1
|
Marchetti F, Distéfano AM, Cainzos M, Setzes N, Cascallares M, López GA, Zabaleta E, Carolina Pagnussat G. Cell death in bryophytes: emerging models to study core regulatory modules and conserved pathways. ANNALS OF BOTANY 2024; 134:367-384. [PMID: 38953500 PMCID: PMC11341678 DOI: 10.1093/aob/mcae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
This review summarizes recent progress in our current understanding of the mechanisms underlying the cell death pathways in bryophytes, focusing on conserved pathways and particularities in comparison to angiosperms. Regulated cell death (RCD) plays key roles during essential processes along the plant life cycle. It is part of specific developmental programmes and maintains homeostasis of the organism in response to unfavourable environments. Bryophytes could provide valuable models to study developmental RCD processes as well as those triggered by biotic and abiotic stresses. Some pathways analogous to those present in angiosperms occur in the gametophytic haploid generation of bryophytes, allowing direct genetic studies. In this review, we focus on such RCD programmes, identifying core conserved mechanisms and raising new key questions to analyse RCD from an evolutionary perspective.
Collapse
Affiliation(s)
- Fernanda Marchetti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Ayelén Mariana Distéfano
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Nicolás Setzes
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
2
|
Das S. Analysis of domain organization and functional signatures of trypanosomatid keIF4Gs. Mol Cell Biochem 2022; 477:2415-2431. [PMID: 35585276 DOI: 10.1007/s11010-022-04464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Translation initiation is the first step in three essential processes leading to protein synthesis. It is carried out by proteins called translation initiation factors and ribosomes on the mRNA. One of the critical translation initiation factors in eukaryotes is eIF4G which is a scaffold protein that helps assemble translation initiation complexes that carry out translation initiation which ultimately leads to polypeptide synthesis. Trypanosomatids are a large family of kinetoplastids, some of which are protozoan parasites that cause diseases in humans through transmission by vectors. While the protein translation mechanisms in eukaryotes and prokaryotes are well understood, the protein translation factors and mechanisms in trypanosomatids are poorly understood necessitating further studies. Unlike other eukaryotes, trypanosomatids contain five eIF4G orthologues with diversity in length and sequences. Here, I have used bioinformatics tools to look at trypanosomatid keIF4G orthologue sequences and report that there are similarities and considerable differences in their domains/motifs organization and signature amino acid sequences that are required for different functions as compared to human eIF4G. My analysis suggests that there is likely to be considerable diversity and complexity in trypanosomatid keIF4G functions as compared to other eukaryotes.
Collapse
Affiliation(s)
- Supratik Das
- Infection and Immunology, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India.
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box #04, Faridabad, Haryana, 121001, India.
| |
Collapse
|
3
|
Pacheco JM, Canal MV, Pereyra CM, Welchen E, Martínez-Noël GMA, Estevez JM. The tip of the iceberg: emerging roles of TORC1, and its regulatory functions in plant cells. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4085-4101. [PMID: 33462577 DOI: 10.1093/jxb/eraa603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Target of Rapamycin (TOR) is an evolutionarily conserved protein kinase that plays a central role in coordinating cell growth with light availability, the diurnal cycle, energy availability, and hormonal pathways. TOR Complex 1 (TORC1) controls cell proliferation, growth, metabolism, and defense in plants. Sugar availability is the main signal for activation of TOR in plants, as it also is in mammals and yeast. Specific regulators of the TOR kinase pathway in plants are inorganic compounds in the form of major nutrients in the soils, and light inputs via their impact on autotrophic metabolism. The lack of TOR is embryo-lethal in plants, whilst dysregulation of TOR signaling causes major alterations in growth and development. TOR exerts control as a regulator of protein translation via the action of proteins such as S6K, RPS6, and TAP46. Phytohormones are central players in the downstream systemic physiological TOR effects. TOR has recently been attributed to have roles in the control of DNA methylation, in the abundance of mRNA splicing variants, and in the variety of regulatory lncRNAs and miRNAs. In this review, we summarize recent discoveries in the plant TOR signaling pathway in the context of our current knowledge of mammalian and yeast cells, and highlight the most important gaps in our understanding of plants that need to be addressed in the future.
