1
|
Seybold A, Kumar S, Tumu SC, Hausen H. Neurons with larval synaptic targets pioneer the later nervous system in the annelid Malacoceros fuliginosus. Front Neurosci 2025; 18:1439897. [PMID: 39872997 PMCID: PMC11770012 DOI: 10.3389/fnins.2024.1439897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
Comparative studies on the development of nervous systems have a significant impact on understanding animal nervous system evolution. Nevertheless, an important question is to what degree neuronal structures, which play an important role in early stages, become part of the adult nervous system or are relevant for its formation. This is likely in many direct developers, but it is not the case in forms with catastrophic metamorphosis. It is not clear in many forms with gradual metamorphosis. This introduces uncertainty in tracing the evolution of nervous systems and of larval forms. One of the prominent larval characteristics of numerous planktonic marine organisms is the epidermal ciliation used for swimming and steering, which disappears during metamorphosis. Therefore, the neuronal elements controlling the ciliary beating are often assumed to vanish with the cilia and regarded as purely larval specializations. With volume EM, we followed the neuronal targets of the very first pioneer neurons at the apical and posterior ends of the larva of the annelid Malacoceros fuliginosus. We observed that all of these pioneers appear to have a dual function. Although they are laying the paths for the later adult nervous system, they also make synaptic contact with the main ciliated ring of the larva. We propose that the formation of the later adult nervous system and the innervation of the larval locomotory organ are indeed closely linked to each other. This has implications for understanding the early nervous system development of marine larvae and for existing hypotheses on nervous system evolution.
Collapse
Affiliation(s)
- Anna Seybold
- Michael Sars Centre, University of Bergen, Bergen, Norway
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Suman Kumar
- Michael Sars Centre, University of Bergen, Bergen, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Harald Hausen
- Michael Sars Centre, University of Bergen, Bergen, Norway
- Department of Earth Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
McDonald BD, Massri AJ, Berrio A, Byrne M, McClay DR, Wray GA. Contrasting the development of larval and adult body plans during the evolution of biphasic lifecycles in sea urchins. Development 2024; 151:dev203015. [PMID: 39465623 PMCID: PMC11529275 DOI: 10.1242/dev.203015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024]
Abstract
Biphasic lifecycles are widespread among animals, but little is known about how the developmental transition between larvae and adults is regulated. Sea urchins are a unique system for studying this phenomenon because of the stark differences between their bilateral larval and pentaradial adult body plans. Here, we use single-cell RNA sequencing to analyze the development of Heliocidaris erythrogramma (He), a sea urchin species with an accelerated, non-feeding mode of larval development. The sequencing time course extends from embryogenesis to roughly a day before the onset of metamorphosis in He larvae, which is a period that has not been covered by previous datasets. We find that the non-feeding developmental strategy of He is associated with several changes in the specification of larval cell types compared to sea urchins with feeding larvae, such as the loss of a larva-specific skeletal cell population. Furthermore, the development of the larval and adult body plans in sea urchins may utilize largely different sets of regulatory genes. These findings lay the groundwork for extending existing developmental gene regulatory networks to cover additional stages of biphasic lifecycles.
Collapse
Affiliation(s)
| | | | | | - Maria Byrne
- School of Life and Environmental Sciences, A11, University of Sydney, Sydney, NSW, 2006, Australia
| | - David R. McClay
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Gregory A. Wray
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
3
|
Gilbert E, Craggs J, Modepalli V. Gene Regulatory Network that Shaped the Evolution of Larval Apical Organ in Cnidaria. Mol Biol Evol 2024; 41:msad285. [PMID: 38152864 PMCID: PMC10781443 DOI: 10.1093/molbev/msad285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
Among non-bilaterian animals, a larval apical sensory organ with integrated neurons is only found in cnidarians. Within cnidarians, an apical organ with a ciliary tuft is mainly found in Actiniaria. Whether this apical tuft has evolved independently in Actiniaria or alternatively originated in the common ancestor of Cnidaria and Bilateria and was lost in specific groups is uncertain. To test this hypothesis, we generated transcriptomes of the apical domain during the planula stage of four species representing three key groups of cnidarians: Aurelia aurita (Scyphozoa), Nematostella vectensis (Actiniaria), and Acropora millepora and Acropora tenuis (Scleractinia). We showed that the canonical genes implicated in patterning the apical domain of N. vectensis are largely absent in A. aurita. In contrast, the apical domain of the scleractinian planula shares gene expression pattern with N. vectensis. By comparing the larval single-cell transcriptomes, we revealed the apical organ cell type of Scleractinia and confirmed its homology to Actiniaria. However, Fgfa2, a vital regulator of the regionalization of the N. vectensis apical organ, is absent in the scleractinian genome. Likewise, we found that FoxJ1 and 245 genes associated with cilia are exclusively expressed in the N. vectensis apical domain, which is in line with the presence of ciliary apical tuft in Actiniaria and its absence in Scleractinia and Scyphozoa. Our findings suggest that the common ancestor of cnidarians lacked a ciliary apical tuft, and it could have evolved independently in the Actiniaria.
Collapse
Affiliation(s)
- Eleanor Gilbert
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Jamie Craggs
- Horniman Museum and Gardens, London SE23 3PQ, UK
| | - Vengamanaidu Modepalli
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
4
|
Nielsen C. Hydrodynamics in early animal evolution. Biol Rev Camb Philos Soc 2023; 98:376-385. [PMID: 36216338 DOI: 10.1111/brv.12909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Choanoflagellates and sponges feed by filtering microscopic particles from water currents created by the flagella of microvillar collar complexes situated on the cell bodies of the solitary or colonial choanoflagellates and on the choanocytes in sponges. The filtering mechanism has been known for more than a century, but only recently has the filtering process been studied in detail and also modelled, so that a detailed picture of the water currents has been obtained. In the solitary and most of the colonial choanoflagellates, the water flows freely around the cells, but in some forms, the cells are arranged in an open meshwork through which the water can be pumped. In the sponges, the choanocytes are located in choanocyte chambers (or choanocyte areas) with separate incurrent and excurrent canals/pores located in a larger body, which enables a fixed pattern of water currents through the collar complexes. Previous theories for the origin of sponges show evolutionary stages with choanocyte chambers without any opening or with only one opening, which makes separation of incurrent and excurrent impossible, and such stages must have been unable to feed. Therefore a new theory is proposed, which shows a continuous evolutionary lineage in which all stages are able to feed by means of the collar complexes.
