1
|
Flipphi M, Harispe ML, Hamari Z, Kocsubé S, Scazzocchio C, Ramón A. An ascomycete H4 variant with an unknown function. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231705. [PMID: 38384781 PMCID: PMC10878826 DOI: 10.1098/rsos.231705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
Histone variants leading to altered nucleosome structure, dynamics and DNA accessibility occur frequently, albeit rarely for H4. We carried out a comprehensive in silico scrutiny of fungal genomes, which revealed the presence of a novel H4 variant (H4E) in the ascomycetes, throughout the Pezizomycotina, in basal species of the Taphrinomycotina and also in the Glomeromycota. The coding cognate genes show a specific intron/exon organization, different from H4 canonical genes. H4Es diverge from canonical H4s mainly in the N- and C-terminal extensions, showing marked differences in the distribution and number of Lys and Arg residues, which may result in novel post-translational modifications. In Aspergillus nidulans (Pezizomycotina, Eurotiomycetes) the H4E variant protein level is low in mycelia. However, the encoding gene is well expressed at 37°C under nitrogen starvation. H4E localizes to the nucleus and interacts with H3, but its absence or overexpression does not result in any detectable phenotype. Deletion of only one of the of the two canonical H4 genes results in a strikingly impaired growth phenotype, which indicates that H4E cannot replace this canonical histone. Thus, an H4 variant is present throughout a whole subphylum of the ascomycetes, but with hitherto no experimentally detectable function.
Collapse
Affiliation(s)
- Michel Flipphi
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - María Laura Harispe
- Instituto de Profesores Artigas, Consejo de Formación en Educación (CFE, ANEP), Uruguay
| | - Zsuzsanna Hamari
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Sándor Kocsubé
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Claudio Scazzocchio
- Department of Life Sciences, Imperial College London, London, UK
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Ana Ramón
- Dpto. de Biología Celular y Molecular, Facultad de Ciencias, Sección Bioquímica, UdelaR, Uruguay
| |
Collapse
|
2
|
Pham K, Ho L, D'Incal CP, De Cock A, Berghe WV, Goethals P. Epigenetic analytical approaches in ecotoxicological aquatic research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121737. [PMID: 37121302 DOI: 10.1016/j.envpol.2023.121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Environmental epigenetics has become a key research focus in global climate change studies and environmental pollutant investigations impacting aquatic ecosystems. Specifically, triggered by environmental stress conditions, intergenerational DNA methylation changes contribute to biological adaptive responses and survival of organisms to increase their tolerance towards these conditions. To critically review epigenetic analytical approaches in ecotoxicological aquatic research, we evaluated 78 publications reported over the past five years (2016-2021) that applied these methods to investigate the responses of aquatic organisms to environmental changes and pollution. The results show that DNA methylation appears to be the most robust epigenetic regulatory mark studied in aquatic animals. As such, multiple DNA methylation analysis methods have been developed in aquatic organisms, including enzyme restriction digestion-based and methyl-specific immunoprecipitation methods, and bisulfite (in)dependent sequencing strategies. In contrast, only a handful of aquatic studies, i.e. about 15%, have been focusing on histone variants and post-translational modifications due to the lack of species-specific affinity based immunological reagents, such as specific antibodies for chromatin immunoprecipitation applications. Similarly, ncRNA regulation remains as the least popular method used in the field of environmental epigenetics. Insights into the opportunities and challenges of the DNA methylation and histone variant analysis methods as well as decreasing costs of next generation sequencing approaches suggest that large-scale epigenetic environmental studies in model and non-model organisms will soon become available in the near future. Moreover, antibody-dependent and independent methods, such as mass spectrometry-based methods, can be used as an alternative epigenetic approach to characterize global changes of chromatin histone modifications in future aquatic research. Finally, a systematic guide for DNA methylation and histone variant methods is offered for ecotoxicological aquatic researchers to select the most relevant epigenetic analytical approach in their research.