Collapse
Affiliation(s)
| | - María Victoria Canal
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas,, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Cintia M Pereyra
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes, Mar Del Plata, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas,, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Giselle M A Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes, Mar Del Plata, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires CP, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida (FCsV), Universidad Andres Bello, Santiago, Chile and Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
4
|
Zhao Y, Tang X, Lv M, Liu Q, Li J, Zhang B, Li L, Zhang X, Zhao Y. The molecular response mechanisms of a diatom Thalassiosira pseudonana to the toxicity of BDE-47 based on whole transcriptome analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105669. [PMID: 33142158 DOI: 10.1016/j.aquatox.2020.105669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are ubiquitously distributed persistent organic pollutants (POPs) in marine environments. Phytoplankton are the entrance of PBDEs entering to biotic environments from abiotic environments, while the responding mechanisms of phytoplankton to PBDEs have not been full established. Therefore, we chose the model diatom Thalassiosira pseudonana in this study, by integrating whole transcriptome analysis with physiological-biochemical data, to reveal the molecular responding mechanisms of T. pseudonana to the toxicity of BDE-47. Our results indicated the changes of genes expressions correlated to the physiological-biochemical changes, and there were multiple molecular mechanisms of T. pseudonana responding to the toxicity of BDE-47: Gene expressions evidence explained the suppression of light reaction and proved the occurrence of cellular oxidative stress; In the meanwhile, up-regulations of genes in pathways involving carbon metabolisms happened, including the Calvin cycle, glycolysis, TCA cycle, fatty acid synthesis, and triacylglycerol synthesis; Lastly, DNA damage was found and three outcome including DNA repair, cell cycle arrest and programmed cell death (PCD) happened, which could finally inhibit the cell division and population growth of T. pseudonana. This study presented the most complete molecular responding mechanisms of phytoplankton cells to PBDEs, and provided valuable information of various PBDEs-sensitive genes with multiple functions for further research involving organic pollutants and phytoplankton.
Collapse
Affiliation(s)
- Yirong Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Xuexi Tang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Mengchen Lv
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Qian Liu
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Jun Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Bihan Zhang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Luying Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Xinxin Zhang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
5
|
Pernis M, Skultety L, Shevchenko V, Klubicova K, Rashydov N, Danchenko M. Soybean recovery from stress imposed by multigenerational growth in contaminated Chernobyl environment. JOURNAL OF PLANT PHYSIOLOGY 2020; 251:153219. [PMID: 32563765 DOI: 10.1016/j.jplph.2020.153219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 05/20/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Ionizing radiation is a genotoxic anthropogenic stressor. It can cause heritable changes in the plant genome, which can be either adaptive or detrimental. There is still considerable uncertainty about the effects of chronic low-intensity doses since earlier studies reported somewhat contradictory conclusions. Our project focused on the recovery from the multiyear chronic ionizing radiation stress. Soybean (Glycine max) was grown in field plots located at the Chernobyl exclusion zone and transferred to the clean ground in the subsequent generation. We profiled proteome of mature seeds by two-dimensional gel electrophoresis. Overall, 15 differentially abundant protein spots were identified in the field comparison and 11 in the recovery generation, primarily belonging to storage proteins, disease/defense, and metabolism categories. Data suggested that during multigenerational growth in a contaminated environment, detrimental heritable changes were accumulated. Chlorophyll fluorescence parameters were measured on the late vegetative state, pointing to partial recovery of photosynthesis from stress imposed by contaminating radionuclides. A plausible explanation for the observed phenomena is insufficient provisioning of seeds by lower quality resources, causing a persistent effect in the offspring generation. Additionally, we hypothesized that immunity against phytopathogens was compromised in the contaminated field, but perhaps even primed in the clean ground, yet this idea requires direct functional validation in future experiments. Despite showing clear signs of physiological recovery, one season was not enough to normalize biochemical processes. Overall, our data contribute to the more informed agricultural radioprotection.
