1
|
DeRaad DA, Escalona M, Benham PM, Marimuthu MPA, Sahasrabudhe RM, Nguyen O, Chumchim N, Beraut E, Fairbairn CW, Seligmann W, Bowie RCK, Cicero C, McCormack JE, Wayne RK. De novo assembly of a chromosome-level reference genome for the California Scrub-Jay, Aphelocoma californica. J Hered 2023; 114:669-680. [PMID: 37589384 PMCID: PMC10650945 DOI: 10.1093/jhered/esad047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
We announce the assembly of the first de novo reference genome for the California Scrub-Jay (Aphelocoma californica). The genus Aphelocoma comprises four currently recognized species including many locally adapted populations across Mesoamerica and North America. Intensive study of Aphelocoma has revealed novel insights into the evolutionary mechanisms driving diversification in natural systems. Additional insights into the evolutionary history of this group will require continued development of high-quality, publicly available genomic resources. We extracted high molecular weight genomic DNA from a female California Scrub-Jay from northern California and generated PacBio HiFi long-read data and Omni-C chromatin conformation capture data. We used these data to generate a de novo partially phased diploid genome assembly, consisting of two pseudo-haplotypes, and scaffolded them using inferred physical proximity information from the Omni-C data. The more complete pseudo-haplotype assembly (arbitrarily designated "Haplotype 1") is 1.35 Gb in total length, highly contiguous (contig N50 = 11.53 Mb), and highly complete (BUSCO completeness score = 97%), with comparable scaffold sizes to chromosome-level avian reference genomes (scaffold N50 = 66.14 Mb). Our California Scrub-Jay assembly is highly syntenic with the New Caledonian Crow reference genome despite ~10 million years of divergence, highlighting the temporal stability of the avian genome. This high-quality reference genome represents a leap forward in publicly available genomic resources for Aphelocoma, and the family Corvidae more broadly. Future work using Aphelocoma as a model for understanding the evolutionary forces generating and maintaining biodiversity across phylogenetic scales can now benefit from a highly contiguous, in-group reference genome.
Collapse
Affiliation(s)
- Devon A DeRaad
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Phred M Benham
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Mohan P A Marimuthu
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA, United States
| | - Ruta M Sahasrabudhe
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA, United States
| | - Noravit Chumchim
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA, United States
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Colin W Fairbairn
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - William Seligmann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Carla Cicero
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| | - John E McCormack
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, United States
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Caeiro-Dias G, Brelsford A, Meneses-Ribeiro M, Crochet PA, Pinho C. Hybridization in late stages of speciation: Strong but incomplete genome-wide reproductive isolation and 'large Z-effect' in a moving hybrid zone. Mol Ecol 2023. [PMID: 37316984 DOI: 10.1111/mec.17035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023]
Abstract
In organisms reproducing sexually, speciation occurs when increasing divergence results in pre- or post-zygotic reproductive isolation between lineages. Studies focusing on reproductive isolation origin in early stages of speciation are common and many rely on genomic scans to infer introgression providing limited information on the genomic architecture of reproductive isolation long-term maintenance. This study analyses a natural hybrid zone between two species in a late stage of speciation. We used ddRADseq genotyping in the contact between Podarcis bocagei and P. carbonelli to examine admixture extent, analyse hybrid zone stability and assess genome-wide variation in selection against introgression. We confirmed strong but incomplete reproductive isolation in a bimodal hybrid zone. New findings revealed population genetic structure within P. carbonelli in the contact zone; geographical and genomic clines analysis suggested strong selection against gene flow, but a relatively small proportion of the loci can introgress, mostly within the narrow contact zone. However, geographical clines revealed that a few introgressed loci show signs of potential positive selection, particularly into P. bocagei. Geographical clines also detected a signal of hybrid zone movement towards P. bocagei distribution. Genomic cline analysis revealed heterogeneous patterns of introgression among loci within the syntopy zone, but the majority maintain a strong association with the genomic background of origin. However, incongruences between both cline approaches were found, potentially driven by confounding effects on genomic clines. Last, an important role of the Z chromosome in reproductive isolation is suggested. Importantly, overall patterns of restricted introgression seem to result from numerous strong intrinsic barriers across the genome.
