1
|
Melde RH, Abraham JM, Ugolini MR, Castle MP, Fjalstad MM, Blumstein DM, Durski SJ, Sharp NP. Sex-specific viability effects of mutations in Drosophila melanogaster. Evolution 2024; 78:1844-1853. [PMID: 39277542 DOI: 10.1093/evolut/qpae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
In populations with separate sexes, genetic load due to deleterious mutations may be expressed differently in males and females. Evidence from insect models suggests that selection against mutations is stronger in males. This pattern will reduce deleterious allele frequencies at the expense of males, such that female mean fitness is greater than expected, preserving population persistence in the face of high mutation rates. While previous studies focus on reproductive success, mutation load depends on total selection in each sex, including selection for viability. We might expect minimal sex differences in viability effects in fruit flies, since male and female larvae behave similarly, yet many genes show sex-biased expression in larvae. We measured the sex-specific viability effects of nine "marker" mutations and 123 mutagenized chromosomes. We find that both types of mutations generally reduce viability in both sexes. Among marker mutations we detect instances of sex-biased effects in each direction; mutagenized chromosomes show little sex-specific mutational variance, but recessive lethals show a female bias, including in FlyBase records. We conclude that mutations regularly affect viability in a sex-specific manner, but that the strong pattern of male-biased mutational effects observed previously for reproductive success is not apparent at the pre-reproductive stage.
Collapse
Affiliation(s)
- Robert H Melde
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - JoHanna M Abraham
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - Maryn R Ugolini
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - Madison P Castle
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - Molly M Fjalstad
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - Daniela M Blumstein
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - Sarah J Durski
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - Nathaniel P Sharp
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| |
Collapse
|
2
|
Kanippayoor RL, Soeder C, Hsiang T, Jones CD, Moehring AJ. Identification and genetic analysis of a pervasive 'needle-eye' sperm phenotype in Drosophila sterile hybrid males. Proc Biol Sci 2024; 291:20240483. [PMID: 38889778 DOI: 10.1098/rspb.2024.0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/18/2024] [Indexed: 06/20/2024] Open
Abstract
Interspecies hybrid sterility has been extensively studied, especially in the genus Drosophila. Hybrid sterility is more often found in the heterogametic (XY or ZW) sex, a trend called Haldane's rule. Although this phenomenon is pervasive, identification of a common genetic mechanism remains elusive, with modest support found for a range of potential theories. Here, we identify a single precise morphological phenotype, which we call 'needle-eye sperm', that is associated with hybrid sterility in three separate species pairs that span the Drosophila genus. The nature of the phenotype indicates a common point of meiotic failure in sterile hybrid males. We used 10 generations of backcross selection paired with whole-genome pooled sequencing to genetically map the regions underlying the needle-eye (NE) sperm phenotype. Surprisingly, the sterility phenotype was present in ~50% of males even after 10 generations of backcrossing, and only a single region of the X chromosome was associated with sterility in one direction of backcross. Owing to the common phenotype among sterile male hybrids, and the strong effect of individual loci, further exploration of these findings may identify a universal mechanism for the evolution of hybrid sterility.
Collapse
Affiliation(s)
| | - Charles Soeder
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Corbin D Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amanda J Moehring
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
3
|
Péron G. The effect of the demographic history on the evolution of senescence: A potential new test of the mutation accumulation theory. Mech Ageing Dev 2024; 219:111927. [PMID: 38499252 DOI: 10.1016/j.mad.2024.111927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
The different evolutionary theories of senescence predict different directions for the correlation between the population size and the intensity of senescence. Using simulations, I highlighted how the effect of the population size on the intensity of senescence could be reinforced by the time since populations have been large or small. I devised a mutation-selection model in which the effect of the mutations was age-specific. Several small populations diverged from a same large population at different points in time. At the end of the simulation, the correlation between the time since the populations had been small and the rate of senescence was positive under the mutation accumulation theory and negative under the antagonistic pleiotropy theory. The phenomenon was strong enough to reverse the usually negative relationship between the intensity of senescence and the generation time. These mutually-exclusive predictions could help broaden the taxonomic support for the mutation accumulation theory of senescence, currently mostly supported in humans and lab invertebrates. I briefly mention a few potential applications in real-life systems.
Collapse
Affiliation(s)
- Guillaume Péron
- CNRS, Université Lyon 1, 43 bd du 11 novembre 1918, VILLEURBANNE cedex 69622, France.
| |
Collapse
|
4
|
Singh A, Hasan A, Agrawal AF. An investigation of the sex-specific genetic architecture of fitness in Drosophila melanogaster. Evolution 2023; 77:2015-2028. [PMID: 37329263 DOI: 10.1093/evolut/qpad107] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/14/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
In dioecious populations, the sexes employ divergent reproductive strategies to maximize fitness and, as a result, genetic variants can affect fitness differently in males and females. Moreover, recent studies have highlighted an important role of the mating environment in shaping the strength and direction of sex-specific selection. Here, we measure adult fitness for each sex of 357 lines from the Drosophila Synthetic Population Resource in two different mating environments. We analyze the data using three different approaches to gain insight into the sex-specific genetic architecture for fitness: classical quantitative genetics, genomic associations, and a mutational burden approach. The quantitative genetics analysis finds that on average segregating genetic variation in this population has concordant fitness effects both across the sexes and across mating environments. We do not find specific genomic regions with strong associations with either sexually antagonistic (SA) or sexually concordant (SC) fitness effects, yet there is modest evidence of an excess of genomic regions with weak associations, with both SA and SC fitness effects. Our examination of mutational burden indicates stronger selection against indels and loss-of-function variants in females than in males.
Collapse
Affiliation(s)
- Amardeep Singh
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Asad Hasan
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Sultanova Z, Downing PA, Carazo P. Genetic sex determination, sex chromosome size and sex-specific lifespans across tetrapods. J Evol Biol 2023; 36:480-494. [PMID: 36537352 PMCID: PMC10107984 DOI: 10.1111/jeb.14130] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
Sex differences in lifespan are ubiquitous across the tree of life and exhibit broad taxonomic patterns that remain a puzzle, such as males living longer than females in birds and vice versa in mammals. The prevailing unguarded X hypothesis explains sex differences in lifespan by differential expression of recessive mutations on the X or Z chromosome of the heterogametic sex, but has only received indirect support to date. An alternative hypothesis is that the accumulation of deleterious mutations and repetitive elements on the Y or W chromosome might lower the survival of the heterogametic sex ('toxic Y' hypothesis). Here, we use a new database to report lower survival of the heterogametic relative to the homogametic sex across 136 species of birds, mammals, reptiles and amphibians, as expected if sex chromosomes shape sex-specific lifespans, and consistent with previous findings. We also found that the relative sizes of both the X and the Y chromosomes in mammals (but not the Z or the W chromosomes in birds) are associated with sex differences in lifespan, as predicted by the unguarded X and the 'toxic Y'. Furthermore, we report that the relative size of the Y is negatively associated with male lifespan in mammals, so that small Y size correlates with increased male lifespan. In theory, toxic Y effects are expected to be particularly strong in mammals, and we did not find similar effects in birds. Our results confirm the role of sex chromosomes in explaining sex differences in lifespan across tetrapods and further suggest that, at least in mammals, 'toxic Y' effects may play an important part in this role.