Collapse
Affiliation(s)
- Miroslav Pernis
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Akademicka 2, 95007 Nitra, Slovakia.
| | - Ludovit Skultety
- Institute of Virology, Biomedical Research Center, Dubravska 9, 84505 Bratislava, Slovakia; Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.
| | - Viktor Shevchenko
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, Vasylkivska 31/17, 03022 Kyiv, Ukraine.
| | - Katarina Klubicova
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Akademicka 2, 95007 Nitra, Slovakia.
| | - Namik Rashydov
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Akademika Zabolotnoho 148, 03143 Kyiv, Ukraine.
| | - Maksym Danchenko
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Akademicka 2, 95007 Nitra, Slovakia; Institute of Virology, Biomedical Research Center, Dubravska 9, 84505 Bratislava, Slovakia.
| |
Collapse
|
6
|
Wang H, Chen F, Mi T, Liu Q, Yu Z, Zhen Y. Responses of Marine Diatom Skeletonema marinoi to Nutrient Deficiency: Programmed Cell Death. Appl Environ Microbiol 2020; 86:e02460-19. [PMID: 31757826 PMCID: PMC6974647 DOI: 10.1128/aem.02460-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/15/2019] [Indexed: 11/20/2022] Open
Abstract
Diatoms are important phytoplankton and contribute greatly to the primary productivity of marine ecosystems. Despite the ecological significance of diatoms and the importance of programmed cell death (PCD) in the fluctuation of diatom populations, little is known about the molecular mechanisms of PCD triggered by different nutrient stresses. Here we describe the physiological, morphological, biochemical, and molecular changes in response to low levels of nutrients in the ubiquitous diatom Skeletonema marinoi The levels of gene expression involved in oxidation resistance and PCD strongly increased upon nitrogen (N) or phosphorus (P) starvation. The enzymatic activity of caspase 3-like protein also increased. Differences in mRNA levels and protein activities were observed between the low-N and low-P treatments, suggesting that PCD could have a differential response to different nutrient stresses. When cultures were replete with N or P, the growth inhibition stopped. Meanwhile, the enzymatic activity of caspase 3-like protein and the number of cells with damaged membranes decreased. These results suggest that PCD is an important cell fate decision mechanism in the marine diatom S. marinoi Our results provide important insight into how diatoms adjust phenotypic and genotypic features of their cell-regulated death programs when stressed by nutrient limitations. Overall, this study could allow us to better understand the molecular mechanism behind the formation and termination of diatom blooms in the marine environment.IMPORTANCE Our study showed how the ubiquitous diatom S. marinoi responded to different nutrient limitations with PCD in terms of physiological, morphological, biochemical, and molecular characteristics. Some PCD-related genes (PDCD4, GOX, and HSP90) induced by N deficiency were relatively upregulated compared to those induced by P deficiency. In contrast, the expression of the TSG101 gene in S. marinoi showed a clear and constant increase during P limitation compared to N limitation. These findings suggest that PCD is a complex mechanism involving several different proteins. The systematic mRNA level investigations provide new insight into understanding the oxidative stress- and cell death-related functional genes of diatoms involved in the response to nutrient fluctuations (N or P stress) in the marine environment.
Collapse
Affiliation(s)
- Hualong Wang
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Tiezhu Mi
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Qian Liu
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Marine Chemical Theory and Technology, Ministry of Education, Qingdao, China
| | - Yu Zhen
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
7
|
Singh P, Singh AP, Tripathi SK, Kumar V, Sane AP. Petal abscission in roses is associated with the activation of a truncated version of the animal PDCD4 homologue, RbPCD1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110242. [PMID: 31521226 DOI: 10.1016/j.plantsci.2019.110242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Abscission is a developmental process that leads to shedding of organs not needed by the plant. Apart from wall hydrolysis, the cells of the abscission zone (AZ) are also believed to undergo programmed cell death (PCD). We show that ethylene-induced petal abscission in Rosa bourboniana is accompanied with the activation of RbPCD1 (PROGRAMMED CELL DEATH LIKE 1) encoding a protein of 78 amino acids. Its expression increases during natural and ethylene-induced petal abscission. Its transcription in most tissues is up-regulated by ethylene. RbPCD1 shows similarity to the N-terminal domain of animal PDCD4 (PROGRAMMED CELL DEATH PROTEIN 4) proteins that are activated during apoptosis and function as transcriptional and translational repressors. RbPCD1 resides in the nucleus and cytoplasm and acts as a transcriptional repressor. Constitutive expression of RbPCD1 in transgenic Arabidopsis is seedling lethal. Heat-induced expression of RbPCD1 under the soybean heat-shock promoter affects leaf function, inflorescence development, silique formation, seed yield and reduces survival. Nuclear localization of RbPCD1 is necessary for manifestation of its effects. RbPCD1 may be necessary to mediate some of the ethylene-induced changes during abscission and senescence in specific tissues.
