1
|
Kwong RWM. Trace metals in the teleost fish gill: biological roles, uptake regulation, and detoxification mechanisms. J Comp Physiol B 2024; 194:749-763. [PMID: 38916671 DOI: 10.1007/s00360-024-01565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024]
Abstract
In fish, the gill plays a vital role in regulating the absorption of trace metals and is also highly susceptible to metal toxicity. Trace metals such as iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn) are involved in various catalytic activities and molecular binding within the gill, thereby supporting a range of physiological processes in this organ. While beneficial at normal levels, these metals can become toxic when present in excess. Conversely, nonessential metals like cadmium (Cd) and lead (Pb) can gain entry into gill cells through similar metal transport pathways, potentially interfering with various cellular processes. The transepithelial transport of these metals across the gill epithelium is governed by a variety of metal transport and metal binding proteins. These include the Cu transporter 1 (CTR1), divalent metal transporter 1 (DMT1), and members of the Zrt-/Irt-like protein (ZIP) and zinc transport (ZnT) families. Additionally, some of these metals can compete with major ions (e.g., calcium, sodium) for absorption sites in the gill. This complex crosstalk suggests an interdependent mechanism that balances metal uptake to meet physiological needs while preventing excessive accumulation. In this article, I review the roles of trace metals in proteins/enzymes that support the different functions in the gill of teleost fish. I also discuss current understanding of the pathways involved in regulating the branchial uptake of metals and their influence on ionic regulation, and the potential detoxification mechanisms in the gill. Finally, I summarize knowledge gaps and potential areas for further investigation.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
2
|
Ma Y, Zhan L, Yang J, Zhang J. SLC11A1 associated with tumor microenvironment is a potential biomarker of prognosis and immunotherapy efficacy for colorectal cancer. Front Pharmacol 2022; 13:984555. [PMID: 36438826 PMCID: PMC9681808 DOI: 10.3389/fphar.2022.984555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/20/2022] [Indexed: 11/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal cancers of the digestive system. The tumor microenvironment (TME) plays a central role in the initiation and development of CRC. However, little is known about the modulation mechanism of the TME in CRC. In our study, we attempted to identify a biomarker related to the TME modulation that could serve as a potential prognostic biomarker for CRC. We identified differentially expressed genes between the ImmuneScore high/low and StromalScore high/low groups. Using univariate COX regression analysis and hub gene analysis (cytoHubba), SLC11A1 was identified as the only candidate gene for subsequent analysis. CIBERSORT, EPIC, MCPcounter, and immunogenic cell death were performed to evaluate the effect of SLC11A1 on the TME. We also collected samples and performed Real-time quantitative PCR to verify the expression levels of SLC11A1 in CRC and adjacent normal tissues. The IMvigor210 cohort, TIDE score, and immunophenoscore (IPS) were used to analyze the association between SLC11A1 and immunotherapy efficacy. SLC11A1 was highly expressed in CRC tissues compared with its expression in normal colorectal tissues and was associated with poor prognosis and advanced clinicopathological stages. Gene set enrichment analysis showed that TGF-β pathways, JAK-STAT pathways, and angiogenesis were significantly enriched in the high-SLC11A1 group. Single-cell analysis validated the correlation between SLC11A1 and the TME. Using CIBERSORT, EPIC, and MCPcounter algorithms, we found that there was more macrophage and fibroblast infiltration in the SLC11A1 high-expression group. Meanwhile, high-SLC11A1 patients had lower IPS scores, higher TIDE scores, and fewer immunotherapy benefits than those of low-SLC11A1 patients. In conclusion, SLC11A1 plays a crucial role in the TME and could serve as a potential biomarker for poor prognosis and immunotherapy efficacy in CRC.