Collapse
Affiliation(s)
- Zahida Sultanova
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Philip A Downing
- Department of Biology, Lund University, Lund, Sweden.,Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Pau Carazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
6
|
Connallon T, Beasley IJ, McDonough Y, Ruzicka F. How much does the unguarded X contribute to sex differences in life span? Evol Lett 2022; 6:319-329. [PMID: 35937469 PMCID: PMC9346086 DOI: 10.1002/evl3.292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/22/2022] [Accepted: 06/12/2022] [Indexed: 11/09/2022] Open
Abstract
Females and males often have markedly different mortality rates and life spans, but it is unclear why these forms of sexual dimorphism evolve. The unguarded X hypothesis contends that dimorphic life spans arise from sex differences in X or Z chromosome copy number (i.e., one copy in the "heterogametic" sex; two copies in the "homogametic" sex), which leads to a disproportionate expression of deleterious mutations by the heterogametic sex (e.g., mammalian males; avian females). Although data on adult sex ratios and sex-specific longevity are consistent with predictions of the unguarded X hypothesis, direct experimental evidence remains scant, and alternative explanations are difficult to rule out. Using a simple population genetic model, we show that the unguarded X effect on sex differential mortality is a function of several reasonably well-studied evolutionary parameters, including the proportion of the genome that is sex linked, the genomic deleterious mutation rate, the mean dominance of deleterious mutations, the relative rates of mutation and strengths of selection in each sex, and the average effect of mutations on survival and longevity relative to their effects on fitness. We review published estimates of these parameters, parameterize our model with them, and show that unguarded X effects are too small to explain observed sex differences in life span across species. For example, sex differences in mean life span are known to often exceed 20% (e.g., in mammals), whereas our parameterized models predict unguarded X effects of a few percent (e.g., 1-3% in Drosophila and mammals). Indeed, these predicted unguarded X effects fall below statistical thresholds of detectability in most experiments, potentially explaining why direct tests of the hypothesis have generated little support for it. Our results suggest that evolution of sexually dimorphic life spans is predominantly attributable to other mechanisms, potentially including "toxic Y" effects and sexual dimorphism for optimal investment in survival versus reproduction.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological SciencesMonash UniversityClaytonVIC3800Australia
| | - Isobel J. Beasley
- School of BioSciencesThe University of MelbourneParkvilleVIC3010Australia
- Melbourne Integrative GenomicsThe University of MelbourneParkvilleVIC3010Australia
- St. Vincent's Institute of Medical ResearchFitzroyVIC3065Australia
| | - Yasmine McDonough
- School of Biological SciencesMonash UniversityClaytonVIC3800Australia
| | - Filip Ruzicka
- School of Biological SciencesMonash UniversityClaytonVIC3800Australia
| |
Collapse
|
7
|
Delph LF, Brown KE, Ríos LD, Kelly JK. Sex‐specific natural selection on SNPs in
Silene latifolia. Evol Lett 2022; 6:308-318. [PMID: 35937470 PMCID: PMC9346077 DOI: 10.1002/evl3.283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 02/24/2022] [Accepted: 03/13/2022] [Indexed: 01/15/2023] Open
Affiliation(s)
- Lynda F. Delph
- Department of Biology Indiana University Bloomington Indiana USA
| | - Keely E. Brown
- Department of Ecology and Evolutionary Biology University of Kansas Lawrence Kansas USA
| | - Luis Diego Ríos
- Department of Biology Indiana University Bloomington Indiana USA
| | - John K. Kelly
- Department of Ecology and Evolutionary Biology University of Kansas Lawrence Kansas USA
| |
Collapse
|
8
|
Vega‐Trejo R, Boer RA, Fitzpatrick JL, Kotrschal A. Sex‐specific inbreeding depression: A meta‐analysis. Ecol Lett 2022; 25:1009-1026. [PMID: 35064612 PMCID: PMC9304238 DOI: 10.1111/ele.13961] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Regina Vega‐Trejo
- Department of Zoology: Ethology Stockholm University Stockholm Sweden
- Department of Zoology Edward Grey Institute University of Oxford Oxford UK
| | - Raïssa A. Boer
- Department of Zoology: Ethology Stockholm University Stockholm Sweden
| | | | - Alexander Kotrschal
- Department of Zoology: Ethology Stockholm University Stockholm Sweden
- Behavioural Ecology Group Wageningen University & Research Wageningen The Netherlands
| |
Collapse
|
9
|
Singh A, Agrawal AF. Sex-specific Variance in Fitness and the Efficacy of Selection. Am Nat 2022; 199:587-602. [DOI: 10.1086/719015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Ruzicka F, Connallon T, Reuter M. Sex differences in deleterious mutational effects in Drosophila melanogaster: combining quantitative and population genetic insights. Genetics 2021; 219:6362879. [PMID: 34740242 DOI: 10.1093/genetics/iyab143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Fitness effects of deleterious mutations can differ between females and males due to: (i) sex differences in the strength of purifying selection; and (ii) sex differences in ploidy. Although sex differences in fitness effects have important broader implications (e.g., for the evolution of sex and lifespan), few studies have quantified their scope. Those that have belong to one of two distinct empirical traditions: (i) quantitative genetics, which focusses on multi-locus genetic variances in each sex, but is largely agnostic about their genetic basis; and (ii) molecular population genetics, which focusses on comparing autosomal and X-linked polymorphism, but is poorly suited for inferring contemporary sex differences. Here, we combine both traditions to present a comprehensive analysis of female and male adult reproductive fitness among 202 outbred, laboratory-adapted, hemiclonal genomes of Drosophila melanogaster. While we find no clear evidence for sex differences in the strength of purifying selection, sex differences in ploidy generate multiple signals of enhanced purifying selection for X-linked loci. These signals are present in quantitative genetic metrics-i.e., a disproportionate contribution of the X to male (but not female) fitness variation-and population genetic metrics-i.e., steeper regressions of an allele's average fitness effect on its frequency, and proportionally less nonsynonymous polymorphism on the X than autosomes. Fitting our data to models for both sets of metrics, we infer that deleterious alleles are partially recessive. Given the often-large gap between quantitative and population genetic estimates of evolutionary parameters, our study showcases the benefits of combining genomic and fitness data when estimating such parameters.
Collapse
Affiliation(s)
- Filip Ruzicka
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Clayton 3800, VIC, Australia.,Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Tim Connallon
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Clayton 3800, VIC, Australia
| | - Max Reuter
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.,Centre for Life's Origins and Evolution, University College London, London WC1E 6BT, UK
| |
Collapse
|
11
|
Rowe L, Rundle HD. The Alignment of Natural and Sexual Selection. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012021-033324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sexual selection has the potential to decrease mean fitness in a population through an array of costs to nonsexual fitness. These costs may be offset when sexual selection favors individuals with high nonsexual fitness, causing the alignment of sexual and natural selection. We review the many laboratory experiments that have manipulated mating systems aimed at quantifying the net effects of sexual selection on mean fitness. These must be interpreted in light of population history and the diversity of ways manipulations have altered sexual interactions, sexual conflict, and sexual and natural selection. Theory and data suggest a net benefit is more likely when sexually concordant genetic variation is enhanced and that ecological context can mediate the relative importance of these different effects. Comparative studies have independently examined the consequences of sexual selection for population/species persistence. These provide little indication of a benefit, and interpreting these higher-level responses is challenging.
Collapse
Affiliation(s)
- Locke Rowe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Howard D. Rundle
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
12
|
Fraïsse C, Sachdeva H. The rates of introgression and barriers to genetic exchange between hybridizing species: sex chromosomes vs autosomes. Genetics 2021; 217:6042694. [PMID: 33724409 DOI: 10.1093/genetics/iyaa025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Interspecific crossing experiments have shown that sex chromosomes play a major role in reproductive isolation between many pairs of species. However, their ability to act as reproductive barriers, which hamper interspecific genetic exchange, has rarely been evaluated quantitatively compared to Autosomes. This genome-wide limitation of gene flow is essential for understanding the complete separation of species, and thus speciation. Here, we develop a mainland-island model of secondary contact between hybridizing species of an XY (or ZW) sexual system. We obtain theoretical predictions for the frequency of introgressed alleles, and the strength of the barrier to neutral gene flow for the two types of chromosomes carrying multiple interspecific barrier loci. Theoretical predictions are obtained for scenarios where introgressed alleles are rare. We show that the same analytical expressions apply for sex chromosomes and autosomes, but with different sex-averaged effective parameters. The specific features of sex chromosomes (hemizygosity and absence of recombination in the heterogametic sex) lead to reduced levels of introgression on the X (or Z) compared to autosomes. This effect can be enhanced by certain types of sex-biased forces, but it remains overall small (except when alleles causing incompatibilities are recessive). We discuss these predictions in the light of empirical data comprising model-based tests of introgression and cline surveys in various biological systems.
Collapse
Affiliation(s)
- Christelle Fraïsse
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria.,CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Himani Sachdeva
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria.,Mathematics and BioSciences Group, Faculty of Mathematics, University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
13
|
Grieshop K, Maurizio PL, Arnqvist G, Berger D. Selection in males purges the mutation load on female fitness. Evol Lett 2021; 5:328-343. [PMID: 34367659 PMCID: PMC8327962 DOI: 10.1002/evl3.239] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022] Open
Abstract
Theory predicts that the ability of selection and recombination to purge mutation load is enhanced if selection against deleterious genetic variants operates more strongly in males than females. However, direct empirical support for this tenet is limited, in part because traditional quantitative genetic approaches allow dominance and intermediate-frequency polymorphisms to obscure the effects of the many rare and partially recessive deleterious alleles that make up the main part of a population's mutation load. Here, we exposed the partially recessive genetic load of a population of Callosobruchus maculatus seed beetles via successive generations of inbreeding, and quantified its effects by measuring heterosis-the increase in fitness experienced when masking the effects of deleterious alleles by heterozygosity-in a fully factorial sex-specific diallel cross among 16 inbred strains. Competitive lifetime reproductive success (i.e., fitness) was measured in male and female outcrossed F1s as well as inbred parental "selfs," and we estimated the 4 × 4 male-female inbred-outbred genetic covariance matrix for fitness using Bayesian Markov chain Monte Carlo simulations of a custom-made general linear mixed effects model. We found that heterosis estimated independently in males and females was highly genetically correlated among strains, and that heterosis was strongly negatively genetically correlated to outbred male, but not female, fitness. This suggests that genetic variation for fitness in males, but not in females, reflects the amount of (partially) recessive deleterious alleles segregating at mutation-selection balance in this population. The population's mutation load therefore has greater potential to be purged via selection in males. These findings contribute to our understanding of the prevalence of sexual reproduction in nature and the maintenance of genetic variation in fitness-related traits.