Collapse
Affiliation(s)
- Priya Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amar Pal Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
| | - Siddharth Kaushal Tripathi
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
| | - Vinod Kumar
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Zhang H, Liu J, He Y, Xie Z, Zhang S, Zhang Y, Lin L, Liu S, Wang D. Quantitative proteomics reveals the key molecular events occurring at different cell cycle phases of the in situ blooming dinoflagellate cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:62-71. [PMID: 31029901 DOI: 10.1016/j.scitotenv.2019.04.216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/01/2019] [Accepted: 04/13/2019] [Indexed: 05/26/2023]
Abstract
Dinoflagellate blooms are the results of rapid cell proliferation governed by cell cycle, a highly-ordered series of events that culminates in cell division. However, little is known about cell cycle progression of the in situ bloom cells. Here, we compared proteomes of the in situ blooming cells of a dinoflagellate Prorocentrum donghaiense collected at different cell cycle phases. The blooming P. donghaiense cells completed a cell cycle within 24 h with a high synchronization rate of 82.7%. Proteins associated with photosynthesis, porphyrin and chlorophyll synthesis, carbon, nitrogen and amino acid metabolisms exhibited high expressions at the G1 phase; DNA replication and mismatch repair related proteins were more abundant at the S phase; while protein synthesis and oxidative phosphorylation were highly enriched at the G2/M phase. Cell cycle proteins presented similar periodic diel patterns to other eukaryotic cells, and higher expressions of proliferating cell nuclear antigen and cyclin dependent kinase 2 at the S phase ensured the smooth S-G2/M transition. Strikingly, four histones were first identified in P. donghaiense and highly expressed at the G2/M phase, indicating their potential roles in regulating cell cycle. This study presents the first quantitative survey, to our knowledge, of proteome changes at different cell cycle phases of the in situ blooming cells in natural environment and provides insights into cell cycle regulation of the blooming dinoflagellate cells.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China
| | - Jiuling Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China; Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yanbin He
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Zhangxian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China
| | - Shufei Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China
| | - Siqi Liu
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China.
| |
Collapse
|
9
|
Matsuhashi S, Manirujjaman M, Hamajima H, Ozaki I. Control Mechanisms of the Tumor Suppressor PDCD4: Expression and Functions. Int J Mol Sci 2019; 20:ijms20092304. [PMID: 31075975 PMCID: PMC6539695 DOI: 10.3390/ijms20092304] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
PDCD4 is a novel tumor suppressor to show multi-functions inhibiting cell growth, tumor invasion, metastasis, and inducing apoptosis. PDCD4 protein binds to the translation initiation factor eIF4A, some transcription factors, and many other factors and modulates the function of the binding partners. PDCD4 downregulation stimulates and PDCD4 upregulation inhibits the TPA-induced transformation of cells. However, PDCD4 gene mutations have not been found in tumor cells but gene expression was post transcriptionally downregulated by micro environmental factors such as growth factors and interleukins. In this review, we focus on the suppression mechanisms of PDCD4 protein that is induced by the tumor promotors EGF and TPA, and in the inflammatory conditions. PDCD4-protein is phosphorylated at 2 serines in the SCFβTRCP ubiquitin ligase binding sequences via EGF and/or TPA induced signaling pathway, ubiquitinated, by the ubiquitin ligase and degraded in the proteasome system. The PDCD4 protein synthesis is inhibited by microRNAs including miR21.