Collapse
Affiliation(s)
- Yiming Ma
- Medical Oncology Department of Gastrointestinal Tumors, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Lei Zhan
- Medical Oncology Department of Gastrointestinal Tumors, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Jun Yang
- Medical Oncology Department of Breast Tumors, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Jingdong Zhang
- Medical Oncology Department of Gastrointestinal Tumors, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
3
|
Neves JV, Barroso C, Carvalho P, Nunes M, Gonçalves JFM, Rodrigues PNS. Characterization of Erythroferrone in a Teleost Fish (Dicentrarchus labrax) With Two Functional Hepcidin Types: More Than an Erythroid Regulator. Front Immunol 2022; 13:867630. [PMID: 35464433 PMCID: PMC9024048 DOI: 10.3389/fimmu.2022.867630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
Erythroferrone is a recently identified erythroid regulator produced by erythroblasts in the mammalian bone marrow and extramedullary sites, known to be induced in conditions of anemia or blood loss. Iron metabolism is affected by erythroferrone through its capacity to inhibit hepcidin production, leading to the increase of iron availability required for erythropoiesis. However, little is known about erythroferrone function in other vertebrates, in particular teleost fish, that unlike mammals, present two different functional types of hepcidin, one type mostly involved in iron metabolism and the other in antimicrobial response. The study of erythroferrone evolution and its biological role in teleost fish can give us valuably new insights into its function. To address these questions, we characterized erythroferrone in the European sea bass (Dicentrarchus labrax), a species presenting two hepcidin types, and evaluated variations in its expression levels in response to different experimental conditions. During experimental anemia, erythroferrone responds by increasing its expression and suppressing hepcidin production, following the pattern observed in mammals, but it is not influenced by iron overload. However, during bacterial infection, erythroferrone is downregulated and hepcidin levels increase. Furthermore, administration of Hamp1 but not of Hamp2 peptides suppresses erythroferrone expression. In conclusion, in dual hepcidin teleost fish erythroferrone seems to only interact with type 1 hepcidin, known to be involved in iron homeostasis, but not with type 2, which has an almost exclusive antimicrobial role.
Collapse
Affiliation(s)
- João V. Neves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Iron and Innate Immunity, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- *Correspondence: João V. Neves, ; José F. M. Gonçalves,
| | - Carolina Barroso
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Iron and Innate Immunity, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Pedro Carvalho
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Magda Nunes
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - José F. M. Gonçalves
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- *Correspondence: João V. Neves, ; José F. M. Gonçalves,
| | - Pedro N. S. Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Iron and Innate Immunity, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Barroso C, Carvalho P, Nunes M, Gonçalves JFM, Rodrigues PNS, Neves JV. The Era of Antimicrobial Peptides: Use of Hepcidins to Prevent or Treat Bacterial Infections and Iron Disorders. Front Immunol 2021; 12:754437. [PMID: 34646277 PMCID: PMC8502971 DOI: 10.3389/fimmu.2021.754437] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
The current treatments applied in aquaculture to limit disease dissemination are mostly based on the use of antibiotics, either as prophylactic or therapeutic agents, with vaccines being available for a limited number of fish species and pathogens. Antimicrobial peptides are considered as promising novel substances to be used in aquaculture, due to their antimicrobial and immunomodulatory activities. Hepcidin, the major iron metabolism regulator, is found as a single gene in most mammals, but in certain fish species, including the European sea bass (Dicentrarchus labrax), two different hepcidin types are found, with specialized roles: the single type 1 hepcidin is involved in iron homeostasis trough the regulation of ferroportin, the only known iron exporter; and the various type 2 hepcidins present antimicrobial activity against a number of different pathogens. In this study, we tested the administration of sea bass derived hepcidins in models of infection and iron overload. Administration with hamp2 substantially reduced fish mortalities and bacterial loads, presenting itself as a viable alternative to the use of antibiotics. On the other hand, hamp1 seems to attenuate the effects of iron overload. Further studies are necessary to test the potential protective effects of hamp2 against other pathogens, as well as to understand how hamp2 stimulate the inflammatory responses, leading to an increased fish survival upon infection.
