (Angiosperm v.1 probe kit) to our focal group, 2) mine plastid protein coding genes from off-target reads; and 3) evaluate the performance of the target nuclear and off-target plastid loci in resolving and supporting phylogenetic relationships along a range of taxonomical depths. Phylogenetic relationships were inferred from the nuclear data set through coalescent summary and site-based methods, whereas plastid loci were analyzed in a concatenated partitioned matrix under maximum likelihood. The usefulness of target and flanking non-target nuclear regions and plastid loci was assessed through the estimation of their phylogenetic informativeness. Our study successfully applied the plant AHE probe kit to Epidendrum, supporting the universality of this kit in angiosperms. Moreover, it demonstrated the feasibility of mining plastome loci from off-target reads generated with the Angiosperm v.1 probe kit to obtain additional, uniparentally inherited sequence data at no extra sequencing cost. Our analyses detected some strongly supported incongruences between nuclear and plastid data sets at shallow divergences, an indication of potential lineage sorting, hybridization, or introgression events in the group. Lastly, we found that the per site phylogenetic informativeness of the ycf1 plastid gene surpasses that of all other plastid genes and several nuclear loci, making it an excellent candidate for assessing phylogenetic relationships at medium to low taxonomic levels in orchids.
Collapse
Affiliation(s)
- Carolina Granados Mendoza
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Matthias Jost
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Eric Hágsater
- Herbario AMO, Instituto Chinoin, A.C., Mexico City, Mexico
| | - Susana Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cássio van den Berg
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Alan R. Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, United States
| | - Gerardo A. Salazar
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|