1
|
Pereira-Moura L, Viana CG, Juen L, Couceiro SRM. Dark diversity of Odonata in Amazonian streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176556. [PMID: 39341233 DOI: 10.1016/j.scitotenv.2024.176556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
The biological diversity of a region may not be fully sampled due to the low abundance or rarity of species, or the absence of species determined by their niche specificity. Investigating these species is essential for understanding the unrealized ecological potential in different habitats, identifying gaps in local and regional communities, and gaining a better understanding of the impacts of environmental changes. Therefore, to expand knowledge about the diversity of Odonata in Eastern Amazonia considering the absent species, we tested the hypotheses that: 1) Environmental variables will influence dark diversity, with greater explanation by canopy cover where sites with lower canopy cover will have higher dark diversity values, and; 2) Functional traits associated with better species dispersal will be correlated with low dark diversity of Odonata, such as larger and wider wings for example. For this, adult Odonata specimens were sampled, while structural habitat characteristics and physical and chemical water variables were measured in 128 first- to third-order streams in the Eastern Amazon. Morphological and behavioral data were recorded for each specimen. Generalized linear models were applied to predict the effects of habitat structural characteristics and physical and chemical water variables on the dark diversity of Odonata. Additionally, we assessed which functional traits contribute most to the variation of dark diversity within these communities. Habitat structural features and physical and chemical water variables had no effect on dark diversity. Morphological traits, such as body conformation, with species having narrower wings, longer hind wings, narrower thoraxes, and shorter abdomens, comprised most of the dark diversity. The dispersal limitations of some Odonata species strongly suggest the role of space and time in nature planning and management.
Collapse
Affiliation(s)
- Lucas Pereira-Moura
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - BioNorte, Universidade Federal do Oeste do Pará-UFOPA, Campus Tapajós, Vera Paz, sn, block 11, sala 03, Salé, Santarém, Pará, Brasil; Laboratorio de Ecologia e Taxonomia de Invertebrados Aquaticos-LETIA, Instituto de Ciências e Technologia das Águas, Universidade Federal do Oeste do Pará-UFOPA, Campus Tapajós, Vera Paz, sn, block 11, sala 03, Salé, Santarém, Pará, Brasil.
| | - Carolina Gomes Viana
- Universidade Federal do Oeste do Pará-UFOPA, Campus Tapajós, Vera Paz, sn, block 11, sala 03, Salé, Santarém, Pará, Brasil
| | - Leandro Juen
- Laboratório de Ecologia e Conservação-LABECO, Instituto de Ciências Biológicas, Universidade Federal do Pará-UFPA, Rua Antônio Côrrea, 1, Belém, Pará, Brasil
| | - Sheyla Regina Marques Couceiro
- Laboratorio de Ecologia e Taxonomia de Invertebrados Aquaticos-LETIA, Instituto de Ciências e Technologia das Águas, Universidade Federal do Oeste do Pará-UFOPA, Campus Tapajós, Vera Paz, sn, block 11, sala 03, Salé, Santarém, Pará, Brasil
| |
Collapse
|
2
|
Fabian J, Siwanowicz I, Uhrhan M, Maeda M, Bomphrey RJ, Lin HT. Systematic characterization of wing mechanosensors that monitor airflow and wing deformations. iScience 2022; 25:104150. [PMID: 35465360 PMCID: PMC9018384 DOI: 10.1016/j.isci.2022.104150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Animal wings deform during flight in ways that can enhance lift, facilitate flight control, and mitigate damage. Monitoring the structural and aerodynamic state of the wing is challenging because deformations are passive, and the flow fields are unsteady; it requires distributed mechanosensors that respond to local airflow and strain on the wing. Without a complete map of the sensor arrays, it is impossible to model control strategies underpinned by them. Here, we present the first systematic characterization of mechanosensors on the dragonfly’s wings: morphology, distribution, and wiring. By combining a cross-species survey of sensor distribution with quantitative neuroanatomy and a high-fidelity finite element analysis, we show that the mechanosensors are well placed to perceive features of the wing dynamics relevant to flight. This work describes the wing sensory apparatus in its entirety and advances our understanding of the sensorimotor loop that facilitates exquisite flight control in animals with highly deformable wings. Dragonfly wings are innervated by an extensive collection of sensory neurons Mechanosensors are spread across the whole span of the wing with consistent patterns The axons of wing sensory neurons are scaled to compensate for transmission latencies Anatomically accurate models reveal wing strain fields that inform sensor distribution
Collapse
Affiliation(s)
- Joseph Fabian
- Imperial College London, London, SW7 2AZ, UK.,The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | | | | | | | - Huai-Ti Lin
- Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
3
|