Collapse
Affiliation(s)
- Claus Nielsen
- Natural History Museum of Denmark (University of Copenhagen), Zoological Museum, Universitetsparken 15, DK-2990, Copenhagen, Denmark
| |
Collapse
|
5
|
Mallatt J. Vertebrate origins are informed by larval lampreys (ammocoetes): a response to Miyashita et al., 2021. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
This paper addresses a recent claim by Miyashita and co-authors that the filter-feeding larval lamprey is a new evolutionary addition to the lamprey life-cycle and does not provide information about early vertebrates, in contrast to the traditional view that this ammocoete stage resembles the first vertebrates. The evidence behind this revolutionary claim comes from fossil lampreys from 360–306 Mya that include young stages – even yolk-sac hatchlings – with adult (predacious) feeding structures. However, the traditional view is not so easily dismissed. The phylogeny on which the non-ammocoete theory is based was not tested in a statistically meaningful way. Additionally, the target article did not consider the known evidence for the traditional view, namely that the complex filter-feeding structures are highly similar in ammocoetes and the invertebrate chordates, amphioxus and tunicates. In further support of the traditional view, I show that ammocoetes are helpful for reconstructing the first vertebrates and the jawless, fossil stem gnathostomes called ostracoderms – their pharynx, oral cavity, mouth opening, lips and filter-feeding mode (but, ironically, not their mandibular/jaw region). From these considerations, I offer a scenario for the evolution of vertebrate life-cycles that fits the traditional, ammocoete-informed theory and puts filter feeding at centre stage.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho , Moscow, Idaho 83843 , USA
| |
Collapse
|
6
|
Gilbert E, Teeling C, Lebedeva T, Pedersen S, Chrismas N, Genikhovich G, Modepalli V. Molecular and cellular architecture of the larval sensory organ in the cnidarian Nematostella vectensis. Development 2022; 149:dev200833. [PMID: 36000354 PMCID: PMC9481973 DOI: 10.1242/dev.200833] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Cnidarians are the only non-bilaterian group to evolve ciliated larvae with an apical sensory organ, which is possibly homologous to the apical organs of bilaterian primary larvae. Here, we generated transcriptomes of the apical tissue in the sea anemone Nematostella vectensis and showed that it has a unique neuronal signature. By integrating previously published larval single-cell data with our apical transcriptomes, we discovered that the apical domain comprises a minimum of six distinct cell types. We show that the apical organ is compartmentalised into apical tuft cells (spot) and larval-specific neurons (ring). Finally, we identify ISX-like (NVE14554), a PRD class homeobox gene specifically expressed in apical tuft cells, as an FGF signalling-dependent transcription factor responsible for the formation of the apical tuft domain via repression of the neural ring fate in apical cells. With this study, we contribute a comparison of the molecular anatomy of apical organs, which must be carried out across phyla to determine whether this crucial larval structure evolved once or multiple times.
Collapse
Affiliation(s)
- Eleanor Gilbert
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Callum Teeling
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Tatiana Lebedeva
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, 1030, Austria
- Doctoral School of Ecology and Evolution, University of Vienna, Vienna, 1030, Austria
| | - Siffreya Pedersen
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | - Nathan Chrismas
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, 1030, Austria
| | - Vengamanaidu Modepalli
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| |
Collapse
|
7
|
Martynov AV, Korshunova TA. Renewed perspectives on the sedentary-pelagic last common bilaterian ancestor. CONTRIBUTIONS TO ZOOLOGY 2022. [DOI: 10.1163/18759866-bja10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Various evaluations of the last common bilaterian ancestor (lcba) currently suggest that it resembled either a microscopic, non-segmented motile adult; or, on the contrary, a complex segmented adult motile urbilaterian. These fundamental inconsistencies remain largely unexplained. A majority of multidisciplinary data regarding sedentary adult ancestral bilaterian organization is overlooked. The sedentary-pelagic model is supported now by a number of novel developmental, paleontological and molecular phylogenetic data: (1) data in support of sedentary sponges, in the adult stage, as sister to all other Metazoa; (2) a similarity of molecular developmental pathways in both adults and larvae across sedentary sponges, cnidarians, and bilaterians; (3) a cnidarian-bilaterian relationship, including a unique sharing of a bona fide Hox-gene cluster, of which the evolutionary appearance does not connect directly to a bilaterian motile organization; (4) the presence of sedentary and tube-dwelling representatives of the main bilaterian clades in the early Cambrian; (5) an absence of definite taxonomic attribution of Ediacaran taxa reconstructed as motile to any true bilaterian phyla; (6) a similarity of tube morphology (and the clear presence of a protoconch-like apical structure of the Ediacaran sedentary Cloudinidae) among shells of the early Cambrian, and later true bilaterians, such as semi-sedentary hyoliths and motile molluscs; (7) recent data that provide growing evidence for a complex urbilaterian, despite a continuous molecular phylogenetic controversy. The present review compares the main existing models and reconciles the sedentary model of an urbilaterian and the model of a larva-like lcba with a unified sedentary(adult)-pelagic(larva) model of the lcba.
Collapse
Affiliation(s)
- Alexander V. Martynov
- Zoological Museum, Moscow State University, Bolshaya Nikitskaya Str. 6, 125009 Moscow, Russia,
| | - Tatiana A. Korshunova
- Koltzov Institute of Developmental Biology RAS, 26 Vavilova Str., 119334 Moscow, Russia
| |
Collapse
|
8
|
Vogt L, Mikó I, Bartolomaeus T. Anatomy and the type concept in biology show that ontologies must be adapted to the diagnostic needs of research. J Biomed Semantics 2022; 13:18. [PMID: 35761389 PMCID: PMC9235205 DOI: 10.1186/s13326-022-00268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In times of exponential data growth in the life sciences, machine-supported approaches are becoming increasingly important and with them the need for FAIR (Findable, Accessible, Interoperable, Reusable) and eScience-compliant data and metadata standards. Ontologies, with their queryable knowledge resources, play an essential role in providing these standards. Unfortunately, biomedical ontologies only provide ontological definitions that answer What is it? questions, but no method-dependent empirical recognition criteria that answer How does it look? QUESTIONS Consequently, biomedical ontologies contain knowledge of the underlying ontological nature of structural kinds, but often lack sufficient diagnostic knowledge to unambiguously determine the reference of a term. RESULTS We argue that this is because ontology terms are usually textually defined and conceived as essentialistic classes, while recognition criteria often require perception-based definitions because perception-based contents more efficiently document and communicate spatial and temporal information-a picture is worth a thousand words. Therefore, diagnostic knowledge often must be conceived as cluster classes or fuzzy sets. Using several examples from anatomy, we point out the importance of diagnostic knowledge in anatomical research and discuss the role of cluster classes and fuzzy sets as concepts of grouping needed in anatomy ontologies in addition to essentialistic classes. In this context, we evaluate the role of the biological type concept and discuss its function as a general container concept for groupings not covered by the essentialistic class concept. CONCLUSIONS We conclude that many recognition criteria can be conceptualized as text-based cluster classes that use terms that are in turn based on perception-based fuzzy set concepts. Finally, we point out that only if biomedical ontologies model also relevant diagnostic knowledge in addition to ontological knowledge, they will fully realize their potential and contribute even more substantially to the establishment of FAIR and eScience-compliant data and metadata standards in the life sciences.