Collapse
Affiliation(s)
- Karl Grieshop
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSE‐75236Sweden
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONM5S 3B2Canada
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSE‐10691Sweden
| | - Paul L. Maurizio
- Section of Genetic Medicine, Department of MedicineUniversity of ChicagoChicagoIllinois60637
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSE‐75236Sweden
| | - David Berger
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSE‐75236Sweden
| |
Collapse
|
14
|
Kyogoku D, Sota T. Sexual selection increased offspring production via evolution of male and female traits. J Evol Biol 2020; 34:501-511. [PMID: 33314378 DOI: 10.1111/jeb.13753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/06/2020] [Accepted: 11/22/2020] [Indexed: 11/28/2022]
Abstract
Phenotypic evolution driven by sexual selection can impact the fitness of individuals and thus population performance through multiple mechanisms, but it is unresolved how and when sexual selection affects offspring production by females. We examined the effects of sexual selection on offspring production by females using replicated experimental evolutionary lines of Callosobruchus chinensis that were kept under polygamy (with sexual selection) or monogamy (without sexual selection) for 21 generations. We found that polygamous-line pairs produced more offspring than monogamous-line pairs, because polygamous-line beetles evolved to be larger than monogamous-line beetles, and larger females were more fecund. Egg hatchability did not differ between polygamous- and monogamous-line pairs, as a result of the positive and negative effects of sexual selection cancelling out. When mated with an individual from a common tester line, both polygamous-line females and males showed higher hatchability in resultant eggs than monogamous ones. Further, cohabitation with a male reduced egg hatchability, and this effect was more pronounced in polygamous-line than in monogamous-line males. These results demonstrate multiple mechanisms by which sexual selection affects female fitness, with the net effect being positive. Analyses of how development time, body size and male genital morphology were influenced by selection regime suggest that these results arose from both evolution via good-gene processes and sexually antagonistic selection. Our results are also consistent with the hypothesis that the fitness consequences of sexual selection for females are dependent on the evolutionary history of the population.
Collapse
Affiliation(s)
- Daisuke Kyogoku
- Ecological Integration, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Ruzicka F, Connallon T. Is the X chromosome a hot spot for sexually antagonistic polymorphisms? Biases in current empirical tests of classical theory. Proc Biol Sci 2020; 287:20201869. [PMID: 33081608 PMCID: PMC7661300 DOI: 10.1098/rspb.2020.1869] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Females and males carry nearly identical genomes, which can constrain the evolution of sexual dimorphism and generate conditions that are favourable for maintaining sexually antagonistic (SA) polymorphisms, in which alleles beneficial for one sex are deleterious for the other. An influential theoretical prediction, by Rice (Rice 1984 Evolution38, 735-742), is that the X chromosome should be a 'hot spot' (i.e. enriched) for SA polymorphisms. While important caveats to Rice's theoretical prediction have since been highlighted (e.g. by Fry (2010) Evolution64, 1510-1516), several empirical studies appear to support it. Here, we show that current tests of Rice's theory-most of which are based on quantitative genetic measures of fitness (co)variance-are frequently biased towards detecting X-linked effects. We show that X-linked genes tend to contribute disproportionately to quantitative genetic patterns of SA fitness variation whether or not the X is enriched for SA polymorphisms. Population genomic approaches for detecting SA loci, including genome-wide association study of fitness and analyses of intersexual FST, are similarly biased towards detecting X-linked effects. In the light of our models, we critically re-evaluate empirical evidence for Rice's theory and discuss prospects for empirically testing it.
Collapse
|
16
|
Ruzicka F, Dutoit L, Czuppon P, Jordan CY, Li X, Olito C, Runemark A, Svensson EI, Yazdi HP, Connallon T. The search for sexually antagonistic genes: Practical insights from studies of local adaptation and statistical genomics. Evol Lett 2020; 4:398-415. [PMID: 33014417 PMCID: PMC7523564 DOI: 10.1002/evl3.192] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Sexually antagonistic (SA) genetic variation-in which alleles favored in one sex are disfavored in the other-is predicted to be common and has been documented in several animal and plant populations, yet we currently know little about its pervasiveness among species or its population genetic basis. Recent applications of genomics in studies of SA genetic variation have highlighted considerable methodological challenges to the identification and characterization of SA genes, raising questions about the feasibility of genomic approaches for inferring SA selection. The related fields of local adaptation and statistical genomics have previously dealt with similar challenges, and lessons from these disciplines can therefore help overcome current difficulties in applying genomics to study SA genetic variation. Here, we integrate theoretical and analytical concepts from local adaptation and statistical genomics research-including F ST and F IS statistics, genome-wide association studies, pedigree analyses, reciprocal transplant studies, and evolve-and-resequence experiments-to evaluate methods for identifying SA genes and genome-wide signals of SA genetic variation. We begin by developing theoretical models for between-sex F ST and F IS, including explicit null distributions for each statistic, and using them to critically evaluate putative multilocus signals of sex-specific selection in previously published datasets. We then highlight new statistics that address some of the limitations of F ST and F IS, along with applications of more direct approaches for characterizing SA genetic variation, which incorporate explicit fitness measurements. We finish by presenting practical guidelines for the validation and evolutionary analysis of candidate SA genes and discussing promising empirical systems for future work.
Collapse
Affiliation(s)
- Filip Ruzicka
- School of Biological SciencesMonash UniversityClaytonVIC 3800Australia
| | - Ludovic Dutoit
- Department of ZoologyUniversity of OtagoDunedin9054New Zealand
| | - Peter Czuppon
- Institute of Ecology and Environmental Sciences, UPEC, CNRS, IRD, INRASorbonne UniversitéParis75252France
- Center for Interdisciplinary Research in Biology, CNRS, Collège de FrancePSL Research UniversityParis75231France
| | - Crispin Y. Jordan
- School of Biomedical SciencesUniversity of EdinburghEdinburghEH8 9XDUnited Kingdom
| | - Xiang‐Yi Li
- Institute of BiologyUniversity of NeuchâtelNeuchatelCH‐2000Switzerland
| | - Colin Olito
- Department of BiologyLund UniversityLundSE‐22362Sweden
| | - Anna Runemark
- Department of BiologyLund UniversityLundSE‐22362Sweden
| | | | | | - Tim Connallon
- School of Biological SciencesMonash UniversityClaytonVIC 3800Australia
| |
Collapse
|
17
|
Sharp NP, Whitlock MC. No evidence of positive assortative mating for genetic quality in fruit flies. Proc Biol Sci 2019; 286:20191474. [PMID: 31575372 DOI: 10.1098/rspb.2019.1474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In sexual populations, the effectiveness of selection will depend on how gametes combine with respect to genetic quality. If gametes with deleterious alleles are likely to combine with one another, deleterious genetic variation can be more easily purged by selection. Assortative mating, where there is a positive correlation between parents in a phenotype of interest such as body size, is often observed in nature, but does not necessarily reveal how gametes ultimately combine with respect to genetic quality itself. We manipulated genetic quality in fruit fly populations using an inbreeding scheme designed to provide an unbiased measure of mating patterns. While inbred flies had substantially reduced reproductive success, their gametes did not combine with those of other inbred flies more often than expected by chance, indicating a lack of positive assortative mating. Instead, we detected a negative correlation in genetic quality between parents, i.e. disassortative mating, which diminished with age. This pattern is expected to reduce the genetic variance for fitness, diminishing the effectiveness of selection. We discuss how mechanisms of sexual selection could produce a pattern of disassortative mating. Our study highlights that sexual selection has the potential to either increase or decrease genetic load.