Bäumler F, Büsse S. Resilin in the flight apparatus of Odonata (Insecta)-cap tendons and their biomechanical importance for flight. Biol Lett 2019; 15:20190127. [PMID: 31064308 PMCID: PMC6548727 DOI: 10.1098/rsbl.2019.0127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/15/2019] [Indexed: 11/12/2022] Open
Abstract
In Odonata, a direct flight mechanism with specialized tendons evolved. One particular adaptation, the implementation of the rubber-like protein resilin in these cap tendons, might be of major importance. Although resilin was first described in one tendon of Odonata, to our knowledge no comprehensive study about the presence of resilin in the thorax exists yet. We investigated various species of Odonata, using µCT, dissection and fluorescence microscopy. Here we show a complete mapping of the odonatan pterothorax, regarding the presence of tendons and their properties. Thus, 20-21 cap tendons in the pterothorax of Odonata show the presence of resilin. While performing outstanding and often-aggressive flight manoeuvres, resilin can provide shock absorption against mechanical damage from strong impacts. It may further improve the wear and fatigue resistance owing to resilin's damping behaviour. Additionally, resilin in tendons can absorb and return kinetic energy to restore muscles to their original shape after contracting and help in maintaining self-oscillation of the flight muscles. Here, the material distribution within the direct flight system of Odonata and the biomechanical importance and possible function of resilin are discussed. These results are an important step towards the understanding of the complex form-material-function interplay of the insect cuticle.
Collapse
Affiliation(s)
| | - Sebastian Büsse
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, D-24118 Kiel, Germany
| |
Collapse
|
4
|
Bäumler F, Gorb SN, Büsse S. Comparative morphology of the thorax musculature of adult Anisoptera (Insecta: Odonata): Functional aspects of the flight apparatus. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:430-441. [PMID: 29684556 DOI: 10.1016/j.asd.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Due to their unique flight mechanism including a direct flight musculature, Odonata show impressive flight skills. Several publications addressed the details of this flight apparatus like: sclerites, wings, musculature, and flight aerodynamics. However, 3D-analysis of the thorax musculature of adult dragonflies was not studied before and this paper allows for a detailed insight. We, therefore, focused on the thorax musculature of adult Anisoptera using micro-computed tomography. Herewith, we present a comparative morphological approach to identify differences within Anisoptera: Aeshnidae, Corduliidae, Gomphidae, and Libellulidae. In total, 54 muscles were identified: 16 prothoracic, 19 mesothoracic, and 19 metathoracic. Recorded differences were for example, the reduction of muscle Idlm4 and an additional muscle IIIdlm1 in Aeshna cyanea, previously described as rudimentary or missing. Muscle Iscm1, which was previously reported missing in all Odonata, was found in all investigated species. The attachment of muscle IIpcm2 in Pantala flavescens is interpreted as a probable adaption to its long-distance migration behaviour. Furthermore, we present a review of functions of the odonatan flight muscles, considering previous publications. The data herein set a basis for functional and biomechanical studies of the flight apparatus and will therefore lay the foundation for a better understanding of the odonatan flight.
Collapse
Affiliation(s)
- Fabian Bäumler
- Department of Functional Morphology and Biomechanics Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Sebastian Büsse
- Department of Functional Morphology and Biomechanics Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany.
| |
Collapse
|
5
|
Leg deformation during imaginal ecdysis in the downy emerald, Cordulia aenea (Odonata, Corduliidae). ZOOLOGY 2018; 127:106-113. [PMID: 29588083 DOI: 10.1016/j.zool.2018.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 11/20/2022]
Abstract
A dragonfly larva migrates from the water to the shore, perches on a plant stem and grasps it with strongly flexed legs. Adult legs inside the larval exoskeleton fit to the larval legs joint-to-joint. The adult emerges with stretched legs. During the molt, an imaginal leg must follow all the angles in exuvial joints. In turn, larval apodemes are withdrawn from imaginal legs. We visualized transient shapes of the imaginal legs by the instant fixation of insects at different moments of the molt, photographed isolated exuvial legs with the imaginal legs inside and then removed the exuvial sheath. Instant shapes of the imaginal tibia show sharp intrapodomere bends copying the angle in the larval femoro-tibial joint. The site of bending shifts distad during the molt. This is possible if the imaginal leg is pliable. The same problem of leg squeezing is also common in hemimetabolous insects as well as in other arthropods, whereas holometabolous insects overcome problems of a tight confinement either by using leg pliability in other ways but not squeezing (cyclorrhaphan flies, mosquitoes) or by pulling hardened legs out without change of their pupal zigzag configuration (moths, ants, honey bees). The pupal legs are not intended to grasp any external substrate.