Collapse
Affiliation(s)
- Lars Vogt
- TIB Leibniz Information Centre for Science and Technology, Welfengarten 1B, 30167, Hannover, Germany.
| | - István Mikó
- Don Chandler Entomological Collection, University of New Hampshire, Durham, NH, USA
| | - Thomas Bartolomaeus
- Institut für Evolutionsbiologie und Ökologie, Universität Bonn, An der Immenburg 1, 53121, Bonn, Germany
| |
Collapse
|
9
|
Edgar A, Ponciano JM, Martindale MQ. Ctenophores are direct developers that reproduce continuously beginning very early after hatching. Proc Natl Acad Sci U S A 2022; 119:e2122052119. [PMID: 35476523 PMCID: PMC9170174 DOI: 10.1073/pnas.2122052119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/05/2022] [Indexed: 12/21/2022] Open
Abstract
A substantial body of literature reports that ctenophores exhibit an apparently unique life history characterized by biphasic sexual reproduction, the first phase of which is called larval reproduction or dissogeny. Whether this strategy is plastically deployed or a typical part of these species’ life history was unknown. In contrast to previous reports, we show that the ctenophore Mnemiopsis leidyi does not have separate phases of early and adult reproduction, regardless of the morphological transition to what has been considered the adult form. Rather, these ctenophores begin to reproduce at a small body size and spawn continuously from this point onward under adequate environmental conditions. They do not display a gap in productivity for metamorphosis or other physiological transition at a certain body size. Furthermore, nutritional and environmental constraints on fecundity are similar in both small and large animals. Our results provide critical parameters for understanding resource partitioning between growth and reproduction in this taxon, with implications for management of this species in its invaded range. Finally, we report an observation of similarly small-size spawning in a beroid ctenophore, which is morphologically, ecologically, and phylogenetically distinct from other ctenophores reported to spawn at small sizes. We conclude that spawning at small body size should be considered as the default, on-time developmental trajectory rather than as precocious, stress-induced, or otherwise unusual for ctenophores. The ancestral ctenophore was likely a direct developer, consistent with the hypothesis that multiphasic life cycles were introduced after the divergence of the ctenophore lineage.
Collapse
Affiliation(s)
- Allison Edgar
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080
| | | | - Mark Q. Martindale
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080
- Department of Biology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
10
|
Cavalcanti GS, Alker AT, Delherbe N, Malter KE, Shikuma NJ. The Influence of Bacteria on Animal Metamorphosis. Annu Rev Microbiol 2021; 74:137-158. [PMID: 32905754 DOI: 10.1146/annurev-micro-011320-012753] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The swimming larvae of many marine animals identify a location on the seafloor to settle and undergo metamorphosis based on the presence of specific surface-bound bacteria. While bacteria-stimulated metamorphosis underpins processes such as the fouling of ship hulls, animal development in aquaculture, and the recruitment of new animals to coral reef ecosystems, little is known about the mechanisms governing this microbe-animal interaction. Here we review what is known and what we hope to learn about how bacteria and the factors they produce stimulate animal metamorphosis. With a few emerging model systems, including the tubeworm Hydroides elegans, corals, and the hydrozoan Hydractinia, we have begun to identify bacterial cues that stimulate animal metamorphosis and test hypotheses addressing their mechanisms of action. By understanding the mechanisms by which bacteria promote animal metamorphosis, we begin to illustrate how, and explore why, the developmental decision of metamorphosis relies on cues from environmental bacteria.
Collapse
Affiliation(s)
- Giselle S Cavalcanti
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Amanda T Alker
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Nathalie Delherbe
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Kyle E Malter
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Nicholas J Shikuma
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| |
Collapse
|
11
|
von Döhren J. Diversity in the Development of the Neuromuscular System of Nemertean Larvae (Nemertea, Spiralia). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.654846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In studies on the development of nervous systems and musculature, fluorescent labeling of neuroactive substances and filamentous actin (f-actin) of muscle cells and the subsequent analysis with confocal laser scanning microscopy (CLSM), has led to a broad comparative data set for the majority of the clades of the superphylum Spiralia. However, a number of clades remain understudied, which results in gaps in our knowledge that drastically hamper the formulation of broad-scale hypotheses on the evolutionary developmental biology (EvoDevo) of the structures in question. Regarding comparative data on the development of the peptidergic nervous system and the musculature of species belonging to the spiralian clade Nemertea (ribbon worms), such considerable knowledge gaps are manifest. This paper presents first findings on fluorescent labeling of the FMRFamide-like component of the nervous system and contributes additional data on the muscle development in the presently still underrepresented larvae of palaeo- and hoplonemertean species. Whereas the architecture of the FMRFamide-like nervous system is comparably uniform between the studied representatives, the formation of the musculature differs considerably, exhibiting developmental modes yet undescribed for any spiralian species. The presented results fill a significant gap in the spiralian EvoDevo data set and thus allow for further elaboration of hypotheses on the ancestral pattern of the musculature and a prominent component of the nervous system in Nemertea. However, with respect to the variety observed, it is expected that the true diversity of the developmental pathways is still to be discovered when more detailed data on other nemertean species will be available.
Collapse
|
12
|
Faria L, Pie M, Salles F, Soares E. The Haeckelian shortfall or the tale of the missing semaphoronts. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Luiz Faria
- Instituto Latino‐Americano de Ciências da Vida e da NaturezaUniversidade Federal da Integração Latino‐Americana Foz do Iguaçu Brazil
| | - Marcio Pie
- Departamento de Zoologia Universidade Federal do Paraná Curitiba Brazil
| | - Frederico Salles
- Departamento de Entomologia Universidade Federal de Viçosa Viçosa Brazil
| | - Elaine Soares
- Instituto Latino‐Americano de Ciências da Vida e da NaturezaUniversidade Federal da Integração Latino‐Americana Foz do Iguaçu Brazil
| |
Collapse
|
13
|
Wang J, Zhang L, Lian S, Qin Z, Zhu X, Dai X, Huang Z, Ke C, Zhou Z, Wei J, Liu P, Hu N, Zeng Q, Dong B, Dong Y, Kong D, Zhang Z, Liu S, Xia Y, Li Y, Zhao L, Xing Q, Huang X, Hu X, Bao Z, Wang S. Evolutionary transcriptomics of metazoan biphasic life cycle supports a single intercalation origin of metazoan larvae. Nat Ecol Evol 2020; 4:725-736. [PMID: 32203475 DOI: 10.1038/s41559-020-1138-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022]
Abstract
The transient larva-bearing biphasic life cycle is the hallmark of many metazoan phyla, but how metazoan larvae originated remains a major enigma in animal evolution. There are two hypotheses for larval origin. The 'larva-first' hypothesis suggests that the first metazoans were similar to extant larvae, with later evolution of the adult-added biphasic life cycle; the 'adult-first' hypothesis suggests that the first metazoans were adult forms, with the biphasic life cycle arising later via larval intercalation. Here, we investigate the evolutionary origin of primary larvae by conducting ontogenetic transcriptome profiling for Mollusca-the largest marine phylum characterized by a trochophore larval stage and highly variable adult forms. We reveal that trochophore larvae exhibit rapid transcriptome evolution with extraordinary incorporation of novel genes (potentially contributing to adult shell evolution), and that cell signalling/communication genes (for example, caveolin and innexin) are probably crucial for larval evolution. Transcriptome age analysis of eight metazoan species reveals the wide presence of young larval transcriptomes in both trochozoans and other major metazoan lineages, therefore arguing against the prevailing larva-first hypothesis. Our findings support an adult-first evolutionary scenario with a single metazoan larval intercalation, and suggest that the first appearance of proto-larva probably occurred after the divergence of direct-developing Ctenophora from a metazoan ancestor.