Collapse
Affiliation(s)
- Nathaniel P Sharp
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.,Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael C Whitlock
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
18
|
Connallon T, Olito C, Dutoit L, Papoli H, Ruzicka F, Yong L. Local adaptation and the evolution of inversions on sex chromosomes and autosomes. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0423. [PMID: 30150221 DOI: 10.1098/rstb.2017.0423] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2018] [Indexed: 11/12/2022] Open
Abstract
Spatially varying selection with gene flow can favour the evolution of inversions that bind locally adapted alleles together, facilitate local adaptation and ultimately drive genomic divergence between species. Several studies have shown that the rates of spread and establishment of new inversions capturing locally adaptive alleles depend on a suite of evolutionary factors, including the strength of selection for local adaptation, rates of gene flow and recombination, and the deleterious mutation load carried by inversions. Because the balance of these factors is expected to differ between X (or Z) chromosomes and autosomes, opportunities for inversion evolution are likely to systematically differ between these genomic regions, though such scenarios have not been formally modelled. Here, we consider the evolutionary dynamics of X-linked and autosomal inversions in populations evolving at a balance between migration and local selection. We identify three factors that lead to asymmetric rates of X-linked and autosome inversion establishment: (1) sex-biased migration, (2) dominance of locally adapted alleles and (3) chromosome-specific deleterious mutation loads. This theory predicts an elevated rate of fixation, and depressed opportunities for polymorphism, for X-linked inversions. Our survey of data on the genomic distribution of polymorphic and fixed inversions supports both theoretical predictions.This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological Sciences, and Centre for Geometric Biology, Monash University, Clayton, 3800 Victoria, Australia
| | - Colin Olito
- School of Biological Sciences, and Centre for Geometric Biology, Monash University, Clayton, 3800 Victoria, Australia.,Department of Biology, Section for Evolutionary Ecology, Lund University, 22362 Lund, Sweden
| | - Ludovic Dutoit
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden.,Department of Zoology, University of Otago, 9054 Dunedin, New Zealand
| | - Homa Papoli
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Filip Ruzicka
- Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Lengxob Yong
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| |
Collapse
|
19
|
Martinossi‐Allibert I, Thilliez E, Arnqvist G, Berger D. Sexual selection, environmental robustness, and evolutionary demography of maladapted populations: A test using experimental evolution in seed beetles. Evol Appl 2019; 12:1371-1384. [PMID: 31417621 PMCID: PMC6691221 DOI: 10.1111/eva.12758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/19/2018] [Accepted: 12/09/2018] [Indexed: 01/01/2023] Open
Abstract
Whether sexual selection impedes or aids adaptation has become an outstanding question in times of rapid environmental change and parallels the debate about how the evolution of individual traits impacts on population dynamics. The net effect of sexual selection on population viability results from a balance between genetic benefits of "good-genes" effects and costs of sexual conflict. Depending on how these facets of sexual selection are affected under environmental change, extinction of maladapted populations could be either avoided or accelerated. Here, we evolved seed beetles under three alternative mating regimes to disentangle the contributions of sexual selection, fecundity selection, and male-female coevolution to individual reproductive success and population fitness. We compared these contributions between the ancestral environment and two stressful environments (elevated temperature and a host plant shift). We found evidence that sexual selection on males had positive genetic effects on female fitness components across environments, supporting good-genes sexual selection. Interestingly, however, when males evolved under sexual selection with fecundity selection removed, they became more robust to both temperature and host plant stress compared to their conspecific females and males from the other evolution regimes that applied fecundity selection. We quantified the population-level consequences of this sex-specific adaptation and found evidence that the cost of sociosexual interactions in terms of reduced offspring production was higher in the regime applying only sexual selection to males. Moreover, the cost tended to be more pronounced at the elevated temperature to which males from the regime were more robust compared to their conspecific females. These results illustrate the tension between individual-level adaptation and population-level viability in sexually reproducing species and suggest that the relative efficacies of sexual selection and fecundity selection can cause inherent sex differences in environmental robustness that may impact demography of maladapted populations.
Collapse
Affiliation(s)
| | - Emma Thilliez
- Department of Ecology and Genetics, Animal EcologyUppsala UniversityUppsalaSweden
| | - Göran Arnqvist
- Department of Ecology and Genetics, Animal EcologyUppsala UniversityUppsalaSweden
| | - David Berger
- Department of Ecology and Genetics, Animal EcologyUppsala UniversityUppsalaSweden
| |
Collapse
|
20
|
Across-sex genomic-assisted genetic correlations for sex-influenced traits in Brahman cattle. Genet Sel Evol 2019; 51:41. [PMID: 31337334 PMCID: PMC6651968 DOI: 10.1186/s12711-019-0482-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/08/2019] [Indexed: 12/03/2022] Open
Abstract
Background This study aimed at estimating genetic parameters of sex-influenced production traits, evaluating the impact of genotype-by-sex interaction, and identifying the selection criteria that could be included in multiple-trait genetic evaluation to increase the rate of genetic improvement in both sexes. To achieve this goal, we used 10 male and 10 female phenotypes, which were measured in a population of 2111 Australian Brahman cattle genotyped at high-density. Results Heritability estimates ranged from very low (0.03 ± 0.03 for cows’ days to calving at first calving opportunity, DC1), to moderate (0.33 ± 0.08 for cows’ adult body weight, AWTc), and to high (0.95 ± 0.07 for cows’ hip height, HHc). Genetic correlation (rg) estimates between male and female homologous traits were favorable and ranged from moderate to high values, which indicate that selection for any of the traits in one sex would lead to a correlated response with the equivalent phenotype in the other sex. However, the estimated direct response was greater than the indirect response. Moreover, Pearson correlations between estimated breeding values obtained from each sex separately and from female and male homologous traits combined into a single trait in univariate analysis ranged from 0.74 to 0.99, which indicate that small ranking variation might appear if male and female traits are included as single or separate phenotypes. Genetic correlations between male growth and female reproductive traits were not significant, ranging from − 0.07 ± 0.13 to 0.45 ± 0.65. However, selection to improve HHc and AWTc in cows may reduce the percentage of normal sperm at 24 months of age (PNS24), possibly due to correlated effects in the same traits in males, which are related to late maturing animals. Conclusions Hip height in cows and PNS24, as well as blood insulin-like growth factor 1 (IGF1) concentration in bulls at 6 months of age are efficient selection criteria to improve male growth and female reproductive traits, simultaneously. In the presence of genotype-by-sex interactions, selection for traits in each sex results in high rates of genetic improvement, however, for the identification of animals with the highest breeding value, data for males and females may be considered a single trait. Electronic supplementary material The online version of this article (10.1186/s12711-019-0482-6) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Drummond E, Short E, Clancy D. Mitonuclear gene X environment effects on lifespan and health: How common, how big? Mitochondrion 2019; 49:12-18. [PMID: 31254634 DOI: 10.1016/j.mito.2019.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/16/2019] [Accepted: 06/25/2019] [Indexed: 01/13/2023]
Abstract
Mitochondrial genetic variation can have profound effects on fitness, and the mitotype must interact with both the nuclear genes and the environment. We used Drosophila to investigate the extent to which mitotype effects on lifespan and activity are modulated by nucleotype and environmental variation. When nucleotype is varied, mitochondrial effects on lifespan persisted but were relatively small, and still male biased. Varying food as well, mitotype had substantial effects on male climbing speed, modifiable by nucleotype but less so by diet. Finally, mitotype affected fly lifespan much more in a cage environment compared with a vial, also modifiable by nucleotype and diet. The cage may represent a stressful environment. Mitochondrial genotype may affect fitness much more in conditions of stress, which may have implications for human health.
Collapse
Affiliation(s)
- Emma Drummond
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Emma Short
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - David Clancy
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, United Kingdom.
| |
Collapse
|
22
|
Cally JG, Stuart-Fox D, Holman L. Meta-analytic evidence that sexual selection improves population fitness. Nat Commun 2019; 10:2017. [PMID: 31043615 PMCID: PMC6494874 DOI: 10.1038/s41467-019-10074-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/16/2019] [Indexed: 01/12/2023] Open
Abstract
Sexual selection has manifold ecological and evolutionary consequences, making its net effect on population fitness difficult to predict. A powerful empirical test is to experimentally manipulate sexual selection and then determine how population fitness evolves. Here, we synthesise 459 effect sizes from 65 experimental evolution studies using meta-analysis. We find that sexual selection on males tends to elevate the mean and reduce the variance for many fitness traits, especially in females and in populations evolving under stressful conditions. Sexual selection had weaker effects on direct measures of population fitness such as extinction rate and proportion of viable offspring, relative to traits that are less closely linked to population fitness. Overall, we conclude that the beneficial population-level consequences of sexual selection typically outweigh the harmful ones and that the effects of sexual selection can differ between sexes and environments. We discuss the implications of these results for conservation and evolutionary biology. Sexual selection has the potential to either increase or decrease absolute fitness. Here, Cally et al. perform a meta-analysis of 65 experimental evolution studies and find that sexual selection on males tends to increase fitness, especially in females evolving under stressful conditions.