Collapse
Affiliation(s)
- Kim Pham
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Long Ho
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Claudio Peter D'Incal
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Andrée De Cock
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| |
Collapse
|
3
|
Li S, Wei T, Panchenko AR. Histone variant H2A.Z modulates nucleosome dynamics to promote DNA accessibility. Nat Commun 2023; 14:769. [PMID: 36765119 PMCID: PMC9918499 DOI: 10.1038/s41467-023-36465-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Nucleosomes, containing histone variants H2A.Z, are important for gene transcription initiation and termination, chromosome segregation and DNA double-strand break repair, among other functions. However, the underlying mechanisms of how H2A.Z influences nucleosome stability, dynamics and DNA accessibility are not well understood, as experimental and computational evidence remains inconclusive. Our modeling efforts of human nucleosome stability and dynamics, along with comparisons with experimental data show that the incorporation of H2A.Z results in a substantial decrease of the energy barrier for DNA unwrapping. This leads to the spontaneous DNA unwrapping of about forty base pairs from both ends, nucleosome gapping and increased histone plasticity, which otherwise is not observed for canonical nucleosomes. We demonstrate that both N- and C-terminal tails of H2A.Z play major roles in these events, whereas the H3.3 variant exerts a negligible impact in modulating the DNA end unwrapping. In summary, our results indicate that H2A.Z deposition makes nucleosomes more mobile and DNA more accessible to transcriptional machinery and other chromatin components.
Collapse
Affiliation(s)
- Shuxiang Li
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Tiejun Wei
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada. .,Department of Biology and Molecular Sciences, Queen's University, Kingston, ON, Canada. .,School of Computing, Queen's University, Kingston, ON, Canada. .,Ontario Institute of Cancer Research, Toronto, Canada.
| |
Collapse
|
4
|
Singroha G, Kumar S, Gupta OP, Singh GP, Sharma P. Uncovering the Epigenetic Marks Involved in Mediating Salt Stress Tolerance in Plants. Front Genet 2022; 13:811732. [PMID: 35495170 PMCID: PMC9053670 DOI: 10.3389/fgene.2022.811732] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 12/29/2022] Open
Abstract
The toxic effects of salinity on agricultural productivity necessitate development of salt stress tolerance in food crops in order to meet the escalating demands. Plants use sophisticated epigenetic systems to fine-tune their responses to environmental cues. Epigenetics is the study of heritable, covalent modifications of DNA and histone proteins that regulate gene expression without altering the underlying nucleotide sequence and consequently modify the phenotype. Epigenetic processes such as covalent changes in DNA, histone modification, histone variants, and certain non-coding RNAs (ncRNA) influence chromatin architecture to regulate its accessibility to the transcriptional machinery. Under salt stress conditions, there is a high frequency of hypermethylation at promoter located CpG sites. Salt stress results in the accumulation of active histones marks like H3K9K14Ac and H3K4me3 and the downfall of repressive histone marks such as H3K9me2 and H3K27me3 on salt-tolerance genes. Similarly, the H2A.Z variant of H2A histone is reported to be down regulated under salt stress conditions. A thorough understanding of the plasticity provided by epigenetic regulation enables a modern approach to genetic modification of salt-resistant cultivars. In this review, we summarize recent developments in understanding the epigenetic mechanisms, particularly those that may play a governing role in the designing of climate smart crops in response to salt stress.
Collapse
|
5
|
Abstract
Eukaryotic nucleosomes organize chromatin by wrapping 147 bp of DNA around a histone core particle comprising two molecules each of histone H2A, H2B, H3 and H4. The DNA entering and exiting the particle may be bound by the linker histone H1. Whereas deposition of bulk histones is confined to S-phase, paralogs of the common histones, known as histone variants, are available to carry out functions throughout the cell cycle and accumulate in post-mitotic cells. Histone variants confer different structural properties on nucleosomes by wrapping more or less DNA or by altering nucleosome stability. They carry out specialized functions in DNA repair, chromosome segregation and regulation of transcription initiation, or perform tissue-specific roles. In this Cell Science at a Glance article and the accompanying poster, we briefly examine new insights into histone origins and discuss variants from each of the histone families, focusing on how structural differences may alter their functions. Summary: Histone variants change the structural properties of nucleosomes by wrapping more or less DNA, altering nucleosome stability or carrying out specialized functions.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| |
Collapse
|
6
|
Liu AW, Tan Y, Masunaga A, Bliznina A, West C, Plessy C, Luscombe NM. Centromere-specific antibody-mediated karyotyping of Okinawan Oikopleura dioica suggests the presence of three chromosomes. F1000Res 2020; 9:780. [PMID: 33728042 PMCID: PMC7941098 DOI: 10.12688/f1000research.25019.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 04/01/2024] Open
Abstract
Oikopleura dioica is a ubiquitous marine tunicate of biological interest due to features that include dioecious reproduction, short life cycle, and vertebrate-like dorsal notochord while possessing a relatively compact genome. The use of tunicates as model organisms, particularly with these characteristics, offers the advantage of facilitating studies in evolutionary development and furthering understanding of enduring attributes found in the more complex vertebrates. At present, we are undertaking an initiative to sequence the genomes of Oikopleura individuals in populations found among the seas surrounding the Ryukyu Islands in southern Japan. To facilitate and validate genome assemblies, karyotyping was employed to count individual animals' chromosomes in situ using centromere-specific antibodies directed against H3S28P, a prophase-metaphase cell cycle-specific marker of histone H3. New imaging data of embryos and oocytes stained with two different antibodies were obtained; interpretation of these data lead us to conclude that the Okinawan Oikopleura dioica has three pairs of chromosomes, akin to previous results from genomic assemblies in Atlantic populations. The imaging data have been deposited to the open-access EBI BioImage Archive for reuse while additionally providing representative images of two commercially available anti-H3S28P antibodies' staining properties for use in epifluorescent and confocal based fluorescent microscopy.