Collapse
Affiliation(s)
- Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shanshan Lian
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenkui Qin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuan Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoting Dai
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zekun Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Jiankai Wei
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Pingping Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Naina Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bo Dong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Dong
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Dexu Kong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhifeng Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Sinuo Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu Xia
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yangping Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Liang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China. .,The Sars-Fang Centre, Ocean University of China, Qingdao, China.
| |
Collapse
|
14
|
Malakhov VV, Bogomolova EV, Kuzmina TV, Temereva EN. Evolution of Metazoan Life Cycles and the Origin of Pelagic Larvae. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360419060043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Erwin DH. The origin of animal body plans: a view from fossil evidence and the regulatory genome. Development 2020; 147:147/4/dev182899. [DOI: 10.1242/dev.182899] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT
The origins and the early evolution of multicellular animals required the exploitation of holozoan genomic regulatory elements and the acquisition of new regulatory tools. Comparative studies of metazoans and their relatives now allow reconstruction of the evolution of the metazoan regulatory genome, but the deep conservation of many genes has led to varied hypotheses about the morphology of early animals and the extent of developmental co-option. In this Review, I assess the emerging view that the early diversification of animals involved small organisms with diverse cell types, but largely lacking complex developmental patterning, which evolved independently in different bilaterian clades during the Cambrian Explosion.
Collapse
Affiliation(s)
- Douglas H. Erwin
- Department of Paleobiology, MRC-121, National Museum of Natural History, PO Box 37012, Washington, DC 20013-7012, USA
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
16
|
A Screen for Gene Paralogies Delineating Evolutionary Branching Order of Early Metazoa. G3-GENES GENOMES GENETICS 2020; 10:811-826. [PMID: 31879283 PMCID: PMC7003098 DOI: 10.1534/g3.119.400951] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The evolutionary diversification of animals is one of Earth’s greatest marvels, yet its earliest steps are shrouded in mystery. Animals, the monophyletic clade known as Metazoa, evolved wildly divergent multicellular life strategies featuring ciliated sensory epithelia. In many lineages epithelial sensoria became coupled to increasingly complex nervous systems. Currently, different phylogenetic analyses of single-copy genes support mutually-exclusive possibilities that either Porifera or Ctenophora is sister to all other animals. Resolving this dilemma would advance the ecological and evolutionary understanding of the first animals and the evolution of nervous systems. Here we describe a comparative phylogenetic approach based on gene duplications. We computationally identify and analyze gene families with early metazoan duplications using an approach that mitigates apparent gene loss resulting from the miscalling of paralogs. In the transmembrane channel-like (TMC) family of mechano-transducing channels, we find ancient duplications that define separate clades for Eumetazoa (Placozoa + Cnidaria + Bilateria) vs. Ctenophora, and one duplication that is shared only by Eumetazoa and Porifera. In the Max-like protein X (MLX and MLXIP) family of bHLH-ZIP regulators of metabolism, we find that all major lineages from Eumetazoa and Porifera (sponges) share a duplicated gene pair that is sister to the single-copy gene maintained in Ctenophora. These results suggest a new avenue for deducing deep phylogeny by choosing rather than avoiding ancient gene paralogies.
Collapse
|
17
|
Magarlamov TY, Dyachuk V, Chernyshev AV. Does the frontal sensory organ in adults of the hoplonemertean Quasitetrastemma stimpsoni originate from the larval apical organ? Front Zool 2020; 17:2. [PMID: 31921322 PMCID: PMC6945760 DOI: 10.1186/s12983-019-0347-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/16/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The apical organ is the most prominent neural structure in spiralian larvae. Although it has been thoroughly investigated in larvae of the class Pilidiophora in phylum Nemertea, studies on its structure in other nemertean larvae are limited. Most adult hoplonemertean worms have a frontal organ located in a position corresponding to that of the larval apical organ. The development and sensory function of the frontal organ has not been thoroughly characterized to date. RESULTS The apical organ in the early rudiment stage of Quasitetrastemma stimpsoni larvae consists of an apical plate enclosed by ducts of frontal gland cells and eight apical neurons. The apical plate is abundantly innervated by neurites of apical neurons. During the late rudiment stage, the larval apical organ has external innervation from below by two subapical-plate neurons, along with 11 apical neurons, and its plate contains serotonin-like immunoreactive (5-HT-lir) cells. In the vermicular stage (free-swimming juvenile), the number of apical neurons is reduced, and their processes are resorbed. Serotonin is detected in the apical plate with no visible connection to apical neurons. In adult worms, the frontal organ has a small apical pit with openings for the frontal gland ducts. The organ consists of 8 to 10 densely packed 5-HT-lir cells that form the roundish pit. CONCLUSIONS Although the ultrastructure of the Q. stimpsoni larval apical organ closely resembles that of the apical organ of Polycladida larvae, the former differs in the presence of flask-shaped neurons typical of Spiralia. Significant differences in the structure of the apical organs of hoplonemertean and pilidia larvae point to two different paths in the evolutionary transformation of the ancestral apical organ. Ultrastructural and immunoreactive analyses of the apical organ of a hoplonemertean larva in the late rudiment and vermicular stages and the frontal organ of the adult worms identified common morphological and functional features. Thus, we hypothesize that the larval apical organ is modified during morphogenesis to form the adult frontal organ, which fulfills a sensory function in the hoplonemertean worm. This unique developmental trait distinguishes the Hoplonemertea from other nemertean groups.
Collapse
Affiliation(s)
- Timur Yu Magarlamov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041 Russia
- Far Eastern Federal University, Vladivostok, 690090 Russia
| | - Vyacheslav Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041 Russia
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Alexey V. Chernyshev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041 Russia
- Far Eastern Federal University, Vladivostok, 690090 Russia
| |
Collapse
|
18
|
ten Brink H, de Roos AM, Dieckmann U. The Evolutionary Ecology of Metamorphosis. Am Nat 2019; 193:E116-E131. [DOI: 10.1086/701779] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Evolution of the bilaterian mouth and anus. Nat Ecol Evol 2018; 2:1358-1376. [PMID: 30135501 DOI: 10.1038/s41559-018-0641-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
It is widely held that the bilaterian tubular gut with mouth and anus evolved from a simple gut with one major gastric opening. However, there is no consensus on how this happened. Did the single gastric opening evolve into a mouth, with the anus forming elsewhere in the body (protostomy), or did it evolve into an anus, with the mouth forming elsewhere (deuterostomy), or did it evolve into both mouth and anus (amphistomy)? These questions are addressed by the comparison of developmental fates of the blastopore, the opening of the embryonic gut, in diverse animals that live today. Here we review comparative data on the identity and fate of blastoporal tissue, investigate how the formation of the through-gut relates to the major body axes, and discuss to what extent evolutionary scenarios are consistent with these data. Available evidence indicates that stem bilaterians had a slit-like gastric opening that was partially closed in subsequent evolution, leaving open the anus and most likely also the mouth, which would favour amphistomy. We discuss remaining difficulties, and outline directions for future research.