Collapse
Affiliation(s)
- Justin G Cally
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Luke Holman
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
23
|
Martinossi-Allibert I, Rueffler C, Arnqvist G, Berger D. The efficacy of good genes sexual selection under environmental change. Proc Biol Sci 2019; 286:20182313. [PMID: 30963930 PMCID: PMC6408614 DOI: 10.1098/rspb.2018.2313] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/10/2019] [Indexed: 11/12/2022] Open
Abstract
Sexual selection can promote adaptation if sexually selected traits are reliable indicators of genetic quality. Moreover, models of good genes sexual selection suggest that, by operating more strongly in males than in females, sexual selection may purge deleterious alleles from the population at a low demographic cost, offering an evolutionary benefit to sexually reproducing populations. Here, we investigate the effect of good genes sexual selection on adaptation following environmental change. We show that the strength of sexual selection is often weakened relative to fecundity selection, reducing the suggested benefit of sexual reproduction. This result is a consequence of incorporating a simple and general mechanistic basis for how sexual selection operates under different mating systems, rendering selection on males frequency-dependent and dynamic with respect to the degree of environmental change. Our model illustrates that incorporating the mechanism of selection is necessary to predict evolutionary outcomes and highlights the need to substantiate previous theoretical claims with further work on how sexual selection operates in changing environments.
Collapse
|
24
|
Brengdahl M, Kimber CM, Maguire-Baxter J, Malacrinò A, Friberg U. Genetic Quality Affects the Rate of Male and Female Reproductive Aging Differently in Drosophila melanogaster. Am Nat 2018; 192:761-772. [DOI: 10.1086/700117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Sharp NP, Agrawal AF. An experimental test of the mutation-selection balance model for the maintenance of genetic variance in fitness components. Proc Biol Sci 2018; 285:rspb.2018.1864. [PMID: 30404880 DOI: 10.1098/rspb.2018.1864] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/17/2018] [Indexed: 11/12/2022] Open
Abstract
Despite decades of research, the factors that maintain genetic variation for fitness are poorly understood. It is unclear what fraction of the variance in a typical fitness component can be explained by mutation-selection balance (MSB) and whether fitness components differ in this respect. In theory, the level of standing variance in fitness due to MSB can be predicted using the rate of fitness decline under mutation accumulation, and this prediction can be directly compared to the standing variance observed. This approach allows for controlled statistical tests of the sufficiency of the MSB model, and could be used to identify traits or populations where genetic variance is maintained by other factors. For example, some traits may be influenced by sexually antagonistic balancing selection, resulting in an excess of standing variance beyond that generated by deleterious mutations. We describe the underlying theory and use it to test the MSB model for three traits in Drosophila melanogaster We find evidence for differences among traits, with MSB being sufficient to explain genetic variance in larval viability but not male mating success or female fecundity. Our results are consistent with balancing selection on sexual fitness components, and demonstrate the feasibility of rigorous statistical tests of the MSB model.
Collapse
Affiliation(s)
- Nathaniel P Sharp
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4 .,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
26
|
Abstract
Competition for mates can be a major source of selection, not just on secondary sexual traits but across the genome. Mate competition strengthens selection on males via sexual selection, which typically favors healthy, vigorous individuals and, thus, all genetic variants that increase overall quality. However, recent studies suggest another major effect of mate competition that could influence genome-wide selection: Sexual harassment by males can drastically weaken selection on quality in females. Because of these conflicting effects, the net effect of mate competition is uncertain, although perhaps not entirely unpredictable. We propose that the environment in which mate competition occurs mediates the importance of sexual selection relative to sexual conflict and, hence, the net effect of mate competition on nonsexual fitness. To test this, we performed experimental evolution with 63 fruit fly populations adapting to novel larval conditions where each population was maintained with or without mate competition. In half the populations with mate competition, adults interacted in simple, high-density environments. In the remainder, adults interacted in more spatially complex environments in which male-induced harm is reduced. Populations evolving with mate competition in the complex environment adapted faster to novel larval environments than did populations evolving without mate competition or with mate competition in the simple environment. Moreover, mate competition in the complex environment caused a substantial reduction in inbreeding depression for egg-to-adult viability relative to the other two mating treatments. These results demonstrate that the mating environment has a substantial and predictable effect on nonsexual fitness through adaptation and purging.
Collapse
|
27
|
Woodruff RC, Balinski MA. Increase in viability due to the accumulation of X chromosome mutations in Drosophila melanogaster males. Genetica 2018; 146:323-328. [PMID: 29744733 DOI: 10.1007/s10709-018-0023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/05/2018] [Indexed: 10/16/2022]
Abstract
To increase our understanding of the role of new X-chromosome mutations in adaptive evolution, single-X Drosophila melanogaster males were mated with attached-X chromosome females, allowing the male X chromosome to accumulate mutations over 28 generations. Contrary to our hypothesis that male viability would decrease over time, due to the accumulation and expression of X-linked recessive deleterious mutations in hemizygous males, viability significantly increased. This increase may be attributed to germinal selection and to new X-linked beneficial or compensatory mutations, possibly supporting the faster-X hypothesis.
Collapse
Affiliation(s)
- Ronny C Woodruff
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | - Michael A Balinski
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| |
Collapse
|
28
|
Zajitschek F, Connallon T. Antagonistic pleiotropy in species with separate sexes, and the maintenance of genetic variation in life-history traits and fitness. Evolution 2018; 72:1306-1316. [PMID: 29667189 DOI: 10.1111/evo.13493] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 01/01/2023]
Abstract
Antagonistic pleiotropy (AP)-where alleles of a gene increase some components of fitness at a cost to others-can generate balancing selection, and contribute to the maintenance of genetic variation in fitness traits, such as survival, fecundity, fertility, and mate competition. Previous theory suggests that AP is unlikely to maintain variation unless antagonistic selection is strong, or AP alleles exhibit pronounced differences in genetic dominance between the affected traits. We show that conditions for balancing selection under AP expand under the likely scenario that the strength of selection on each fitness component differs between the sexes. Our model also predicts that the vast majority of balanced polymorphisms have sexually antagonistic effects on total fitness, despite the absence of sexual antagonism for individual fitness components. We conclude that AP polymorphisms are less difficult to maintain than predicted by prior theory, even under our conservative assumption that selection on components of fitness is universally sexually concordant. We discuss implications for the maintenance of genetic variation, and for inferences of sexual antagonism that are based on sex-specific phenotypic selection estimates-many of which are based on single fitness components.
Collapse
Affiliation(s)
- Felix Zajitschek
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
29
|
Brengdahl M, Kimber CM, Maguire-Baxter J, Friberg U. Sex differences in life span: Females homozygous for the X chromosome do not suffer the shorter life span predicted by the unguarded X hypothesis. Evolution 2018; 72:568-577. [DOI: 10.1111/evo.13434] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Martin Brengdahl
- IFM Biology, AVIAN Behavioural Genomics and Physiology Group; Linköping University; Linköping Sweden
| | - Christopher M. Kimber
- IFM Biology, AVIAN Behavioural Genomics and Physiology Group; Linköping University; Linköping Sweden
| | - Jack Maguire-Baxter
- IFM Biology, AVIAN Behavioural Genomics and Physiology Group; Linköping University; Linköping Sweden
| | - Urban Friberg
- IFM Biology, AVIAN Behavioural Genomics and Physiology Group; Linköping University; Linköping Sweden
| |
Collapse
|
30
|
Sultanova Z, Andic M, Carazo P. The "unguarded-X" and the genetic architecture of lifespan: Inbreeding results in a potentially maladaptive sex-specific reduction of female lifespan in Drosophila melanogaster. Evolution 2018; 72:540-552. [PMID: 29336481 DOI: 10.1111/evo.13426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/20/2017] [Accepted: 12/26/2017] [Indexed: 12/26/2022]
Abstract
Sex differences in ageing and lifespan are ubiquitous in nature. The "unguarded-X" hypothesis (UXh) suggests they may be partly due to the expression of recessive mutations in the hemizygous sex chromosomes of the heterogametic sex, which could help explain sex-specific ageing in a broad array of taxa. A prediction central to the UX hypothesis is that inbreeding will decrease the lifespan of the homogametic sex more than the heterogametic sex, because only in the former does inbreeding increase the expression of recessive deleterious mutations. In this study, we test this prediction by examining the effects of inbreeding on the lifespan and fitness of male and female Drosophila melanogaster across different social environments. We found that, across social environments, inbreeding resulted in a greater reduction of female than male lifespan, and that inbreeding effects on fitness did not seem to counterbalance sex-specific effects on lifespan, suggesting the former are maladaptative. Inter- and intra-sexual correlation analyses also allowed us to identify evidence of an underlying joint genetic architecture for inbreeding effects on lifespan. We discuss these results in light of the UXh and other alternative explanations, and suggest that more attention should be paid to the possibility that the "unguarded-X" may play an important role in the evolution of sex-specific lifespan.