Collapse
Affiliation(s)
- Carolina Barroso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Iron and Innate Immunity, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Programa Doutoral em Biologia Molecular e Celular (MCbiology), ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Pedro Carvalho
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Magda Nunes
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José F M Gonçalves
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Pedro N S Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Iron and Innate Immunity, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - João V Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Iron and Innate Immunity, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
5
|
Molecular Mechanism of Nramp-Family Transition Metal Transport. J Mol Biol 2021; 433:166991. [PMID: 33865868 DOI: 10.1016/j.jmb.2021.166991] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
The Natural resistance-associated macrophage protein (Nramp) family of transition metal transporters enables uptake and trafficking of essential micronutrients that all organisms must acquire to survive. Two decades after Nramps were identified as proton-driven, voltage-dependent secondary transporters, multiple Nramp crystal structures have begun to illustrate the fine details of the transport process and provide a new framework for understanding a wealth of preexisting biochemical data. Here we review the relevant literature pertaining to Nramps' biological roles and especially their conserved molecular mechanism, including our updated understanding of conformational change, metal binding and transport, substrate selectivity, proton transport, proton-metal coupling, and voltage dependence. We ultimately describe how the Nramp family has adapted the LeuT fold common to many secondary transporters to provide selective transition-metal transport with a mechanism that deviates from the canonical model of symport.
Collapse
|
6
|
Sassa M, Takagi T, Kinjo A, Yoshioka Y, Zayasu Y, Shinzato C, Kanda S, Murakami-Sugihara N, Shirai K, Inoue K. Divalent metal transporter-related protein restricts animals to marine habitats. Commun Biol 2021; 4:463. [PMID: 33846549 PMCID: PMC8041893 DOI: 10.1038/s42003-021-01984-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/12/2021] [Indexed: 12/30/2022] Open
Abstract
Utilization and regulation of metals from seawater by marine organisms are important physiological processes. To better understand metal regulation, we searched the crown-of-thorns starfish genome for the divalent metal transporter (DMT) gene, a membrane protein responsible for uptake of divalent cations. We found two DMT-like sequences. One is an ortholog of vertebrate DMT, but the other is an unknown protein, which we named DMT-related protein (DMTRP). Functional analysis using a yeast expression system demonstrated that DMT transports various metals, like known DMTs, but DMTRP does not. In contrast, DMTRP reduced the intracellular concentration of some metals, especially zinc, suggesting its involvement in negative regulation of metal uptake. Phylogenetic distribution of the DMTRP gene in various metazoans, including sponges, protostomes, and deuterostomes, indicates that it originated early in metazoan evolution. However, the DMTRP gene is only retained in marine species, and its loss seems to have occurred independently in ecdysozoan and vertebrate lineages from which major freshwater and land animals appeared. DMTRP may be an evolutionary and ecological limitation, restricting organisms that possess it to marine habitats, whereas its loss may have allowed other organisms to invade freshwater and terrestrial habitats. Mieko Sassa et al. report a novel divalent metal transporter protein (DMTRP) in the crown-of-thorns starfish genome and determine that all organisms with a DMTRP gene are located in marine habitats. They also show in a functional yeast system that DMTRP can prevent uptake of certain metals, bringing insight into the evolution of metal regulation for marine organisms.
Collapse
Affiliation(s)
- Mieko Sassa
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba, Japan. .,Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan.