Collapse
|
20
|
Nielsen C. Origin of the trochophora larva. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180042. [PMID: 30109065 PMCID: PMC6083724 DOI: 10.1098/rsos.180042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
The trochophora larva, which is so well known from the marine plankton, is central to our understanding of the evolution of a large branch of the bilaterians. Two theories for this larval type have been prevalent, the trochaea theory and the theory proposed by Ivanova-Kazas. The embryology, or more precisely the cell-lineage, of these larvae seems to be central for our understanding of their origin, but important details have been missing. According to the trochaea theory, a circumblastoporal ring of blastomeres differentiates to follow the convoluted shape of the conspicuous ciliary bands of the larvae, with prototroch and metatroch around the mouth, forming a filtering system, and telotroch around the anus. According to the Ivanova-Kazas theory, the blastomeres with the ciliary bands develop through specialization of rings of cells of the general ciliation in a lecithotrophic larva. Now, a new cell-lineage study of the gastropod Crepidula has shown that the ring of cells at the edge of the blastopore develops into the band of cells carrying prototroch and metatroch, characteristic of the trochophora. This gives strong support to the trochaea theory.
Collapse
|
21
|
de Wiljes OO, van Elburg RAJ, Keijzer FA. Modelling the effects of short and random proto-neural elongations. J R Soc Interface 2018; 14:rsif.2017.0399. [PMID: 29070590 DOI: 10.1098/rsif.2017.0399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/05/2017] [Indexed: 11/12/2022] Open
Abstract
To understand how neurons and nervous systems first evolved, we need an account of the origins of neural elongations: why did neural elongations (axons and dendrites) first originate, such that they could become the central component of both neurons and nervous systems? Two contrasting conceptual accounts provide different answers to this question. Braitenberg's vehicles provide the iconic illustration of the dominant input-output (IO) view. Here, the basic role of neural elongations is to connect sensors to effectors, both situated at different positions within the body. For this function, neural elongations are thought of as comparatively long and specific connections, which require an articulated body involving substantial developmental processes to build. Internal coordination (IC) models stress a different function for early nervous systems. Here, the coordination of activity across extended parts of a multicellular body is held central, in particular, for the contractions of (muscle) tissue. An IC perspective allows the hypothesis that the earliest proto-neural elongations could have been functional even when they were initially simple, short and random connections, as long as they enhanced the patterning of contractile activity across a multicellular surface. The present computational study provides a proof of concept that such short and random neural elongations can play this role. While an excitable epithelium can generate basic forms of patterning for small body configurations, adding elongations allows such patterning to scale up to larger bodies. This result supports a new, more gradual evolutionary route towards the origins of the very first neurons and nervous systems.
Collapse
Affiliation(s)
- Oltman O de Wiljes
- Department of Theoretical Philosophy, University of Groningen, Groningen, The Netherlands .,Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - R A J van Elburg
- Institute of Artificial Intelligence, University of Groningen, Groningen, The Netherlands
| | - Fred A Keijzer
- Department of Theoretical Philosophy, University of Groningen, Groningen, The Netherlands.,Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Kuo DH, Hsiao YH. Duplicated FoxA genes in the leech Helobdella: Insights into the evolution of direct development in clitellate annelids. Dev Dyn 2018; 247:763-778. [PMID: 29396890 DOI: 10.1002/dvdy.24621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND As an adaptation to the land, the clitellate annelid had reorganized its embryogenesis to develop "directly" without the ancestral planktonic larval stage. To study the evolution of gut development in the directly developing clitellates, we characterized the expression pattern of the conserved gut gene, FoxA, in the embryonic development of the leech. RESULTS The leech has three FoxA paralogs. Hau-FoxA1 is first expressed in a subset of endoderm cells and then in the foregut and the midgut. Hau-FoxA2 is expressed in the stomodeum, which is secondarily derived from the anterior ectoderm in the clitellates rather than the tissue around the blastopore, the ancestral site of mouth formation in Phylum Annelida. Hau-FoxA3 is expressed during the morphogenesis of segmental ganglia from the ectodermal teloblast lineages, a clitellate-specific trait. Hau-FoxA1 and Hau-FoxA2 are also expressed during the morphogenesis of the leech-specific front sucker. CONCLUSIONS The expression patterns suggested that Hau-FoxA1 carries out most of the conserved function in the endoderm and gut development, while the other two duplicates appear to have evolved unique novel functions in the directly developing clitellate embryos. Therefore, neofunctionalization and co-option of FoxA might have made a significant contribution to the evolution of direct development in Clitellata. Developmental Dynamics 247:763-778, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dian-Han Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsiang Hsiao
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
23
|
Erwin DH. Eric Davidson and deep time. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2017; 39:29. [PMID: 29030723 DOI: 10.1007/s40656-017-0156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Eric Davidson had a deep and abiding interest in the role developmental mechanisms played in generating evolutionary patterns documented in deep time, from the origin of the euechinoids to the processes responsible for the morphological architectures of major animal clades. Although not an evolutionary biologist, Davidson's interests long preceded the current excitement over comparative evolutionary developmental biology. Here I discuss three aspects at the intersection between his research and evolutionary patterns in deep time: First, understanding the mechanisms of body plan formation, particularly those associated with the early diversification of major metazoan clades. Second, a critique of early claims about ancestral metazoans based on the discoveries of highly conserved genes across bilaterian animals. Third, Davidson's own involvement in paleontology through a collaborative study of the fossil embryos from the Ediacaran Doushantuo Formation in south China.
Collapse
Affiliation(s)
- Douglas H Erwin
- Department of Paleobiology, MRC-121, National Museum of Natural History, Washington, DC, 20013-7012, USA.
| |
Collapse
|
24
|
Temereva EN. Ground plan of the larval nervous system in phoronids: Evidence from larvae of viviparous phoronid. Evol Dev 2017; 19:171-189. [DOI: 10.1111/ede.12231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Elena N. Temereva
- Department of Invertebrate Zoology; Biological Faculty; Moscow State University; Moscow Russia
| |
Collapse
|
25
|
Abstract
Historically, mucosal immunity—i.e., the portion of the immune system that protects an organism’s various mucous membranes from invasion by potentially pathogenic microbes—has been studied in single-cell epithelia in the gastrointestinal and upper respiratory tracts of vertebrates. Phylogenetically, mucosal surfaces appeared for the first time about 560 million years ago in members of the phylum Cnidaria. There are remarkable similarities and shared functions of mucosal immunity in vertebrates and innate immunity in cnidarians, such as Hydra species. Here, we propose a common origin for both systems and review observations that indicate that the ultimately simple holobiont Hydra provides both a new perspective on the relationship between bacteria and animal cells and a new prism for viewing the emergence and evolution of epithelial tissue-based innate immunity. In addition, recent breakthroughs in our understanding of immune responses in Hydra polyps reared under defined short-term gnotobiotic conditions open up the potential of Hydra as an animal research model for the study of common mucosal disorders.