Collapse
Affiliation(s)
- Zahida Sultanova
- Behaviour and Evolution unit, Ethology lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Muhammed Andic
- Behaviour and Evolution unit, Ethology lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain.,Department of Biotechnology, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Pau Carazo
- Behaviour and Evolution unit, Ethology lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
31
|
The mutational decay of male-male and hermaphrodite-hermaphrodite competitive fitness in the androdioecious nematode C. elegans. Heredity (Edinb) 2017; 120:1-12. [PMID: 29234171 DOI: 10.1038/s41437-017-0003-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/27/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022] Open
Abstract
Androdioecious Caenorhabditis have a high frequency of self-compatible hermaphrodites and a low frequency of males. The effects of mutations on male fitness are of interest for two reasons. First, when males are rare, selection on male-specific mutations is less efficient than in hermaphrodites. Second, males may present a larger mutational target than hermaphrodites because of the different ways in which fitness accrues in the two sexes. We report the first estimates of male-specific mutational effects in an androdioecious organism. The rate of male-specific inviable or sterile mutations is ⩽5 × 10-4/generation, below the rate at which males would be lost solely due to those kinds of mutations. The rate of mutational decay of male competitive fitness is ~ 0.17%/generation; that of hermaphrodite competitive fitness is ~ 0.11%/generation. The point estimate of ~ 1.5X faster rate of mutational decay of male fitness is nearly identical to the same ratio in Drosophila. Estimates of mutational variance (VM) for male mating success and competitive fitness are not significantly different from zero, whereas VM for hermaphrodite competitive fitness is similar to that of non-competitive fitness. Two independent estimates of the average selection coefficient against mutations affecting hermaphrodite competitive fitness agree to within two-fold, 0.33-0.5%.
Collapse
|
32
|
Singh A, Agrawal AF, Rundle HD. Environmental complexity and the purging of deleterious alleles. Evolution 2017; 71:2714-2720. [DOI: 10.1111/evo.13334] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Amardeep Singh
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON Canada M5S 3B2
| | - Aneil F. Agrawal
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON Canada M5S 3B2
| | - Howard D. Rundle
- Department of Biology; University of Ottawa; Ottawa ON Canada K1N 6N5
| |
Collapse
|
33
|
Allen SL, McGuigan K, Connallon T, Blows MW, Chenoweth SF. Sexual selection on spontaneous mutations strengthens the between-sex genetic correlation for fitness. Evolution 2017; 71:2398-2409. [PMID: 28722119 DOI: 10.1111/evo.13310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 06/08/2017] [Indexed: 11/27/2022]
Abstract
A proposed benefit to sexual selection is that it promotes purging of deleterious mutations from populations. For this benefit to be realized, sexual selection, which is usually stronger on males, must purge mutations deleterious to both sexes. Here, we experimentally test the hypothesis that sexual selection on males purges deleterious mutations that affect both male and female fitness. We measured male and female fitness in two panels of spontaneous mutation-accumulation lines of the fly, Drosophila serrata, each established from a common ancestor. One panel of mutation accumulation lines limited both natural and sexual selection (LS lines), whereas the other panel limited natural selection, but allowed sexual selection to operate (SS lines). Although mutation accumulation caused a significant reduction in male and female fitness in both the LS and SS lines, sexual selection had no detectable effect on the extent of the fitness reduction. Similarly, despite evidence of mutational variance for fitness in males and females of both treatments, sexual selection had no significant impact on the amount of mutational genetic variance for fitness. However, sexual selection did reshape the between-sex correlation for fitness: significantly strengthening it in the SS lines. After 25 generations, the between-sex correlation for fitness was positive but considerably less than one in the LS lines, suggesting that, although most mutations had sexually concordant fitness effects, sex-limited, and/or sex-biased mutations contributed substantially to the mutational variance. In the SS lines this correlation was strong and could not be distinguished from unity. Individual-based simulations that mimick the experimental setup reveal two conditions that may drive our results: (1) a modest-to-large fraction of mutations have sex-limited (or highly sex-biased) fitness effects, and (2) the average fitness effect of sex-limited mutations is larger than the average fitness effect of mutations that affect both sexes similarly.
Collapse
Affiliation(s)
- Scott L Allen
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Katrina McGuigan
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Mark W Blows
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Stephen F Chenoweth
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
34
|
Smith SRT, Connallon T. The contribution of the mitochondrial genome to sex‐specific fitness variance. Evolution 2017; 71:1417-1424. [DOI: 10.1111/evo.13238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Shane R. T. Smith
- School of Biological Sciences Monash University Clayton VIC 3800 Australia
| | - Tim Connallon
- School of Biological Sciences Monash University Clayton VIC 3800 Australia
| |
Collapse
|
35
|
Han CS, Dingemanse NJ. Protein deprivation decreases male survival and the intensity of sexual antagonism in southern field cricketsGryllus bimaculatus. J Evol Biol 2017; 30:839-847. [DOI: 10.1111/jeb.13052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/29/2017] [Accepted: 02/07/2017] [Indexed: 01/09/2023]
Affiliation(s)
- C. S. Han
- Behavioural Ecology; Department of Biology; Ludwig-Maximilians University of Munich; Planegg-Martinsried Germany
| | - N. J. Dingemanse
- Behavioural Ecology; Department of Biology; Ludwig-Maximilians University of Munich; Planegg-Martinsried Germany
| |
Collapse
|
36
|
Allen SL, Bonduriansky R, Sgro CM, Chenoweth SF. Sex-biased transcriptome divergence along a latitudinal gradient. Mol Ecol 2017; 26:1256-1272. [PMID: 28100025 DOI: 10.1111/mec.14015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 12/26/2022]
Abstract
Sex-dependent gene expression is likely an important genomic mechanism that allows sex-specific adaptation to environmental changes. Among Drosophila species, sex-biased genes display remarkably consistent evolutionary patterns; male-biased genes evolve faster than unbiased genes in both coding sequence and expression level, suggesting sex differences in selection through time. However, comparatively little is known of the evolutionary process shaping sex-biased expression within species. Latitudinal clines offer an opportunity to examine how changes in key ecological parameters also influence sex-specific selection and the evolution of sex-biased gene expression. We assayed male and female gene expression in Drosophila serrata along a latitudinal gradient in eastern Australia spanning most of its endemic distribution. Analysis of 11 631 genes across eight populations revealed strong sex differences in the frequency, mode and strength of divergence. Divergence was far stronger in males than females and while latitudinal clines were evident in both sexes, male divergence was often population specific, suggesting responses to localized selection pressures that do not covary predictably with latitude. While divergence was enriched for male-biased genes, there was no overrepresentation of X-linked genes in males. By contrast, X-linked divergence was elevated in females, especially for female-biased genes. Many genes that diverged in D. serrata have homologs also showing latitudinal divergence in Drosophila simulans and Drosophila melanogaster on other continents, likely indicating parallel adaptation in these distantly related species. Our results suggest that sex differences in selection play an important role in shaping the evolution of gene expression over macro- and micro-ecological spatial scales.
Collapse
Affiliation(s)
- Scott L Allen
- The School of Biological Sciences, The University of Queensland, St. Lucia, Qld, 4072, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Carla M Sgro
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Stephen F Chenoweth
- The School of Biological Sciences, The University of Queensland, St. Lucia, Qld, 4072, Australia
| |
Collapse
|
37
|
Savic Veselinovic M, Pavkovic-Lucic S, Kurbalija Novicic Z, Jelic M, Stamenkovic-Radak M, Andjelkovic M. Mating behavior as an indicator of quality of Drosophila subobscura males? INSECT SCIENCE 2017; 24:122-132. [PMID: 26235310 DOI: 10.1111/1744-7917.12257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2015] [Indexed: 06/04/2023]
Abstract
According to current theoretical predictions, any deleterious mutations that reduce nonsexual fitness may have a negative influence on mating success. This means that sexual selection may remove deleterious mutations from the populations. Males of good genetic quality should be more successful in mating, compared to the males of lower genetic quality. As mating success is a condition dependent trait, large fractions of the genome may be a target of sexual selection and many behavioral traits are likely to be condition dependent. We manipulated the genetic quality of Drosophila subobscura males by inducing mutations with ionizing radiation and observed the effects of the obtained heterozygous mutations on male mating behavior: courtship occurrence, courtship latency, mating occurrence, latency to mating and duration of mating. We found possible effects of mutations. Females mated more frequently with male progeny of nonirradiated males and that these males courted females faster compared to the male progeny of irradiated males. Our findings indicate a possible important role of sexual selection in purging deleterious mutations.