Collapse
Affiliation(s)
- Sachiko Matsuhashi
- Department of Internal Medicine, Saga Medical School, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | - M Manirujjaman
- Department of Internal Medicine, Saga Medical School, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | - Hiroshi Hamajima
- Saga Food & Cosmetics Laboratory, Division of Food Manufacturing Industry Promotion, SAGA Regional Industry Support Center, 114 Yaemizo, Nabesima-Machi, Saga 849-0932, Japan.
| | - Iwata Ozaki
- Health Administration Center, Saga Medical School, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| |
Collapse
|
10
|
Dangwal M, Das S. Identification and Analysis of OVATE Family Members from Genome of the Early Land Plants Provide Insights into Evolutionary History of OFP Family and Function. J Mol Evol 2018; 86:511-530. [PMID: 30206666 DOI: 10.1007/s00239-018-9863-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/05/2018] [Indexed: 01/11/2023]
Abstract
Mosses, liverworts, hornworts and lycophytes represent transition stages between the aquatic to terrestrial/land plants. Several morphological and adaptive novelties driven by genomic components including emergence and expansion of new or existing gene families have played a critical role during and after the transition, and contributed towards successful colonization of terrestrial ecosystems. It is crucial to decipher the evolutionary transitions and natural selection on the gene structure and function to understand the emergence of phenotypic and adaptive diversity. Plants at the "transition zone", between aquatic and terrestrial ecosystem, are also the most vulnerable because of climate change and may contain clues for successful mitigation of the challenges of climate change. Identification and comparative analyses of such genetic elements and gene families are few in mosses, liverworts, hornworts and lycophytes. Ovate family proteins (OFPs) are plant-specific transcriptional repressors and are acknowledged for their roles in important growth and developmental processes in land plants, and information about the functional aspects of OFPs in early land plants is fragmentary. As a first step towards addressing this gap, a comprehensive in silico analysis was carried out utilizing publicly available genome sequences of Marchantia polymorpha (Mp), Physcomitrella patens (Pp), Selaginella moellendorffii (Sm) and Sphagnum fallax (Sf). Our analysis led to the identification of 4 MpOFPs, 19 PpOFPs, 6 SmOFPs and 3 SfOFPs. Cross-genera analysis revealed a drastic change in the structure and physiochemical properties in OFPs suggesting functional diversification and genomic plasticity during the evolutionary course. Knowledge gained from this comparative analysis will form the framework towards deciphering and dissection of their developmental and adaptive role/s in early land plants and could provide insights into evolutionary strategies adapted by land plants.
Collapse
Affiliation(s)
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
11
|
Raven JA. Evolution and palaeophysiology of the vascular system and other means of long-distance transport. Philos Trans R Soc Lond B Biol Sci 2018; 373:20160497. [PMID: 29254962 PMCID: PMC5745333 DOI: 10.1098/rstb.2016.0497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 12/13/2022] Open
Abstract
Photolithotrophic growth on land using atmospheric CO2 inevitably involves H2O vapour loss. Embryophytes greater than or equal to 100 mm tall are homoiohydric and endohydric with mass flow of aqueous solution through the xylem in tracheophytes. Structural details in Rhynie sporophytes enable modelling of the hydraulics of H2O supply to the transpiring surface, and the potential for gas exchange with the Devonian atmosphere. Xylem carrying H2O under tension involves programmed cell death, rigid cell walls and embolism repair; fossils provide little evidence on these functions other than the presence of lignin. The phenylalanine ammonia lyase essential for lignin synthesis came from horizontal gene transfer. Rhynie plants lack endodermes, limiting regulation of the supply of soil nutrients to shoots. The transfer of organic solutes from photosynthetic sites to growing and storage tissues involves mass flow through phloem in extant tracheophytes. Rhynie plants show little evidence of phloem; possible alternatives for transport of organic solutes are discussed. Extant examples of the arbuscular mycorrhizas found in Rhynie plants exchange soil-derived nutrients (especially P) for plant-derived organic matter, involving bidirectional mass flow along the hyphae. The aquatic cyanobacteria and the charalean Palaeonitella at Rhynie also have long-distance (relative to the size of the organism) transport.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