Collapse
Affiliation(s)
- Andrew W. Liu
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
| | - Yongkai Tan
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
| | - Aki Masunaga
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
| | - Aleksandra Bliznina
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
| | - Charlotte West
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
- Francis Crick Institute, London, NW1 1AT, UK
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
| | - Nicholas M. Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
- Francis Crick Institute, London, NW1 1AT, UK
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| |
Collapse
|
7
|
Liu AW, Tan Y, Masunaga A, Bliznina A, West C, Plessy C, Luscombe NM. H3S28P Antibody Staining of Okinawan Oikopleura dioica Suggests the Presence of Three Chromosomes. F1000Res 2020; 9:780. [PMID: 33728042 PMCID: PMC7941098 DOI: 10.12688/f1000research.25019.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Oikopleura dioica is a ubiquitous marine zooplankton of biological interest owing to features that include dioecious reproduction, a short life cycle, conserved chordate body plan, and a compact genome. It is an important tunicate model for evolutionary and developmental research, as well as investigations into marine ecosystems. The genome of north Atlantic O. dioica comprises three chromosomes. However, comparisons with the genomes of O. dioica sampled from mainland and southern Japan revealed extensive sequence differences. Moreover, historical studies have reported widely varying chromosome counts. We recently initiated a project to study the genomes of O. dioica individuals collected from the coastline of the Ryukyu (Okinawa) Islands in southern Japan. Given the potentially large extent of genomic diversity, we employed karyological techniques to count individual animals' chromosomes in situ using centromere-specific antibodies directed against H3S28P, a prophase-metaphase cell cycle-specific marker of histone H3. Epifluorescence and confocal images were obtained of embryos and oocytes stained with two commercial anti-H3S28P antibodies (Abcam ab10543 and Thermo Fisher 07-145). The data lead us to conclude that diploid cells from Okinawan O. dioica contain three pairs of chromosomes, in line with the north Atlantic populations. The finding facilitates the telomere-to-telomere assembly of Okinawan O. dioica genome sequences and gives insight into the genomic diversity of O. dioica from different geographical locations. The data deposited in the EBI BioImage Archive provide representative images of the antibodies' staining properties for use in epifluorescent and confocal based fluorescent microscopy.
Collapse
Affiliation(s)
- Andrew W. Liu
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
| | - Yongkai Tan
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
| | - Aki Masunaga
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
| | - Aleksandra Bliznina
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
| | - Charlotte West
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
- Francis Crick Institute, London, NW1 1AT, UK
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
| | - Nicholas M. Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
- Francis Crick Institute, London, NW1 1AT, UK
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| |
Collapse
|
8
|
Giaimo BD, Ferrante F, Herchenröther A, Hake SB, Borggrefe T. The histone variant H2A.Z in gene regulation. Epigenetics Chromatin 2019; 12:37. [PMID: 31200754 PMCID: PMC6570943 DOI: 10.1186/s13072-019-0274-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/23/2019] [Indexed: 01/04/2023] Open
Abstract
The histone variant H2A.Z is involved in several processes such as transcriptional control, DNA repair, regulation of centromeric heterochromatin and, not surprisingly, is implicated in diseases such as cancer. Here, we review the recent developments on H2A.Z focusing on its role in transcriptional activation and repression. H2A.Z, as a replication-independent histone, has been studied in several model organisms and inducible mammalian model systems. Its loading machinery and several modifying enzymes have been recently identified, and some of the long-standing discrepancies in transcriptional activation and/or repression are about to be resolved. The buffering functions of H2A.Z, as supported by genome-wide localization and analyzed in several dynamic systems, are an excellent example of transcriptional control. Posttranslational modifications such as acetylation and ubiquitination of H2A.Z, as well as its specific binding partners, are in our view central players in the control of gene expression. Understanding the key-mechanisms in either turnover or stabilization of H2A.Z-containing nucleosomes as well as defining the H2A.Z interactome will pave the way for therapeutic applications in the future.