Collapse
Affiliation(s)
| | | | | | - Mihailo Jelic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marina Stamenkovic-Radak
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Marko Andjelkovic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
38
|
Prokop ZM, Prus MA, Gaczorek TS, Sychta K, Palka JK, Plesnar-Bielak A, Skarboń M. Do males pay for sex? Sex-specific selection coefficients suggest not. Evolution 2017; 71:650-661. [PMID: 27943275 DOI: 10.1111/evo.13151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 10/31/2016] [Accepted: 11/11/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Zofia M. Prokop
- Institute of Environmental Sciences; Jagiellonian University; Gronostajowa 7 30-387 Krakow Poland
| | - Monika A. Prus
- Institute of Environmental Sciences; Jagiellonian University; Gronostajowa 7 30-387 Krakow Poland
| | - Tomasz S. Gaczorek
- Institute of Environmental Sciences; Jagiellonian University; Gronostajowa 7 30-387 Krakow Poland
| | - Karolina Sychta
- Institute of Environmental Sciences; Jagiellonian University; Gronostajowa 7 30-387 Krakow Poland
| | - Joanna K. Palka
- Institute of Environmental Sciences; Jagiellonian University; Gronostajowa 7 30-387 Krakow Poland
| | - Agata Plesnar-Bielak
- Institute of Environmental Sciences; Jagiellonian University; Gronostajowa 7 30-387 Krakow Poland
| | - Magdalena Skarboń
- Institute of Environmental Sciences; Jagiellonian University; Gronostajowa 7 30-387 Krakow Poland
| |
Collapse
|
39
|
Autosomal and X-Linked Additive Genetic Variation for Lifespan and Aging: Comparisons Within and Between the Sexes in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2016; 6:3903-3911. [PMID: 27678519 PMCID: PMC5144961 DOI: 10.1534/g3.116.028308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Theory makes several predictions concerning differences in genetic variation between the X chromosome and the autosomes due to male X hemizygosity. The X chromosome should: (i) typically show relatively less standing genetic variation than the autosomes, (ii) exhibit more variation in males compared to females because of dosage compensation, and (iii) potentially be enriched with sex-specific genetic variation. Here, we address each of these predictions for lifespan and aging in Drosophila melanogaster. To achieve unbiased estimates of X and autosomal additive genetic variance, we use 80 chromosome substitution lines; 40 for the X chromosome and 40 combining the two major autosomes, which we assay for sex-specific and cross-sex genetic (co)variation. We find significant X and autosomal additive genetic variance for both traits in both sexes (with reservation for X-linked variation of aging in females), but no conclusive evidence for depletion of X-linked variation (measured through females). Males display more X-linked variation for lifespan than females, but it is unclear if this is due to dosage compensation since also autosomal variation is larger in males. Finally, our results suggest that the X chromosome is enriched for sex-specific genetic variation in lifespan but results were less conclusive for aging overall. Collectively, these results suggest that the X chromosome has reduced capacity to respond to sexually concordant selection on lifespan from standing genetic variation, while its ability to respond to sexually antagonistic selection may be augmented.
Collapse
|
40
|
Abstract
Mutation generates a steady supply of genetic variation that, while occasionally useful for adaptation, is more often deleterious for fitness. Recent research has emphasized that the fitness effects of mutations often differ between the sexes, leading to important evolutionary consequences for the maintenance of genetic variation and long-term population viability. Some forms of sex-specific selection-i.e., stronger purifying selection in males than females-can help purge a population's load of female-harming mutations and promote population growth. Other scenarios-e.g., sexually antagonistic selection, in which mutations that harm females are beneficial for males-inflate genetic loads and potentially dampen population viability. Evolutionary processes of sexual antagonism and purifying selection are likely to impact the evolutionary dynamics of different loci within a genome, yet theory has mostly ignored the potential for interactions between such loci to jointly shape the evolutionary genetic basis of female and male fitness variation. Here, we show that sexually antagonistic selection at a locus tends to elevate the frequencies of deleterious alleles at tightly linked loci that evolve under purifying selection. Moreover, haplotypes that segregate for different sexually antagonistic alleles accumulate different types of deleterious mutations. Haplotypes that carry female-benefit sexually antagonistic alleles preferentially accumulate mutations that are primarily male harming, whereas male-benefit haplotypes accumulate mutations that are primarily female harming. The theory predicts that sexually antagonistic selection should shape the genomic organization of genetic variation that differentially impacts female and male fitness, and contribute to sexual dimorphism in the genetic basis of fitness variation.
Collapse
|
41
|
Grieshop K, Stångberg J, Martinossi-Allibert I, Arnqvist G, Berger D. Strong sexual selection in males against a mutation load that reduces offspring production in seed beetles. J Evol Biol 2016; 29:1201-10. [DOI: 10.1111/jeb.12862] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/15/2023]
Affiliation(s)
- K. Grieshop
- Department of Ecology and Genetics; Animal Ecology; Uppsala University; Uppsala Sweden
| | - J. Stångberg
- Department of Ecology and Genetics; Animal Ecology; Uppsala University; Uppsala Sweden
| | | | - G. Arnqvist
- Department of Ecology and Genetics; Animal Ecology; Uppsala University; Uppsala Sweden
| | - D. Berger
- Department of Ecology and Genetics; Animal Ecology; Uppsala University; Uppsala Sweden
| |
Collapse
|
42
|
Herdegen M, Radwan J. Effect of induced mutations on sexually selected traits in the guppy, Poecilia reticulata. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
43
|
Graze RM, McIntyre LM, Morse AM, Boyd BM, Nuzhdin SV, Wayne ML. What the X has to do with it: differences in regulatory variability between the sexes in Drosophila simulans. Genome Biol Evol 2015; 6:818-29. [PMID: 24696400 PMCID: PMC4007535 DOI: 10.1093/gbe/evu060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The mechanistic basis of regulatory variation and the prevailing evolutionary forces shaping that variation are known to differ between sexes and between chromosomes. Regulatory variation of gene expression can be due to functional changes within a gene itself (cis) or in other genes elsewhere in the genome (trans). The evolutionary properties of cis mutations are expected to differ from mutations affecting gene expression in trans. We analyze allele-specific expression across a set of X substitution lines in intact adult Drosophila simulans to evaluate whether regulatory variation differs for cis and trans, for males and females, and for X-linked and autosomal genes. Regulatory variation is common (56% of genes), and patterns of variation within D. simulans are consistent with previous observations in Drosophila that there is more cis than trans variation within species (47% vs. 25%, respectively). The relationship between sex-bias and sex-limited variation is remarkably consistent across sexes. However, there are differences between cis and trans effects: cis variants show evidence of purifying selection in the sex toward which expression is biased, while trans variants do not. For female-biased genes, the X is depleted for trans variation in a manner consistent with a female-dominated selection regime on the X. Surprisingly, there is no evidence for depletion of trans variation for male-biased genes on X. This is evidence for regulatory feminization of the X, trans-acting factors controlling male-biased genes are more likely to be found on the autosomes than those controlling female-biased genes.
Collapse
Affiliation(s)
- Rita M. Graze
- Department of Molecular Genetics and Microbiology, University of Florida
- Department of Biological Sciences, Auburn University
- *Corresponding author: E-mail:
| | - Lauren M. McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida
- Department of Statistics, University of Florida
| | - Alison M. Morse
- Department of Molecular Genetics and Microbiology, University of Florida
| | - Bret M. Boyd
- Florida Museum of Natural History, University of Florida
| | - Sergey V. Nuzhdin
- Section of Molecular and Computational Biology, Department of Biological Sciences, University of Southern California
| | | |
Collapse
|
44
|
The effect of parasites on sex differences in selection. Heredity (Edinb) 2015; 114:367-72. [PMID: 25649503 DOI: 10.1038/hdy.2014.110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 10/26/2014] [Accepted: 10/27/2014] [Indexed: 11/08/2022] Open
Abstract
The life history strategies of males and females are often divergent, creating the potential for sex differences in selection. Deleterious mutations may be subject to stronger selection in males, owing to sexual selection, which can improve the mean fitness of females and reduce mutation load in sexual populations. However, sex differences in selection might also maintain sexually antagonistic genetic variation, creating a sexual conflict load. The overall impact of separate sexes on fitness is unclear, but the net effect is likely to be positive when there is a large sex difference in selection against deleterious mutations. Parasites can also have sex-specific effects on fitness, and there is evidence that parasites can intensify the fitness consequences of deleterious mutations. Using lines that accumulated mutations for over 60 generations, we studied the effect of the pathogenic bacterium Pseudomonas aeruginosa on sex differences in selection in the fruit fly Drosophila melanogaster. Pseudomonas infection increased the sex difference in selection, but may also have weakened the intersexual correlation for fitness. Our results suggest that parasites may increase the benefits of sexual selection.