Collapse
Affiliation(s)
- Guilherme Caeiro-Dias
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | - Alan Brelsford
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Biology Department, University of California Riverside, Riverside, California, USA
| | - Mariana Meneses-Ribeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Pierre-André Crochet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Catarina Pinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
3
|
Pizarro AK, DeRaad DA, McCormack JE. Temporal stability of the hybrid zone between Calocitta magpie-jays revealed through comparison of museum specimens and iNaturalist photos. Ecol Evol 2023; 13:e9863. [PMID: 36937059 PMCID: PMC10017314 DOI: 10.1002/ece3.9863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/18/2023] Open
Abstract
Hybrid zones are natural experiments for the study of avian evolution. Hybrid zones can be dynamic, moving as species adjust to new climates and habitats, with unknown implications for species and speciation. There are relatively few studies that have comparable modern and historic sampling to assess change in hybrid zone location and width over time, and those studies have generally found mixed results, with many hybrid zones showing change over time, but others showing stability. The white-throated magpie-jay (Calocitta formosa) and black-throated magpie-jay (Calocitta colliei) occur along the western coast of Mexico and Central America. The two species differ markedly in throat color and tail length, and prior observation suggests a narrow hybrid zone in southern Jalisco where individuals have mixed throat color. This study aims to assess the existence and temporal stability of this putative hybrid zone by comparing throat color between georeferenced historical museum specimens and modern photos from iNaturalist with precise locality information. Our results confirm the existence of a narrow hybrid zone in Jalisco, with modern throat scores gradually increasing from the parental ends of the cline toward the cline center in a sigmoidal curve characteristic of hybrid zones. Our temporal comparison suggests that the hybrid zone has not shifted its position between historical (pre-1973) and modern (post-2005) time periods-a surprising result given the grand scale of habitat change to the western Mexican lowlands during this time. An anomalous pocket of white-throated individuals in the northern range of the black-throated magpie-jay hints at the possibility of prehistorical long-distance introduction. Future genomic data will help disentangle the evolutionary history of these lineages and better characterize how secondary contact is affecting both the DNA and the phenotype of these species.
Collapse
Affiliation(s)
- Alana K. Pizarro
- Moore Laboratory of ZoologyOccidental CollegeLos AngelesCaliforniaUSA
| | - Devon A. DeRaad
- Biodiversity Institute and Department of Ecology & Evolutionary BiologyKansas UniversityKansasLawrenceUSA
| | - John E. McCormack
- Moore Laboratory of ZoologyOccidental CollegeLos AngelesCaliforniaUSA
| |
Collapse
|
4
|
DeRaad DA, McCormack JE, Chen N, Peterson AT, Moyle RG. Combining Species Delimitation, Species Trees, and Tests for Gene Flow Clarifies Complex Speciation in Scrub-Jays. Syst Biol 2022; 71:1453-1470. [PMID: 35552760 DOI: 10.1093/sysbio/syac034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Complex speciation, involving rapid divergence and multiple bouts of post-divergence gene flow, can obfuscate phylogenetic relationships and species limits. In North America, cases of complex speciation are common, due at least in part to the cyclical Pleistocene glacial history of the continent. Scrub-jays in the genus Aphelocoma provide a useful case study in complex speciation because their range throughout North America is structured by phylogeographic barriers with multiple cases of secondary contact between divergent lineages. Here, we show that a comprehensive approach to genomic reconstruction of evolutionary history, i.e., synthesizing results from species delimitation, species tree reconstruction, demographic model testing, and tests for gene flow, is capable of clarifying evolutionary history despite complex speciation. We find concordant evidence across all statistical approaches for the distinctiveness of an endemic southern Mexico lineage (A. w. sumichrasti), culminating in support for the species status of this lineage under any commonly applied species concept. We also find novel genomic evidence for the species status of a Texas endemic lineage A. w. texana, for which equivocal species delimitation results were clarified by demographic modeling and spatially explicit models of gene flow. Finally, we find that complex signatures of both ancient and modern gene flow between the non-sister California Scrub-Jay (A. californica) and Woodhouse's Scrub-Jay (A. woodhouseii), result in discordant gene trees throughout the species' genomes despite clear support for their overall isolation and species status. In sum, we find that a multi-faceted approach to genomic analysis can increase our understanding of complex speciation histories, even in well-studied groups. Given the emerging recognition that complex speciation is relatively commonplace, the comprehensive framework that we demonstrate for interrogation of species limits and evolutionary history using genomic data can provide a necessary roadmap for disentangling the impacts of gene flow and incomplete lineage sorting to better understand the systematics of other groups with similarly complex evolutionary histories.