Collapse
Affiliation(s)
| | - Francesca Ferrante
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Andreas Herchenröther
- Institute for Genetics, University of Giessen, Heinrich-Buff-Ring 58-62, 35392, Giessen, Germany
| | - Sandra B Hake
- Institute for Genetics, University of Giessen, Heinrich-Buff-Ring 58-62, 35392, Giessen, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.
| |
Collapse
|
9
|
Abstract
Marine organisms' persistence hinges on the capacity for acclimatization and adaptation to the myriad of interacting environmental stressors associated with global climate change. In this context, epigenetics-mechanisms that facilitate phenotypic variation through genotype-environment interactions-are of great interest ecologically and evolutionarily. Our comprehensive review of marine environmental epigenetics guides our recommendations of four key areas for future research: the dynamics of wash-in and wash-out of epigenetic effects, the mechanistic understanding of the interplay of different epigenetic marks and the interaction with the microbiome, the capacity for and mechanisms of transgenerational epigenetic inheritance, and the evolutionary implications of the interaction of genetic and epigenetic features. Emerging insights in marine environmental epigenetics can be applied to critical issues such as aquaculture, biomonitoring, and biological invasions, thereby improving our ability to explain and predict the responses of marine taxa to global climate change.
Collapse
Affiliation(s)
- Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Center for Coastal Oceans Research, Institute for Water and Environment, Florida International University, North Miami, Florida 33181, USA;
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA;
| |
Collapse
|
10
|
Pritchard AL. The Role of Histone Variants in Cancer. Clin Epigenetics 2019. [DOI: 10.1007/978-981-13-8958-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
11
|
Buschbeck M, Hake SB. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat Rev Mol Cell Biol 2017; 18:299-314. [DOI: 10.1038/nrm.2016.166] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Navratilova P, Danks GB, Long A, Butcher S, Manak JR, Thompson EM. Sex-specific chromatin landscapes in an ultra-compact chordate genome. Epigenetics Chromatin 2017; 10:3. [PMID: 28115992 PMCID: PMC5240408 DOI: 10.1186/s13072-016-0110-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/23/2016] [Indexed: 12/15/2022] Open
Abstract
Background In multicellular organisms, epigenome dynamics are associated with transitions in the cell cycle, development, germline specification, gametogenesis and inheritance. Evolutionarily, regulatory space has increased in complex metazoans to accommodate these functions. In tunicates, the sister lineage to vertebrates, we examine epigenome adaptations to strong secondary genome compaction, sex chromosome evolution and cell cycle modes. Results Across the 70 MB Oikopleura dioica genome, we profiled 19 histone modifications, and RNA polymerase II, CTCF and p300 occupancies, to define chromatin states within two homogeneous tissues with distinct cell cycle modes: ovarian endocycling nurse nuclei and mitotically proliferating germ nuclei in testes. Nurse nuclei had active chromatin states similar to other metazoan epigenomes, with large domains of operon-associated transcription, a general lack of heterochromatin, and a possible role of Polycomb PRC2 in dosage compensation. Testis chromatin states reflected transcriptional activity linked to spermatogenesis and epigenetic marks that have been associated with establishment of transgenerational inheritance in other organisms. We also uncovered an unusual chromatin state specific to the Y-chromosome, which combined active and heterochromatic histone modifications on specific transposable elements classes, perhaps involved in regulating their activity. Conclusions Compacted regulatory space in this tunicate genome is accompanied by reduced heterochromatin and chromatin state domain widths. Enhancers, promoters and protein-coding genes have conserved epigenomic features, with adaptations to the organization of a proportion of genes in operon units. We further identified features specific to sex chromosomes, cell cycle modes, germline identity and dosage compensation, and unusual combinations of histone PTMs with opposing consensus functions. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0110-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pavla Navratilova
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| | - Gemma Barbara Danks
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| | - Abby Long