Collapse
|
45
|
Bonduriansky R, Mallet MA, Arbuthnott D, Pawlowsky-Glahn V, Egozcue JJ, Rundle HD. Differential effects of genetic vs. environmental quality in Drosophila melanogaster suggest multiple forms of condition dependence. Ecol Lett 2015; 18:317-26. [PMID: 25649176 DOI: 10.1111/ele.12412] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/07/2014] [Accepted: 01/03/2015] [Indexed: 01/17/2023]
Abstract
Condition is a central concept in evolutionary ecology, but the roles of genetic and environmental quality in condition-dependent trait expression remain poorly understood. Theory suggests that condition integrates genetic, epigenetic and somatic factors, and therefore predicts alignment between the phenotypic effects of genetic and environmental quality. To test this key prediction, we manipulated both genetic (mutational) and environmental (dietary) quality in Drosophila melanogaster and examined responses in morphological and chemical (cuticular hydrocarbon, CHC) traits in both sexes. While the phenotypic effects of diet were consistent among genotypes, effects of mutation load varied in magnitude and direction. Average effects of diet and mutation were aligned for most morphological traits, but non-aligned for the male sexcombs and CHCs in both sexes. Our results suggest the existence of distinct forms of condition dependence, one integrating both genetic and environmental effects and the other purely environmental. We propose a model to account for these observations.
Collapse
Affiliation(s)
- Russell Bonduriansky
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
46
|
Avila V, Marion de Procé S, Campos JL, Borthwick H, Charlesworth B, Betancourt AJ. Faster-X effects in two Drosophila lineages. Genome Biol Evol 2014; 6:2968-82. [PMID: 25323954 PMCID: PMC4224355 DOI: 10.1093/gbe/evu229] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Under certain circumstances, X-linked loci are expected to experience more adaptive substitutions than similar autosomal loci. To look for evidence of faster-X evolution, we analyzed the evolutionary rates of coding sequences in two sets of Drosophila species, the melanogaster and pseudoobscura clades, using whole-genome sequences. One of these, the pseudoobscura clade, contains a centric fusion between the ancestral X chromosome and the autosomal arm homologous to 3L in D. melanogaster. This offers an opportunity to study the same loci in both an X-linked and an autosomal context, and to compare these loci with those that are only X-linked or only autosomal. We therefore investigated these clades for evidence of faster-X evolution with respect to nonsynonymous substitutions, finding mixed results. Overall, there was consistent evidence for a faster-X effect in the melanogaster clade, but not in the pseudoobscura clade, except for the comparison between D. pseudoobscura and its close relative, Drosophila persimilis. An analysis of polymorphism data on a set of genes from D. pseudoobscura that evolve rapidly with respect to their protein sequences revealed no evidence for a faster-X effect with respect to adaptive protein sequence evolution; their rapid evolution is instead largely attributable to lower selective constraints. Faster-X evolution in the melanogaster clade was not related to male-biased gene expression; surprisingly, however, female-biased genes showed evidence for faster-X effects, perhaps due to their sexually antagonistic effects in males.
Collapse
Affiliation(s)
- Victoria Avila
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom Present address: Institute of Biological, Environmental and Rural Sciences, Abertystwyth University, Aberystwyth, United Kingdom
| | - Sophie Marion de Procé
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom Present address: MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - José L Campos
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom
| | - Helen Borthwick
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom
| | - Brian Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom
| | - Andrea J Betancourt
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom Present address: Institut for Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| |
Collapse
|
47
|
Gilks WP, Abbott JK, Morrow EH. Sex differences in disease genetics: evidence, evolution, and detection. Trends Genet 2014; 30:453-63. [DOI: 10.1016/j.tig.2014.08.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022]
|
48
|
Duffy E, Joag R, Radwan J, Wedell N, Hosken DJ. Inbreeding alters intersexual fitness correlations in Drosophila simulans. Ecol Evol 2014; 4:3330-8. [PMID: 25535550 PMCID: PMC4228608 DOI: 10.1002/ece3.1153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/20/2014] [Accepted: 06/02/2014] [Indexed: 12/18/2022] Open
Abstract
Intralocus sexual conflict results from sexually antagonistic selection on traits shared by the sexes. This can displace males and females from their respective fitness optima, and negative intersexual correlations (r mf) for fitness are the unequivocal indicator of this evolutionary conflict. It has recently been suggested that intersexual fitness correlations can vary depending on the segregating genetic variation present in a population, and one way to alter genetic variation and test this idea is via inbreeding. Here, we test whether intersexual correlations for fitness vary with inbreeding in Drosophila simulans isolines reared under homogenous conditions. We measured male and female fitness at different times following the establishment of isofemale lines and found that the sign of the association between the two measures varied with time after initial inbreeding. Our results are consistent with suggestions that the type of genetic variation segregating within a population can determine the extent of intralocus sexual conflict and also support the idea that sexually antagonistic alleles segregate for longer in populations than alleles with sexually concordant effects.
Collapse
Affiliation(s)
- Eoin Duffy
- Institute of Environmental Science, Jagiellonian University Gronostawa 7, Krakow, Poland
| | - Richa Joag
- Institute of Environmental Science, Jagiellonian University Gronostawa 7, Krakow, Poland
| | - Jacek Radwan
- Institute of Environmental Science, Jagiellonian University Gronostawa 7, Krakow, Poland
| | - Nina Wedell
- Centre for Ecology & Conservation, University of Exeter Tremough, Penryn, TR10 9FE, U.K
| | - David J Hosken
- Centre for Ecology & Conservation, University of Exeter Tremough, Penryn, TR10 9FE, U.K
| |
Collapse
|
49
|
Wyman MJ, Rowe L. Male Bias in Distributions of Additive Genetic, Residual, and Phenotypic Variances of Shared Traits. Am Nat 2014; 184:326-37. [DOI: 10.1086/677310] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Veeramah KR, Gutenkunst RN, Woerner AE, Watkins JC, Hammer MF. Evidence for increased levels of positive and negative selection on the X chromosome versus autosomes in humans. Mol Biol Evol 2014; 31:2267-82. [PMID: 24830675 DOI: 10.1093/molbev/msu166] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Partially recessive variants under positive selection are expected to go to fixation more quickly on the X chromosome as a result of hemizygosity, an effect known as faster-X. Conversely, purifying selection is expected to reduce substitution rates more effectively on the X chromosome. Previous work in humans contrasted divergence on the autosomes and X chromosome, with results tending to support the faster-X effect. However, no study has yet incorporated both divergence and polymorphism to quantify the effects of both purifying and positive selection, which are opposing forces with respect to divergence. In this study, we develop a framework that integrates previously developed theory addressing differential rates of X and autosomal evolution with methods that jointly estimate the level of purifying and positive selection via modeling of the distribution of fitness effects (DFE). We then utilize this framework to estimate the proportion of nonsynonymous substitutions fixed by positive selection (α) using exome sequence data from a West African population. We find that varying the female to male breeding ratio (β) has minimal impact on the DFE for the X chromosome, especially when compared with the effect of varying the dominance coefficient of deleterious alleles (h). Estimates of α range from 46% to 51% and from 4% to 24% for the X chromosome and autosomes, respectively. While dependent on h, the magnitude of the difference between α values estimated for these two systems is highly statistically significant over a range of biologically realistic parameter values, suggesting faster-X has been operating in humans.
Collapse
Affiliation(s)
- Krishna R Veeramah
- Arizona Research Laboratories Division of Biotechnology, University of ArizonaDepartment of Ecology and Evolution, Stony Brook University
| | | | - August E Woerner
- Arizona Research Laboratories Division of Biotechnology, University of Arizona
| | | | - Michael F Hammer
- Arizona Research Laboratories Division of Biotechnology, University of Arizona
| |
Collapse
|