Collapse
|
26
|
von Döhren J. Development of the Nervous System of Carinina ochracea (Palaeonemer-tea, Nemertea). PLoS One 2016; 11:e0165649. [PMID: 27792762 PMCID: PMC5085047 DOI: 10.1371/journal.pone.0165649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023] Open
Abstract
The various clades of Lophotrochozoa possess highly disparate adult morphologies. Most of them, including Nemertea (ribbon worms), are postulated to develop via a pelagic larva of the trochophora type, which is regarded as plesiomorphic in Lophotrochozoa. With respect to the nervous system, the trochophora larva displays a set of stereotypic features, including an apical organ and trochal neurites, both of which are lost at the onset of metamorphosis. In the investigated larvae of Nemertea, the nervous system is somewhat divergent from the postulated hypothetical trochophore-like pattern. Moreover, no detailed data is available for the "hidden" trochophore larva, the hypothetical ancestral larval type of palaeonemertean species. Therefore, the development of the nervous system in the larva of Carinina ochracea, a basally branching palaeonemertean species, was studied by means of immunofluorescence and confocal laserscanning microscopy. Like in the other investigated nemertean larvae, the prospective adult central nervous system in C. ochracea develops in an anterior to posterior direction, as an anterior brain with paired longitudinal nerve cords. Thus, development of the adult nervous system in Nemertea is largely congruent with currently accepted hypotheses of nervous system development in Spiralia. In early development, transitory apical, serotonin-like immunoreactive flask-shaped cells are initially present, but the trochal neurites that have been considered as pivotal to lophotrochozoan development, are absent. In the light of the above stated hypothesis, trochal neurites have to be interpreted as reduced in Nemertea. On the other hand, due to the unsettled systematic status of Palaeonemertea, more comparative data are desirable to answer the remaining questions regarding the evolution of nervous system development in Nemertea.
Collapse
Affiliation(s)
- Jörn von Döhren
- Institute of Evolutionary Biology and Ecology, University of Bonn, Bonn, Germany
| |
Collapse
|
27
|
High expression of new genes in trochophore enlightening the ontogeny and evolution of trochozoans. Sci Rep 2016; 6:34664. [PMID: 27698463 PMCID: PMC5048140 DOI: 10.1038/srep34664] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/19/2016] [Indexed: 11/08/2022] Open
Abstract
Animals with trochophore larvae belong to Trochozoa, one of the main branches of Bilateria. In addition to exhibiting spiral cleavage and early cell fate determination, trochozoans typically undergo indirect development, which contributes to the most unique characteristics of their ontogeny. The indirect development of trochozoans has provoked discussion regarding the origin and evolution of marine larvae and is interesting from the perspective of phylogeny-ontogeny correspondence. While these phylo-onto correlations have an hourglass shape in Deuterostomia, Ecdysozoa, plants and even fungi, they have seldom been studied in Trochozoa, and even Lophotrochozoa. Here, we compared the ontogenetic transcriptomes of the Pacific oyster, Crassostrea gigas (Bivalvia, Mollusca), the Pacific abalone, Haliotis discus hannai (Gastropoda, Mollusca), and the sand worm Perinereis aibuhitensis (Polychaeta, Annelida) using several complementary phylotranscriptomic methods to examine their evolutionary trajectories. The results revealed the late trochophore stage as the phylotypic phase. However, this basic pattern is accompanied with increased use of new genes in the trochophore stages which marks specific adaptations of the larval body plans.
Collapse
|
28
|
Randel N, Jékely G. Phototaxis and the origin of visual eyes. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150042. [PMID: 26598725 DOI: 10.1098/rstb.2015.0042] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vision allows animals to detect spatial differences in environmental light levels. High-resolution image-forming eyes evolved from low-resolution eyes via increases in photoreceptor cell number, improvements in optics and changes in the neural circuits that process spatially resolved photoreceptor input. However, the evolutionary origins of the first low-resolution visual systems have been unclear. We propose that the lowest resolving (two-pixel) visual systems could initially have functioned in visual phototaxis. During visual phototaxis, such elementary visual systems compare light on either side of the body to regulate phototactic turns. Another, even simpler and non-visual strategy is characteristic of helical phototaxis, mediated by sensory-motor eyespots. The recent mapping of the complete neural circuitry (connectome) of an elementary visual system in the larva of the annelid Platynereis dumerilii sheds new light on the possible paths from non-visual to visual phototaxis and to image-forming vision. We outline an evolutionary scenario focusing on the neuronal circuitry to account for these transitions. We also present a comprehensive review of the structure of phototactic eyes in invertebrate larvae and assign them to the non-visual and visual categories. We propose that non-visual systems may have preceded visual phototactic systems in evolution that in turn may have repeatedly served as intermediates during the evolution of image-forming eyes.
Collapse
Affiliation(s)
- Nadine Randel
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Gáspár Jékely
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| |
Collapse
|
29
|
Jékely G, Keijzer F, Godfrey-Smith P. An option space for early neural evolution. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0181. [PMID: 26554049 DOI: 10.1098/rstb.2015.0181] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The origin of nervous systems has traditionally been discussed within two conceptual frameworks. Input-output models stress the sensory-motor aspects of nervous systems, while internal coordination models emphasize the role of nervous systems in coordinating multicellular activity, especially muscle-based motility. Here we consider both frameworks and apply them to describe aspects of each of three main groups of phenomena that nervous systems control: behaviour, physiology and development. We argue that both frameworks and all three aspects of nervous system function need to be considered for a comprehensive discussion of nervous system origins. This broad mapping of the option space enables an overview of the many influences and constraints that may have played a role in the evolution of the first nervous systems.