| | - Toshiyuki Takagi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Azusa Kinjo
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Yuki Yoshioka
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Yuna Zayasu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Shinji Kanda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | | | - Kotaro Shirai
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Koji Inoue
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| |
Collapse
|
7
|
Molecular identification and expression analysis of natural resistance-associated macrophage protein (Nramp) gene from yellow catfish Pelteobagrus fulvidraco (Siluriformes: Bagridae). Int J Biol Macromol 2019; 141:345-350. [PMID: 31491517 DOI: 10.1016/j.ijbiomac.2019.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/05/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022]
Abstract
Natural resistance associated macrophage protein genes (Nramp) is one of the important candidate genes responsible for regulating immune response against pathogen infection. The aim of the present was to quantify expression of Nramp gene in response to pathogen infection. Here, a Nramp was identified and molecularly characterized from Pelteobagrus fulvidraco (PfNramp). The obtained 3134 bp cDNA fragment of PfNramp comprised a 5'-untranslated region (UTR) of 81 bp, a 3'-UTR of 1403 bp and an open reading frame (ORF) of 1650 bp, encoding a polypeptide of 549 amino acids that contained a typical structural features of Nramp domain (Pfam01566). BLAST analysis exhibited that PfNramp shared sequence similarity to other organisms, in particular to Ictalurus furcatus (92%), Danio rerio (82%), and Homo sapiens (77%). Phylogenetic analysis revealed that PfNramp is close to Teleostei. Real-time quantitative reverse transcription-PCR (qRT-PCR) analysis showed that PfNramp was expressed in all examined tissues, with the highest abundance in liver. The mRNA expression of PfNramp was remarkably increased at different time points after lipopolysaccharide (LPS), and polyriboinosinic polyribocytidylic acid (poly I:C) challenge. These results suggest that PfNramp is an inducible protein in the innate immune reactions of P. fulvidraco and probably in other fish species.
Collapse
|
8
|
Terova G, Rimoldi S, Izquierdo M, Pirrone C, Ghrab W, Bernardini G. Nano-delivery of trace minerals for marine fish larvae: influence on skeletal ossification, and the expression of genes involved in intestinal transport of minerals, osteoblast differentiation, and oxidative stress response. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1375-1391. [PMID: 29911270 DOI: 10.1007/s10695-018-0528-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Currently, the larviculture of many marine fish species with small-sized larvae depends for a short time after hatching, on the supply of high-quality live zooplankton to ensure high survival and growth rates. During the last few decades, the research community has made great efforts to develop artificial diets, which can completely substitute live prey. However, studies aimed at determining optimal levels of minerals in marine larvae compound feeds and the potential of novel delivery vectors for mineral acquisition has only very recently begun. Recently, the agro-food industry has developed several nano-delivery systems, which could be used for animal feed, too. Delivery through nano-encapsulation of minerals and feed additives would protect the bioactive molecules during feed manufacturing and fish feeding and allow an efficient acquisition of active substances into biological system. The idea is that dietary minerals in the form of nanoparticles may enter cells more easily than their larger counterparts enter and thus speed up their assimilation in fish. Accordingly, we evaluated the efficacy of early weaning diets fortified with organic, inorganic, or nanoparticle forms of trace minerals (Se, Zn, and Mn) in gilthead seabream (Sparus aurata) larvae. We tested four experimental diets: a trace mineral-deficient control diet, and three diets supplemented with different forms of trace minerals. At the end of the feeding trial, larvae growth performance and ossification, and the level of expression of six target genes (SLC11A2β, dmt1, BMP2, OC, SOD, GPX), were evaluated. Our data demonstrated that weaning diets supplemented with Mn, Se, and Zn in amino acid-chelated (organic) or nanoparticle form were more effective than diets supplemented with inorganic form of minerals to promote bone mineralization, and prevent skeletal anomalies in seabream larvae. Furthermore, nanometals markedly improved larval stress resistance in comparison to inorganic minerals and upregulated mRNA copy number of OC gene. The expression of this gene was strongly correlated with mineralization degree, thus confirming its potency as a good marker of bone mineralization in gilthead seabream larvae.
Collapse
Affiliation(s)
- Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
- Inter-University Centre for Research in Protein Biotechnologies, "The Protein Factory", Polytechnic University of Milan and University of Insubria, Varese, Italy.