Collapse
|
6
|
Bomphrey RJ, Nakata T, Henningsson P, Lin HT. Flight of the dragonflies and damselflies. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0389. [PMID: 27528779 PMCID: PMC4992713 DOI: 10.1098/rstb.2015.0389] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2016] [Indexed: 12/05/2022] Open
Abstract
This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’.
Collapse
Affiliation(s)
- Richard J Bomphrey
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, North Mymms, Hatfield AL9 7TA, UK
| | - Toshiyuki Nakata
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Per Henningsson
- Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Huai-Ti Lin
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
7
|
Büsse S, Hörnschemeyer T, Fischer C. Three-dimensional reconstruction on cell level: case study elucidates the ultrastructure of the spinning apparatus of Embia sp. (Insecta: Embioptera). ROYAL SOCIETY OPEN SCIENCE 2016; 3:160563. [PMID: 27853574 PMCID: PMC5098999 DOI: 10.1098/rsos.160563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/09/2016] [Indexed: 06/06/2023]
Abstract
Spinning is a phenomenon not only present in spiders, but also in many other arthropods. The functional morphology and complexity of spinning organs is often poorly understood. Their elements are minute and studying them poses substantial methodological difficulties. This study presents a three-dimensional reconstruction of a silk gland of Embia sp. on cellular level, based on serial sections acquired with serial block-face scanning electron microscopy (SBFSEM) to showcase the power of this method. Previous studies achieved either high resolution to elucidate the ultrastructure or satisfying three-dimensional representations. The high-resolution achieved by SBFSEM can be easily used to reconstruct the three-dimensional ultrastructural organization of cellular structures. The herein investigated spinning apparatus of Embioptera can be taken as an example demonstrating the potential of this method. It was possible to reconstruct a multinucleated silk gland containing 63 nuclei. We focused on the applicability of this method in the field of morphological research and provide a step-by-step guide to the methodology. This will help in applying the method to other arthropod taxa and will help significantly in adapting the method to other animals, animal parts and tissues.
Collapse
Affiliation(s)
- Sebastian Büsse
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1–9, 24118 Kiel, Germany
- Department of Morphology, Systematics and Evolutionary Biology, J.- F.- Blumenbach Institute for Zoology and Anthropology, Georg-August-Universität Göttingen, Berliner Strasse 28, 37073 Göttingen, Germany
| | - Thomas Hörnschemeyer
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt, Germany
- Department of Morphology, Systematics and Evolutionary Biology, J.- F.- Blumenbach Institute for Zoology and Anthropology, Georg-August-Universität Göttingen, Berliner Strasse 28, 37073 Göttingen, Germany
| | - Christian Fischer
- Department of Morphology, Systematics and Evolutionary Biology, J.- F.- Blumenbach Institute for Zoology and Anthropology, Georg-August-Universität Göttingen, Berliner Strasse 28, 37073 Göttingen, Germany
| |
Collapse
|
8
|
Leubner F, Hörnschemeyer T, Bradler S. The thorax of the cave cricket Troglophilus neglectus: anatomical adaptations in an ancient wingless insect lineage (Orthoptera: Rhaphidophoridae). BMC Evol Biol 2016; 16:39. [PMID: 26891721 PMCID: PMC4758143 DOI: 10.1186/s12862-016-0612-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/09/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Secondary winglessness is a common phenomenon found among neopteran insects. With an estimated age of at least 140 million years, the cave crickets (Rhaphidophoridae) form the oldest exclusively wingless lineage within the long-horned grasshoppers (Ensifera). With respect to their morphology, cave crickets are generally considered to represent a `primitive' group of Ensifera, for which no apomorphic character has been reported so far. RESULTS We present the first detailed investigation and description of the thoracic skeletal and muscular anatomy of the East Mediterranean cave cricket Troglophilus neglectus (Ensifera: Rhaphidophoridae). T. neglectus possesses sternopleural muscles that are not yet reported from other neopteran insects. Cave crickets in general exhibit some unique features with respect to their thoracic