Collapse
Affiliation(s)
- Gáspár Jékely
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Fred Keijzer
- Department of Theoretical Philosophy, University of Groningen, Oude Boteringestraat 52, Groningen 9712 GL, The Netherlands
| | - Peter Godfrey-Smith
- Philosophy Program, The Graduate Center, City University of New York, New York, NY 10016, USA History and Philosophy of Science Unit, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
30
|
Wong KSY, Arenas-Mena C. Expression ofGATAandPOUtranscription factors during the development of the planktotrophic trochophore of the polychaete serpulidHydroides elegans. Evol Dev 2016; 18:254-66. [DOI: 10.1111/ede.12196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Kimberly Suk-Ying Wong
- Department of Biology; San Diego State University; 5500 Campanile Drive San Diego CA 92182-4614 USA
| | - Cesar Arenas-Mena
- Department of Biology, College of Staten Island and Graduate Center; The City University of New York (CUNY); Staten Island NY 10314 USA
| |
Collapse
|
31
|
The oldest known larva and its implications for the plesiomorphy of metazoan development. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0886-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Temereva EN, Malakhov VV. Metamorphic remodeling of morphology and the body cavity in Phoronopsis harmeri (Lophotrochozoa, Phoronida): the evolution of the phoronid body plan and life cycle. BMC Evol Biol 2015; 15:229. [PMID: 26489660 PMCID: PMC4618516 DOI: 10.1186/s12862-015-0504-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/01/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Phoronids undergo a remarkable metamorphosis, in which some parts of the larval body are consumed by the juvenile and the body plan completely changes. According to the only previous hypothesis concerning the evolution of the phoronid body plan, a hypothetical ancestor of phoronids inhabited a U-shaped burrow in soft sediment, where it drew the anterior and posterior parts of the body together and eventually fused them. In the current study, we investigated the metamorphosis of Phoronopsis harmeri with light, electron, and laser confocal microscopy. RESULTS During metamorphosis, the larval hood is engulfed by the juvenile; the epidermis of the postroral ciliated band is squeezed from the tentacular epidermis and then engulfed; the larval telotroch undergoes cell death and disappears; and the juvenile body forms from the metasomal sack of the larva. The dorsal side of the larva becomes very short, whereas the ventral side becomes very long. The terminal portion of the juvenile body is the ampulla, which can repeatedly increase and decrease in diameter. This flexibility of the ampulla enables the juvenile to dig into the sediment. The large blastocoel of the larval collar gives rise to the lophophoral blood vessels of the juvenile. The dorsal blood vessel of the larva becomes the definitive median blood vessel. The juvenile inherits the larval protocoel, mesocoel, and metacoel. Late in metamorphosis, however, the protocoel loses its epithelial structure: the desmosomes between cells and the basal lamina under the cells disappear. This loss may reflect a reduction of the protocoel, which is a characteristic of some recent phoronids. CONCLUSIONS Based on our investigation of P. harmeri metamorphosis, we hypothesize that the phoronid ancestor was worm-like animal that possessed preoral, tentacular, and trunk coeloms. It lived on the soft sediment and collected food with its tentacles. When threatened, this worm-like ancestor buried itself in the soft sediment by means of the ventral protrusion into which the loop of the intestine and the blood vessels were drawn. We propose that this behavior gave rise to the body plan of all recent phoronids. The evolution of phoronid life cycle seems having more in common with"intercalation" than "terminal addition" theories.
Collapse
Affiliation(s)
- Elena N Temereva
- Department of Invertebrate Zoology, Biological Faculty, Moscow State University, Leninskie Gory 1-12, Moscow, 119234, Russian Federation.
| | - Vladimir V Malakhov
- Department of Invertebrate Zoology, Biological Faculty, Moscow State University, Leninskie Gory 1-12, Moscow, 119234, Russian Federation
| |
Collapse
|
33
|
Nielsen C. Evolution of deuterostomy - and origin of the chordates. Biol Rev Camb Philos Soc 2015; 92:316-325. [PMID: 26486096 DOI: 10.1111/brv.12229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 11/30/2022]
Abstract
The chordates are usually characterized as bilaterians showing deuterostomy, i.e. the mouth developing as a new opening between the archenteron and the ectoderm, serial gill pores/slits, and the complex of chorda and neural tube. Both numerous molecular studies and studies of morphology and embryology demonstrate that the neural tube must be considered homologous to the ventral nerve cord(s) of the protostomes, but the origin of the 'new' mouth of the deuterostomes has remained enigmatic. However, deuterostomy is known to occur in several protostomian groups, such as the chaetognaths and representatives of annelids, molluscs, arthropods and priapulans. This raises the question whether the deuterostomian mouth is in fact homologous with that of the protostomes, viz. the anterior opening of the ancestral blastopore divided through lateral blastopore fusion, i.e. amphistomy. A few studies of gene expression show identical expression patterns around mouth and anus in protostomes and deuterostomes. Closer studies of the embryology of ascidians and vertebrates show that the mouth/stomodaeum differentiates from the anterior edge of the neural plate. Together this indicates that the chordate mouth has moved to the anterior edge of the blastopore, so that the anterior loop of the ancestral circumblastoporal nerve cord, which is narrow in the protostomes, has become indistinguishable. In the vertebrates, the mouth has moved further around the anterior pole to the 'ventral' side. The conclusion must be that the chordate mouth (and that of the deuterostomes in general) is homologous to the protostomian mouth and that the latest common ancestor of protostomes and deuterostomes developed through amphistomy, as suggested by the trochaea theory.
Collapse
Affiliation(s)
- Claus Nielsen
- The Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| |
Collapse
|
34
|
Abstract
The apical organ of ciliated larvae of cnidarians and bilaterians is a true larval organ that disappears before or at metamorphosis. It appears to be sensory, probably involved in metamorphosis, but knowledge is scant. The ciliated protostome larvae show ganglia/nerve cords that are retained as the adult central nervous system (CNS). Two structures can be recognized, viz. a pair of cerebral ganglia, which form the major part of the adult brain, and a blastoporal (circumblastoporal) nerve cord, which becomes differentiated into a perioral loop, paired or secondarily fused ventral nerve cords and a small perianal loop. The anterior loop becomes part of the brain. This has been well documented through cell-lineage studies in a number of spiralians, and homologies with similar structures in the ecdysozoans are strongly indicated. The deuterostomes are generally difficult to interpret, and the nervous systems of echinoderms and enteropneusts appear completely enigmatic. The ontogeny of the chordate CNS can perhaps be interpreted as a variation of the ontogeny of the blastoporal nerve cord of the protostomes, and this is strongly supported by patterns of gene expression. The presence of 'deuterostomian' blastopore fates both in an annelid and in a mollusk, which are both placed in families with the 'normal' spiralian gastrulation type, and in the chaetognaths demonstrates that the chordate type of gastrulation could easily have evolved from the spiralian type. This indicates that the latest common ancestor of the deuterostomes was very similar to the latest common pelago-benthic ancestor of the protostomes as described by the trochaea theory, and that the neural tube of the chordates is morphologically ventral.