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura (GIA), University Institute Ecoaqua, University of Las Palmas de Gran Canaria, Telde, Las Palmas, Canary Islands, Spain
| | - Cristina Pirrone
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Wafa Ghrab
- Grupo de Investigación en Acuicultura (GIA), University Institute Ecoaqua, University of Las Palmas de Gran Canaria, Telde, Las Palmas, Canary Islands, Spain
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Inter-University Centre for Research in Protein Biotechnologies, "The Protein Factory", Polytechnic University of Milan and University of Insubria, Varese, Italy
| |
Collapse
|
9
|
Natural Resistance Associated Macrophage Protein Is Involved in Immune Response of Blunt Snout Bream, Megalobrama amblycephala. Cells 2018; 7:cells7040027. [PMID: 29596379 PMCID: PMC5946104 DOI: 10.3390/cells7040027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/07/2018] [Accepted: 03/24/2018] [Indexed: 01/01/2023] Open
Abstract
The natural resistance-associated macrophage protein gene (Nramp), has been identified as one of the significant candidate genes responsible for modulating vertebrate natural resistance to intracellular pathogens. Here, we identified and characterized a new Nramp family member, named as maNramp, in the blunt snout bream. The full-length cDNA of maNramp consists of a 153 bp 5′UTR, a 1635 bp open reading frame encoding a protein with 544 amino acids, and a 1359 bp 3′UTR. The deduced protein (maNRAMP) possesses the typical structural features of NRAMP protein family, including 12 transmembrane domains, three N-linked glycosylation sites, and a conserved transport motif. Phylogenetic analysis revealed that maNRAMP shares the significant sequence consistency with other teleosts, and shows the higher sequence similarity to mammalian Nramp2 than Nramp1. It was found that maNramp expressed ubiquitously in all normal tissues tested, with the highest abundance in the spleen, followed by the head kidney and intestine, and less abundance in the muscle, gill, and kidney. After lipopolysaccharide (LPS) stimulation, the mRNA level of maNramp was rapidly up-regulated, which reached a peak level at 6 h. Altogether, these results indicated that maNramp might be related to fish innate immunity and similar to mammalian Nramp1 in function.
Collapse
|
10
|
|
11
|
Hamp1 but not Hamp2 regulates ferroportin in fish with two functionally distinct hepcidin types. Sci Rep 2017; 7:14793. [PMID: 29093559 PMCID: PMC5665920 DOI: 10.1038/s41598-017-14933-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/18/2017] [Indexed: 01/01/2023] Open
Abstract
Hepcidin is a small cysteine rich peptide that regulates the sole known cellular iron exporter, ferroportin, effectively controlling iron metabolism. Contrary to humans, where a single hepcidin exists, many fish have two functionally distinct hepcidin types, despite having a single ferroportin gene. This raises the question of whether ferroportin is similarly regulated by the iron regulator Hamp1 and the antimicrobial Hamp2. In sea bass (Dicentrarchus labrax), iron overload prompted a downregulation of ferroportin, associated with an upregulation of hamp1, whereas an opposite response was observed during anemia, with no changes in hamp2 in either situation. During infection, ferroportin expression decreased, indicating iron withholding to avoid microbial proliferation. In vivo administration of Hamp1 but not Hamp2 synthetic peptides caused significant reduction in ferroportin expression, indicating that in teleost fish with two hepcidin types, ferroportin activity is mediated through the iron-regulator Hamp1, and not through the dedicated antimicrobial Hamp2. Additionally, in vitro treatment of mouse macrophages with fish Hamp1 but not Hamp2 caused a decrease in ferroportin levels. These results raise questions on the evolution of hepcidin and ferroportin functional partnership and open new possibilities for the pharmaceutical use of selected fish Hamp2 hepcidins during infections, with no impact on iron homeostasis.