12
|
Lee DH, Park SJ, Ahn CS, Pai HS. MRF Family Genes Are Involved in Translation Control, Especially under Energy-Deficient Conditions, and Their Expression and Functions Are Modulated by the TOR Signaling Pathway. THE PLANT CELL 2017; 29:2895-2920. [PMID: 29084871 PMCID: PMC5728134 DOI: 10.1105/tpc.17.00563] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/02/2017] [Accepted: 10/27/2017] [Indexed: 05/20/2023]
Abstract
Dynamic control of protein translation in response to the environment is essential for the survival of plant cells. Target of rapamycin (TOR) coordinates protein synthesis with cellular energy/nutrient availability through transcriptional modulation and phosphorylation of the translation machinery. However, mechanisms of TOR-mediated translation control are poorly understood in plants. Here, we report that Arabidopsis thaliana MRF (MA3 DOMAIN-CONTAINING TRANSLATION REGULATORY FACTOR) family genes encode translation regulatory factors under TOR control, and their functions are particularly important in energy-deficient conditions. Four MRF family genes (MRF1-MRF4) are transcriptionally induced by dark and starvation (DS). Silencing of multiple MRFs increases susceptibility to DS and treatment with a TOR inhibitor, while MRF1 overexpression decreases susceptibility. MRF proteins interact with eIF4A and cofractionate with ribosomes. MRF silencing decreases translation activity, while MRF1 overexpression increases it, accompanied by altered ribosome patterns, particularly in DS. Furthermore, MRF deficiency in DS causes altered distribution of mRNAs in sucrose gradient fractions and accelerates rRNA degradation. MRF1 is phosphorylated in vivo and phosphorylated by S6 kinases in vitro. MRF expression and MRF1 ribosome association and phosphorylation are modulated by cellular energy status and TOR activity. We discuss possible mechanisms of the function of MRF family proteins under normal and energy-deficient conditions and their functional link with the TOR pathway.
Collapse
Affiliation(s)
- Du-Hwa Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Seung Jun Park
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Chang Sook Ahn
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
13
|
Yin X, Komatsu S. Comprehensive analysis of response and tolerant mechanisms in early-stage soybean at initial-flooding stress. J Proteomics 2017; 169:225-232. [PMID: 28137666 DOI: 10.1016/j.jprot.2017.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
Soybean is one of the most cultivated crops in the world; however, it is very sensitive to flooding stress, which markedly reduces its growth and yield. Morphological and biochemical changes such as an increase of fresh weight and a decrease of ATP content happen in early-stage soybean at initial-flooding stress, indicating that soybean responses to flooding stress are keys for its survival and seedling growth. Phosphoproteomics and nuclear proteomics are useful tools to detect protein-phosphorylation status and to identify transcriptional factors. In the review, the effect of flooding on soybean response to initial flooding stress is discussed based on recent results of proteomic, phosphoproteomic, nuclear proteomic, and nuclear phosphoproteomic studies. In addition, soybean survival under flooding stress, which is defined as tolerance mechanism, is discussed with the results of comprehensive analysis in flooding-tolerant mutant line and abscisic acid-treated soybean. BIOLOGICAL SIGNIFICANCE Soybean is one of the most cultivated crops in the world; however, it is very sensitive to flooding stress, especially soybean responses to initial flooding stress is key for its survival and seedling growth. Recently, proteomic techniques are applied to investigate the response and tolerant mechanisms of soybean at initial flooding condition. In this review, the progress in proteomic, phosphoproteomic, nuclear proteomic, and nuclear phosphoproteomic studies about the initial-flooding response mechanism in early-stage soybean is presented. In addition, the tolerant mechanism in soybean is discussed with the results of comprehensive analysis in flooding-tolerant mutant line and abscisic acid-treated soybean. Through this review, the key proteins and genes involved in initial flooding response and tolerance at early stage soybean are summarized and they contribute greatly to uncover response and tolerance mechanism at early stage under stressful environmental conditions in soybean.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
14
|