- Departments of Biology and Pediatrics and the Roy J. Carver Center for Genomics, 459 Biology Building, University of Iowa, Iowa City, IA 52242 USA
| | - Stephen Butcher
- Departments of Biology and Pediatrics and the Roy J. Carver Center for Genomics, 459 Biology Building, University of Iowa, Iowa City, IA 52242 USA
| | - John Robert Manak
- Departments of Biology and Pediatrics and the Roy J. Carver Center for Genomics, 459 Biology Building, University of Iowa, Iowa City, IA 52242 USA
| | - Eric M Thompson
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway.,Department of Biology, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
13
|
El Kennani S, Adrait A, Shaytan AK, Khochbin S, Bruley C, Panchenko AR, Landsman D, Pflieger D, Govin J. MS_HistoneDB, a manually curated resource for proteomic analysis of human and mouse histones. Epigenetics Chromatin 2017; 10:2. [PMID: 28096900 PMCID: PMC5223428 DOI: 10.1186/s13072-016-0109-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Histones and histone variants are essential components of the nuclear chromatin. While mass spectrometry has opened a large window to their characterization and functional studies, their identification from proteomic data remains challenging. Indeed, the current interpretation of mass spectrometry data relies on public databases which are either not exhaustive (Swiss-Prot) or contain many redundant entries (UniProtKB or NCBI). Currently, no protein database is ideally suited for the analysis of histones and the complex array of mammalian histone variants. RESULTS We propose two proteomics-oriented manually curated databases for mouse and human histone variants. We manually curated >1700 gene, transcript and protein entries to produce a non-redundant list of 83 mouse and 85 human histones. These entries were annotated in accordance with the current nomenclature and unified with the "HistoneDB2.0 with Variants" database. This resource is provided in a format that can be directly read by programs used for mass spectrometry data interpretation. In addition, it was used to interpret mass spectrometry data acquired on histones extracted from mouse testis. Several histone variants, which had so far only been inferred by homology or detected at the RNA level, were detected by mass spectrometry, confirming the existence of their protein form. CONCLUSIONS Mouse and human histone entries were collected from different databases and subsequently curated to produce a non-redundant protein-centric resource, MS_HistoneDB. It is dedicated to the proteomic study of histones in mouse and human and will hopefully facilitate the identification and functional study of histone variants.
Collapse
Affiliation(s)
- Sara El Kennani
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| | - Annie Adrait
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| | - Alexey K Shaytan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| | - Saadi Khochbin
- CNRS UMR 5309 INSERM U1209, Institute of Advanced Biosciences, Université Grenoble Alpes, Grenoble, France
| | - Christophe Bruley
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| | - Delphine Pflieger
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| | - Jérôme Govin
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
14
|
Macadangdang BR, Oberai A, Spektor T, Campos OA, Sheng F, Carey MF, Vogelauer M, Kurdistani SK. Evolution of histone 2A for chromatin compaction in eukaryotes. eLife 2014; 3:e02792. [PMID: 24939988 PMCID: PMC4098067 DOI: 10.7554/elife.02792] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/16/2014] [Indexed: 12/16/2022] Open
Abstract
During eukaryotic evolution, genome size has increased disproportionately to nuclear volume, necessitating greater degrees of chromatin compaction in higher eukaryotes, which have evolved several mechanisms for genome compaction. However, it is unknown whether histones themselves have evolved to regulate chromatin compaction. Analysis of histone sequences from 160 eukaryotes revealed that the H2A N-terminus has systematically acquired arginines as genomes expanded. Insertion of arginines into their evolutionarily conserved position in H2A of a small-genome organism increased linear compaction by as much as 40%, while their absence markedly diminished compaction in cells with large genomes. This effect was recapitulated in vitro with nucleosomal arrays using unmodified histones, indicating that the H2A N-terminus directly modulates the chromatin fiber likely through intra- and inter-nucleosomal arginine-DNA contacts to enable tighter nucleosomal packing. Our findings reveal a novel evolutionary mechanism for regulation of chromatin compaction and may explain the frequent mutations of the H2A N-terminus in cancer.