Collapse
|
12
|
Mehlferber EC, Benowitz KM, Roy-Zokan EM, McKinney EC, Cunningham CB, Moore AJ. Duplication and Sub/Neofunctionalization of Malvolio, an Insect Homolog of Nramp, in the Subsocial Beetle Nicrophorus vespilloides. G3 (BETHESDA, MD.) 2017; 7:3393-3403. [PMID: 28830925 PMCID: PMC5633388 DOI: 10.1534/g3.117.300183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/16/2017] [Indexed: 01/04/2023]
Abstract
With growing numbers of sequenced genomes, increasing numbers of duplicate genes are being uncovered. Here we examine Malvolio, a gene in the natural resistance-associated macrophage protein (Nramp) family, that has been duplicated in the subsocial beetle, Nicrophorus vespilloides, which exhibits advanced parental behavior. There is only one copy of Mvl in honey bees and Drosophila, whereas in vertebrates there are two copies that are subfunctionalized. We first compared amino acid sequences for Drosophila, beetles, mice, and humans. We found a high level of conservation between the different species, although there was greater variation in the C-terminal regions. A phylogenetic analysis across multiple insect orders suggested that Mvl has undergone several independent duplications. To examine the potential for different functions where it has been duplicated, we quantified expression levels of Mvl1 and Mvl2 in eight tissues in N. vespilloides We found that while Mvl1 was expressed ubiquitously, albeit at varying levels, expression of Mvl2 was limited to brain and midgut. Because Mvl has been implicated in behavior, we examined expression during different behavioral states that reflected differences in opportunity for social interactions and expression of parental care behaviors. We found differing expression patterns for the two copies, with Mvl1 increasing in expression during resource preparation and feeding offspring, and Mvl2 decreasing in these same states. Given these patterns of expression, along with the protein analysis, we suggest that Mvl in N. vespilloides has experienced sub/neofunctionalization following its duplication, and may be evolving differing and tissue-specific roles in behavior and physiology.
Collapse
Affiliation(s)
| | - Kyle M Benowitz
- Department of Genetics, University of Georgia, Athens, Georgia 30602
| | | | - Elizabeth C McKinney
- Department of Entomology, University of Georgia, Athens, Georgia 30602
- Department of Genetics, University of Georgia, Athens, Georgia 30602
| | | | - Allen J Moore
- Department of Entomology, University of Georgia, Athens, Georgia 30602
- Department of Genetics, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
13
|
Neves JV, Caldas C, Ramos MF, Rodrigues PNS. Hepcidin-Dependent Regulation of Erythropoiesis during Anemia in a Teleost Fish, Dicentrarchus labrax. PLoS One 2016; 11:e0153940. [PMID: 27100629 PMCID: PMC4839762 DOI: 10.1371/journal.pone.0153940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 04/06/2016] [Indexed: 12/21/2022] Open
Abstract
Anemia is a common disorder, characterized by abnormally low levels of red blood cells or hemoglobin. The mechanisms of anemia development and response have been thoroughly studied in mammals, but little is known in other vertebrates, particularly teleost fish. In this study, different degrees of anemia were induced in healthy European sea bass specimens (Dicentrarchus labrax) and at pre-determined time points hematological parameters, liver iron content and the expression of genes involved in iron homeostasis and hematopoiesis, with particular attention on hepcidins, were evaluated. The experimental anemia prompted a decrease in hamp1 expression in all tested organs, in accordance to an increased need for iron absorption and mobilization, with slight increases in hamp2 in the kidney and intestine. The liver was clearly the major organ involved in iron homeostasis, decreasing its iron content and showing a gene expression profile consistent with an increased iron release and mobilization. Although both the spleen and head kidney are involved in erythropoiesis, the spleen was found to assume a more preponderant role in the recovery of erythrocyte levels. The intestine was also involved in the response to anemia, through the increase of iron transporting genes. Administration of Hamp1 or Hamp2 mature peptides showed that only Hamp1 affects hematological parameters and liver iron content. In conclusion, the molecular mechanisms of response to anemia present in sea bass are similar to the ones described for mammals, with these results indicating that the two hepcidin types from teleosts assume different roles during anemia.