Ubaidillah M, Safitri FA, Jo JH, Lee SK, Hussain A, Mun BG, Chung IK, Yun BW, Kim KM. Roles of plant hormones and anti-apoptosis genes during drought stress in rice (Oryza sativa L.). 3 Biotech 2016; 6:247. [PMID: 28330319 PMCID: PMC5114211 DOI: 10.1007/s13205-016-0564-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
We previously identified the rice (Oryza sativa) senescence-associated gene OsSAP which encodes a highly conserved protein involved in anti-apoptotic activity. This novel Bax suppressor-related gene regulates tolerance to multiple stresses in yeast. Here, we show the effects of drought stress on leaf and root tissues of plants over-expressing OsSAP in relation to the levels of phytohormones, abscisic acid (ABA), jasmonic acid (JA), indole-3-carboxylic acid (ICA), gibberellic acid (GA3), and zeatin. Results showed that rice plants over-expressing SAP were tolerant to drought stress compared to wild type and the plants over-expressing AtBI-1, which is a homolog of the human Bax inhibitor-1 in Arabidopsis. ABA and JA levels in OsSAP and AtBI-1 transgenic plants consistently increased up to at least 3 days after drought treatment, whereas lower GA3 levels were recorded during early drought period. Comparison between control and transgenic plants overexpressing anti-apoptosis genes OsSAP and AtBI-1 resulted in different patterns of hormone levels, indicating that these genes are involved in the plant responses to drought stress and present an opportunity for further study on drought stress tolerance in rice and other plant species.
Collapse
Affiliation(s)
- Mohammad Ubaidillah
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, 41566, Korea
| | - Fika Ayu Safitri
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, 41566, Korea
| | - Jun-Hyeon Jo
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, Korea
| | - Sang-Kyu Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, Korea
| | - Adil Hussain
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, 41566, Korea
- Department of Agriculture, Abdul Wali Khan University, Mardan, Pakistan
| | - Bong-Gyu Mun
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, 41566, Korea
| | - Il Kyung Chung
- Department of Biotechnology, Catholic University of Daegu, Gyeongsan-Si, Gyeongbuk, 38430, Korea
| | - Byung-Wook Yun
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, 41566, Korea.
| | - Kyung-Min Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
15
|
Insights into possible cell-death markers in the diatom Skeletonema marinoi in response to senescence and silica starvation. Mar Genomics 2015; 24 Pt 1:81-8. [DOI: 10.1016/j.margen.2015.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/18/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
|
16
|
Baraldi E, Coller E, Zoli L, Cestaro A, Tosatto SCE, Zambelli B. Unfoldome variation upon plant-pathogen interactions: strawberry infection by Colletotrichum acutatum. PLANT MOLECULAR BIOLOGY 2015; 89:49-65. [PMID: 26245354 DOI: 10.1007/s11103-015-0353-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/26/2015] [Indexed: 06/04/2023]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack secondary and/or tertiary structure under physiological conditions. These proteins are very abundant in eukaryotic proteomes and play crucial roles in all molecular mechanisms underlying the response to environmental challenges. In plants, different IDPs involved in stress response have been identified and characterized. Nevertheless, a comprehensive evaluation of protein disorder in plant proteomes under abiotic or biotic stresses is not available so far. In the present work the transcriptome dataset of strawberry (Fragaria X ananassa) fruits interacting with the fungal pathogen Colletotrichum acutatum was actualized onto the woodland strawberry (Fragaria vesca) genome. The obtained cDNA sequences were translated into protein sequences, which were subsequently subjected to disorder analysis. The results, providing the first estimation of disorder abundance associated to plant infection, showed that the proteome activated in the strawberry red fruit during the active fungal propagation is remarkably depleted in disorder. On the other hand, in the resistant white fruit, no significant disorder reduction is observed in the proteins expressed in response to fungal infection. Four representative proteins, FvSMP, FvPRKRIP, FvPCD-4 and FvFAM32A-like, predicted as mainly disordered and never experimentally characterized before, were isolated, and the absence of structure was validated at the secondary and tertiary level using circular dichroism and differential scanning fluorimetry. Their quaternary structure was also established using light scattering. The results are discussed considering the role of protein disorder in plant defense.