Collapse
Affiliation(s)
- Claus Nielsen
- The Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
35
|
Williams EA, Conzelmann M, Jékely G. Myoinhibitory peptide regulates feeding in the marine annelid Platynereis. Front Zool 2015; 12:1. [PMID: 25628752 PMCID: PMC4307165 DOI: 10.1186/s12983-014-0093-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022] Open
Abstract
Background During larval settlement and metamorphosis, marine invertebrates undergo changes in habitat, morphology, behavior and physiology. This change between life-cycle stages is often associated with a change in diet or a transition between a non-feeding and a feeding form. How larvae regulate changes in feeding during this life-cycle transition is not well understood. Neuropeptides are known to regulate several aspects of feeding, such as food search, ingestion and digestion. The marine annelid Platynereis dumerilii has a complex life cycle with a pelagic non-feeding larval stage and a benthic feeding postlarval stage, linked by the process of settlement. The conserved neuropeptide myoinhibitory peptide (MIP) is a key regulator of larval settlement behavior in Platynereis. Whether MIP also regulates the initiation of feeding, another aspect of the pelagic-to-benthic transition in Platynereis, is currently unknown. Results Here, we explore the contribution of MIP to the regulation of feeding behavior in settled Platynereis postlarvae. We find that in addition to expression in the brain, MIP is expressed in the gut of developing larvae in sensory neurons that densely innervate the hindgut, the foregut, and the midgut. Activating MIP signaling by synthetic neuropeptide addition causes increased gut peristalsis and more frequent pharynx extensions leading to increased food intake. Conversely, morpholino-mediated knockdown of MIP expression inhibits feeding. In the long-term, treatment of Platynereis postlarvae with synthetic MIP increases growth rate and results in earlier cephalic metamorphosis. Conclusions Our results show that MIP activates ingestion and gut peristalsis in Platynereis postlarvae. MIP is expressed in enteroendocrine cells of the digestive system suggesting that following larval settlement, feeding may be initiated by a direct sensory-neurosecretory mechanism. This is similar to the mechanism by which MIP induces larval settlement. The pleiotropic roles of MIP may thus have evolved by redeploying the same signaling mechanism in different aspects of a life-cycle transition. Electronic supplementary material The online version of this article (doi:10.1186/s12983-014-0093-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth A Williams
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen, 72076 Germany
| | - Markus Conzelmann
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen, 72076 Germany
| | - Gáspár Jékely
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen, 72076 Germany
| |
Collapse
|
36
|
Temereva EN, Tsitrin EB. Organization and metamorphic remodeling of the nervous system in juveniles of Phoronopsis harmeri (Phoronida): insights into evolution of the bilaterian nervous system. Front Zool 2014; 11:35. [PMID: 24847374 PMCID: PMC4026883 DOI: 10.1186/1742-9994-11-35] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metamorphic remodeling of the nervous system and its organization in juvenile may shed light on early steps of evolution and can be used as an important criterion for establishing the relationships among large groups of animals. The protostomian affiliation of phoronids does not still have certain morphological and embryological proofs. In addition, the relationship of phoronids and other former "lophophorates" is still uncertain. The resolving of these conflicts requires detailed information from poorly investigated members of phoronids, such as Phoronopsis harmeri. RESULTS During metamorphosis, the juvenile consumes the nerve elements of the larval hood. Two dorsolateral groups of larval perikarya remain and give rise to the dorsal ganglion, which appears as the "commissural brain". The juvenile inherits the main and minor tentacular nerve rings from the larva. Although the larval tentacles are directly inherited by the juvenile in P. harmeri, the ultrastructure and location of the definitive tentacular neurite bundles change greatly. Innervation of the juvenile lophophore exhibits a regular alternation of the intertentacular and abfrontal neurite bundles. The giant nerve fiber appears at early stage of metamorphosis and passes from the right group of dorsolateral perikarya to the left side of the body. DISCUSSION THE METAMORPHIC REMODELING OF THE PHORONID NERVOUS SYSTEM OCCURS IN TWO DIFFERENT WAYS: with complete or incomplete destruction of organ systems. The morphology of the lophophore seems similar to those of the former members of "Lophophorata", but its innervation differs greatly. These findings support the separation of bryozoans from Lophophorata and establish a need for new data on the organization of the brachiopod nervous system. The nervous system of the phoronid juvenile is organized as an epidermal nerve plexus but exhibits a nerve center in the anterior portion of the body. The simultaneous presence of both the apical organ and anlage of the cerebral ganglion in phoronids at the larval stage, and the reduction of the apical organ during metamorphosis support the Trochea theory and allow to suggest the presence of two nervous centers in the last common ancestor of the Bilateria. Phoronids retained some plesiomorphic traits and can be regarded as one of the most primitive groups of lophotrochozoans.
Collapse
Affiliation(s)
- Elena N Temereva
- Department of Invertebrate Zoology, Biological faculty, Lomonosov State University, Leninskie Gory 1/12, Moscow 119992, Russian Federation
| | - Eugeni B Tsitrin
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow 117808, Russia
| |
Collapse
|
37
|
Temereva EN, Tsitrin EB. Development and organization of the larval nervous system in Phoronopsis harmeri: new insights into phoronid phylogeny. Front Zool 2014; 11:3. [PMID: 24418063 PMCID: PMC3924620 DOI: 10.1186/1742-9994-11-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The organization and development of the nervous system has traditionally been used as an important character for establishing the relationships among large groups of animals. According to this criterion, phoronids were initially regarded as deuterostomian but have more recently been regarded as protostomian. The resolving of this conflict requires detailed information from poorly investigated members of phoronids, such as Phoronopsis harmeri. RESULTS The serotonin-like immunoreactive part of the P. harmeri nervous system changes during larval development. These changes mostly concern the nervous system of the hood and correlate with the appearance of the median and two marginal neurite bundles, the frontal organ, and the sensory field. The apical organ has bilateral symmetry. The tentacular neurite bundle passes under the tentacles, contains several types of perikarya, and gives rise to intertentacular bundles, which branch in the tentacle base and penetrate into adjacent tentacles by two lateroabfrontal bundles. There are two groups of dorsolateral perikarya, which exhibit serotonin-like immunoreactivity, contact the tentacular neurite bundle, and are located near the youngest tentacles. Larvae have a minor nerve ring, which originates from the posterior marginal neurite bundle of the hood, passes above the tentacle base, and gives rise to the mediofrontal neurite bundle in each tentacle. Paired laterofrontal neurite bundles of tentacles form a continuous nerve tract that conducts to the postoral ciliated band. DISCUSSION The organization of the nervous system differs among the planktotrophic larvae of phoronid species. These differences may correlate with differences in phoronid biology. Data concerning the innervation of tentacles in different phoronid larvae are conflicting and require careful reinvestigation. The overall organization of the nervous system in phoronid larvae has more in common with the deuterostomian than with the protostomian nervous system. Phoronid larvae demonstrate some "deuterostome-like" features, which are, in fact, have to be ancestral bilaterian characters. Our new results and previous data indicate that phoronids have retained some plesiomorphic features, which were inherited from the last common ancestor of all Bilateria. It follows that phoronids should be extracted from the Trochozoan (=Spiralia) clade and placed at the base of the Lophotrochozoan stem.
Collapse
Affiliation(s)
- Elena N Temereva
- Department of Invertebrate Zoology, Biological faculty, Moscow State University, Moscow 119992, Russia.
| | | |
Collapse
|
38
|
Larval anatomy of the pterobranch Cephalodiscus gracilis supports secondarily derived sessility concordant with molecular phylogenies. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2013; 100:1187-91. [DOI: 10.1007/s00114-013-1117-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/31/2013] [Accepted: 11/03/2013] [Indexed: 10/25/2022]
|