Collapse
Affiliation(s)
- Benjamin R Macadangdang
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Amit Oberai
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Tanya Spektor
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Oscar A Campos
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Fang Sheng
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Michael F Carey
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Maria Vogelauer
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Siavash K Kurdistani
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
15
|
Abstract
Chromatin acts as an organizer and indexer of genomic DNA and is a highly dynamic and regulated structure with properties directly related to its constituent parts. Histone variants are abundant components of chromatin that replace canonical histones in a subset of nucleosomes, thereby altering nucleosomal characteristics. The present review focuses on the H2A variant histones, summarizing current knowledge of how H2A variants can introduce chemical and functional heterogeneity into chromatin, the positions that nucleosomes containing H2A variants occupy in eukaryotic genomes, and the regulation of these localization patterns.
Collapse
|
16
|
Bönisch C, Hake SB. Histone H2A variants in nucleosomes and chromatin: more or less stable? Nucleic Acids Res 2012; 40:10719-41. [PMID: 23002134 PMCID: PMC3510494 DOI: 10.1093/nar/gks865] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In eukaryotes, DNA is organized together with histones and non-histone proteins into a highly complex nucleoprotein structure called chromatin, with the nucleosome as its monomeric subunit. Various interconnected mechanisms regulate DNA accessibility, including replacement of canonical histones with specialized histone variants. Histone variant incorporation can lead to profound chromatin structure alterations thereby influencing a multitude of biological processes ranging from transcriptional regulation to genome stability. Among core histones, the H2A family exhibits highest sequence divergence, resulting in the largest number of variants known. Strikingly, H2A variants differ mostly in their C-terminus, including the docking domain, strategically placed at the DNA entry/exit site and implicated in interactions with the (H3–H4)2-tetramer within the nucleosome and in the L1 loop, the interaction interface of H2A–H2B dimers. Moreover, the acidic patch, important for internucleosomal contacts and higher-order chromatin structure, is altered between different H2A variants. Consequently, H2A variant incorporation has the potential to strongly regulate DNA organization on several levels resulting in meaningful biological output. Here, we review experimental evidence pinpointing towards outstanding roles of these highly variable regions of H2A family members, docking domain, L1 loop and acidic patch, and close by discussing their influence on nucleosome and higher-order chromatin structure and stability.
Collapse
Affiliation(s)
- Clemens Bönisch
- Department of Molecular Biology, Center for Integrated Protein Science Munich, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, 80336 Munich, Germany.
| | | |
Collapse
|
17
|
Talbert PB, Ahmad K, Almouzni G, Ausió J, Berger F, Bhalla PL, Bonner WM, Cande WZ, Chadwick BP, Chan SWL, Cross GAM, Cui L, Dimitrov SI, Doenecke D, Eirin-López JM, Gorovsky MA, Hake SB, Hamkalo BA, Holec S, Jacobsen SE, Kamieniarz K, Khochbin S, Ladurner AG, Landsman D, Latham JA, Loppin B, Malik HS, Marzluff WF, Pehrson JR, Postberg J, Schneider R, Singh MB, Smith MM, Thompson E, Torres-Padilla ME, Tremethick DJ, Turner BM, Waterborg JH, Wollmann H, Yelagandula R, Zhu B, Henikoff S. A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin 2012; 5:7. [PMID: 22650316 PMCID: PMC3380720 DOI: 10.1186/1756-8935-5-7] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 05/31/2012] [Indexed: 12/02/2022] Open
Abstract
Histone variants are non-allelic protein isoforms that play key roles in diversifying chromatin structure. The known number of such variants has greatly increased in recent years, but the lack of naming conventions for them has led to a variety of naming styles, multiple synonyms and misleading homographs that obscure variant relationships and complicate database searches. We propose here a unified nomenclature for variants of all five classes of histones that uses consistent but flexible naming conventions to produce names that are informative and readily searchable. The nomenclature builds on historical usage and incorporates phylogenetic relationships, which are strong predictors of structure and function. A key feature is the consistent use of punctuation to represent phylogenetic divergence, making explicit the relationships among variant subtypes that have previously been implicit or unclear. We recommend that by default new histone variants be named with organism-specific paralog-number suffixes that lack phylogenetic implication, while letter suffixes be reserved for structurally distinct clades of variants. For clarity and searchability, we encourage the use of descriptors that are separate from the phylogeny-based variant name to indicate developmental and other properties of variants that may be independent of structure.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|