Collapse
Affiliation(s)
- João V. Neves
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Iron and Innate Immunity, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- * E-mail:
| | - Carolina Caldas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Iron and Innate Immunity, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Miguel F. Ramos
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Iron and Innate Immunity, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Pedro N. S. Rodrigues
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Iron and Innate Immunity, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
Bayerova Z, Janova E, Matiasovic J, Orlando L, Horin P. Positive selection in the SLC11A1 gene in the family Equidae. Immunogenetics 2016; 68:353-64. [DOI: 10.1007/s00251-016-0905-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/24/2016] [Indexed: 12/31/2022]
|
15
|
Neves JV, Caldas C, Vieira I, Ramos MF, Rodrigues PNS. Multiple Hepcidins in a Teleost Fish, Dicentrarchus labrax: Different Hepcidins for Different Roles. THE JOURNAL OF IMMUNOLOGY 2015; 195:2696-709. [DOI: 10.4049/jimmunol.1501153] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/14/2015] [Indexed: 12/16/2022]
|
16
|
Vastermark A, Wollwage S, Houle ME, Rio R, Saier MH. Expansion of the APC superfamily of secondary carriers. Proteins 2014; 82:2797-811. [PMID: 25043943 DOI: 10.1002/prot.24643] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/16/2014] [Accepted: 06/26/2014] [Indexed: 11/07/2022]
Abstract
The amino acid-polyamine-organoCation (APC) superfamily is the second largest superfamily of secondary carriers currently known. In this study, we establish homology between previously recognized APC superfamily members and proteins of seven new families. These families include the PAAP (Putative Amino Acid Permease), LIVCS (Branched Chain Amino Acid:Cation Symporter), NRAMP (Natural Resistance-Associated Macrophage Protein), CstA (Carbon starvation A protein), KUP (K⁺ Uptake Permease), BenE (Benzoate:H⁺ Virginia Symporter), and AE (Anion Exchanger). The topology of the well-characterized human Anion Exchanger 1 (AE1) conforms to a UraA-like topology of 14 TMSs (12 α-helical TMSs and 2 mixed coil/helical TMSs). All functionally characterized members of the APC superfamily use cation symport for substrate accumulation except for some members of the AE family which frequently use anion:anion exchange. We show how the different topologies fit into the framework of the common LeuT-like fold, defined earlier (Proteins. 2014 Feb;82(2):336-46), and determine that some of the new members contain previously undocumented topological variations. All new entries contain the two 5 or 7 TMS APC superfamily repeat units, sometimes with extra TMSs at the ends, the variations being greatest within the CstA family. New, functionally characterized members transport amino acids, peptides, and inorganic anions or cations. Except for anions, these are typical substrates of established APC superfamily members. Active site TMSs are rich in glycyl residues in variable but conserved constellations. This work expands the APC superfamily and our understanding of its topological variations.
Collapse
Affiliation(s)
- Ake Vastermark
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, 92093-0116
| | | | | | | | | |
Collapse
|
17
|
Kwong RWM, Hamilton CD, Niyogi S. Effects of elevated dietary iron on the gastrointestinal expression of Nramp genes and iron homeostasis in rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:363-372. [PMID: 22893023 DOI: 10.1007/s10695-012-9705-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/06/2012] [Indexed: 06/01/2023]
Abstract
Diet is the primary source of iron (Fe) for freshwater fish, and the absorption of Fe is believed to occur via the Nramp family of divalent metal transporters (also called DMT1). Presently, the homeostatic regulation of dietary Fe absorption in fish is poorly understood. This study examined the gastrointestinal mRNA expression of two Nramp isoforms, Nramp-β and Nramp-γ, in the freshwater rainbow trout (Oncorhynchus mykiss), following exposure to elevated dietary Fe [1,256 mg Fe/kg food vs. 136 mg Fe/kg food (control)] for 14 days. The physiological performance, plasma Fe status and tissue-specific accumulation of Fe were also evaluated. In general, the mRNA expression level of Nramp was higher in the intestine relative to the stomach. Interestingly, fish fed on a high-Fe diet exhibited a significant induction in Nramp expression after 7 days, followed by a decrease to the level observed in control fish on day 14. The increase in Nramp expression correlated with the elevated gastrointestinal and plasma Fe concentrations. However, the hepatic Fe concentration remained unchanged during the entire exposure period, indicating strong homeostatic regulation of hepatic Fe level in fish. Fish appeared to handle increased systemic Fe level by elevating the plasma transferrin level, thereby enhancing the Fe-binding capacity in the plasma. Overall, our study provides new interesting insights into the homeostatic regulation of dietary Fe uptake and handling in freshwater fish.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | | | | |
Collapse
|
18
|
|