skeletal anatomy: an externally reduced prospinasternum, a narrow median sclerite situated between the meso- and metathorax, a star-shaped prospina, and a triramous metafurca. The thoracic muscle equipment of T. neglectus compared to that of the bush cricket Conocephalus maculatus (Ensifera: Tettigoniidae) and the house cricket Acheta domesticus (Ensifera: Gryllidae) reveals a number of potentially synapomorphic characters between these lineages. CONCLUSIONS Based on the observed morphology we favor a closer relationship of Rhaphidophoridae to Tettigoniidae rather than to Gryllidae. In addition, the comparison of the thoracic morphology of T. neglectus to that of other wingless Polyneoptera allows reliable conclusions about anatomical adaptations correlated with secondary winglessness. The anatomy in apterous Ensifera, viz. the reduction of discrete direct and indirect flight muscles as well as the strengthening of specific leg muscles, largely resembles the condition found in wingless stick insects (Euphasmatodea), but is strikingly different from that of other related wingless insects, e.g. heel walkers (Mantophasmatodea), ice crawlers (Grylloblattodea), and certain grasshoppers (Caelifera). The composition of direct flight muscles largely follows similar patterns in winged respectively wingless species within major polyneopteran lineages, but it is highly heterogeneous between those lineages.
Collapse
Affiliation(s)
- Fanny Leubner
- Department of Morphology, Systematics & Evolutionary Biology, J-F-Blumenbach Institute for Zoology & Anthropology, Georg-August-University Göttingen, Göttingen, Germany.
| | - Thomas Hörnschemeyer
- Department of Morphology, Systematics & Evolutionary Biology, J-F-Blumenbach Institute for Zoology & Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Sven Bradler
- Department of Morphology, Systematics & Evolutionary Biology, J-F-Blumenbach Institute for Zoology & Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Büsse S, Helmker B, Hörnschemeyer T. The thorax morphology of Epiophlebia (Insecta: Odonata) nymphs--including remarks on ontogenesis and evolution. Sci Rep 2015; 5:12835. [PMID: 26246088 PMCID: PMC4526886 DOI: 10.1038/srep12835] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 07/08/2015] [Indexed: 11/18/2022] Open
Abstract
The species of Epiophlebia are unique among the recent Odonata in showing a mixture of morphological characters of dragonflies (Anisoptera) and damselflies (Zygoptera). The status of the four described extant species of Epiophlebia is disputable from a genetic as well as from a morphological point of view. Here we present an analysis of the thoracic musculature of different nymphal instars of Epiophlebia laidlawi and Epiophlebia superstes to elucidate their morphology and ontogenetic development. In total, 75 muscles have been identified in the thorax of Epiophlebia. This represents the highest number of thoracic muscles ever found in any odonate. It includes six muscles that are reported for the first time for Odonata, and three of these are even new for Pterygota. In total, our results indicate that Epiophlebia has the most ancestral thoracic morphology among Odonata.
Collapse
Affiliation(s)
- Sebastian Büsse
- University Museum of Zoology, Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ Cambridge, UK
| | - Benjamin Helmker
- J.- F.- Blumenbach Institute for Zoology &Anthropology, Department Morphology, Systematics &Evolutionary Biology Georg-August-University Göttingen, Berliner Str. 28, 37073 Göttingen, Germany
| | - Thomas Hörnschemeyer
- J.- F.- Blumenbach Institute for Zoology &Anthropology, Department Morphology, Systematics &Evolutionary Biology Georg-August-University Göttingen, Berliner Str. 28, 37073 Göttingen, Germany
| |
Collapse
|
10
|
Blanke A, Büsse S, Machida R. Coding characters from different life stages for phylogenetic reconstruction: a case study on dragonfly adults and larvae, including a description of the larval head anatomy ofEpiophlebia superstes(Odonata: Epiophlebiidae). Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Alexander Blanke
- Sugadaira Montane Research Center; University of Tsukuba; Sugadaira Kogen Ueda Nagano 386-2204 Japan
| | - Sebastian Büsse
- University Museum of Zoology, Department of Zoology; University of Cambridge; Downing Street Cambridge CB2 3EJ UK
| | - Ryuichiro Machida
- Sugadaira Montane Research Center; University of Tsukuba; Sugadaira Kogen Ueda Nagano 386-2204 Japan
| |
Collapse
|