Collapse
Affiliation(s)
- Elena Baraldi
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Emanuela Coller
- Research and Innovation Centre, Foundation Edmund Mach (FEM), San Michele all' Adige, Trento, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Lisa Zoli
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Cestaro
- Research and Innovation Centre, Foundation Edmund Mach (FEM), San Michele all' Adige, Trento, Italy
| | | | - Barbara Zambelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| |
Collapse
|
17
|
Zhang Y, Cheng Y, Guo J, Yang E, Liu C, Zheng X, Deng K, Zhou J. Comparative transcriptome analysis to reveal genes involved in wheat hybrid necrosis. Int J Mol Sci 2014; 15:23332-44. [PMID: 25522166 PMCID: PMC4284769 DOI: 10.3390/ijms151223332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 01/01/2023] Open
Abstract
Wheat hybrid necrosis is an interesting genetic phenomenon that is found frequently and results in gradual death or loss of productivity of wheat. However, the molecular basis and mechanisms of this genetic phenomenon are still not well understood. In this study, the transcriptomes of wheat hybrid necrosis F1 and its parents (Neimai 8 and II469) were investigated using digital gene expression (DGE). A total of 1300 differentially expressed genes were identified, indicating that the response to hybrid necrosis in wheat is complicated. The assignments of the annotated genes based on Gene Ontology (GO) revealed that most of the up-regulated genes belong to “universal stress related”, “DNA/RNA binding”, “protein degradation” functional groups, while the down-regulated genes belong to “carbohydrate metabolism” and “translation regulation” functional groups. These findings suggest that these pathways were affected by hybrid necrosis. Our results provide preliminarily new insight into the underlying molecular mechanisms of hybrid necrosis and will help to identify important candidate genes involved in wheat hybrid necrosis.
Collapse
Affiliation(s)
- Yong Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Yan Cheng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jiahui Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan 250100, China.
| | - Xuelian Zheng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Kejun Deng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jianping Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
18
|
Yin X, Sakata K, Komatsu S. Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress. J Proteome Res 2014; 13:5618-34. [PMID: 25316100 DOI: 10.1021/pr500621c] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Flooding has severe negative effects on soybean growth. To explore the flooding-responsive mechanisms in early-stage soybean, a phosphoproteomic approach was used. Two-day-old soybean plants were treated without or with flooding for 3, 6, 12, and 24 h, and root tip proteins were then extracted and analyzed at each time point. After 3 h of flooding exposure, the fresh weight of soybeans increased, whereas the ATP content of soybean root tips decreased. Using a gel-free proteomic technique, a total of 114 phosphoproteins were identified in the root tip samples, and 34 of the phosphoproteins were significantly changed with respect to phosphorylation status after 3 h of flooding stress. Among these phosphoproteins, eukaryotic translation initiation factors were dephosphorylated, whereas several protein synthesis-related proteins were phosphorylated. The mRNA expression levels of sucrose phosphate synthase 1F and eukaryotic translation initiation factor 4 G were down-regulated, whereas UDP-glucose 6-dehydrogenase mRNA expression was up-regulated during growth but down-regulated under flooding stress. Furthermore, bioinformatic protein interaction analysis of flooding-responsive proteins based on temporal phosphorylation patterns indicated that eukaryotic translation initiation factor 4 G was located in the center of the network during flooding. Soybean eukaryotic translation initiation factor 4 G has homology to programmed cell death 4 protein and is implicated in ethylene signaling. The weight of soybeans was increased with treatment by an ethylene-releasing agent under flooding condition, but it was decreased when plants were exposed to an ethylene receptor antagonist. These results suggest that the ethylene signaling pathway plays an important role, via the protein phosphorylation, in mechanisms of plant tolerance to the initial stages of flooding stress in soybean root tips.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
| | | | | |
Collapse
|