Collapse
Affiliation(s)
- Devon A DeRaad
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS, 66045, USA
| | - John E McCormack
- Moore Laboratory of Zoology,Occidental College, Los Angeles, CA, 90041, USA
| | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - A Townsend Peterson
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS, 66045, USA
| | - Robert G Moyle
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS, 66045, USA
| |
Collapse
|
5
|
Driver R, Ferretti V, Burton ES, McCoy MW, Duerr KC, Curry RL. Spatiotemporal variation in hatching success and nestling sex ratios track rapid movement of a songbird hybrid zone. Am Nat 2022; 200:264-274. [DOI: 10.1086/720207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Ottenburghs J. Avian introgression patterns are consistent with Haldane's Rule. J Hered 2022; 113:363-370. [PMID: 35134952 PMCID: PMC9308041 DOI: 10.1093/jhered/esac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
According to Haldane’s Rule, the heterogametic sex will show the greatest fitness reduction in a hybrid cross. In birds, where sex is determined by a ZW system, female hybrids are expected to experience lower fitness compared to male hybrids. This pattern has indeed been observed in several bird groups, but it is unknown whether the generality of Haldane’s Rule also extends to the molecular level. First, given the lower fitness of female hybrids, we can expect maternally inherited loci (i.e., mitochondrial and W-linked loci) to show lower introgression rates than biparentally inherited loci (i.e., autosomal loci) in females. Second, the faster evolution of Z-linked loci compared to autosomal loci and the hemizygosity of the Z-chromosome in females might speed up the accumulation of incompatible alleles on this sex chromosome, resulting in lower introgression rates for Z-linked loci than for autosomal loci. I tested these expectations by conducting a literature review which focused on studies that directly quantified introgression rates for autosomal, sex-linked, and mitochondrial loci. Although most studies reported introgression rates in line with Haldane’s Rule, it remains important to validate these genetic patterns with estimates of hybrid fitness and supporting field observations to rule out alternative explanations. Genomic data provide exciting opportunities to obtain a more fine-grained picture of introgression rates across the genome, which can consequently be linked to ecological and behavioral observations, potentially leading to novel insights into the genetic mechanisms underpinning Haldane’s Rule.
Collapse
Affiliation(s)
- Jente Ottenburghs
- Wildlife Ecology and Conservation, Wageningen University & Research, Wageningen, The Netherlands.,Forest Ecology and Forest Management, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
7
|
Wolfgramm H, Martens J, Töpfer T, Vamberger M, Pathak A, Stuckas H, Päckert M. Asymmetric allelic introgression across a hybrid zone of the coal tit ( Periparus ater) in the central Himalayas. Ecol Evol 2021; 11:17332-17351. [PMID: 34938512 PMCID: PMC8668783 DOI: 10.1002/ece3.8369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 11/07/2022] Open
Abstract
In the Himalayas, a number of secondary contact zones have been described for vicariant vertebrate taxa. However, analyses of genetic divergence and admixture are missing for most of these examples. In this study, we provide a population genetic analysis for the coal tit (Periparus ater) hybrid zone in Nepal. Intermediate phenotypes between the distinctive western "spot-winged tit" (P. a. melanolophus) and Eastern Himalayan coal tits (P. a. aemodius) occur across a narrow range of <100 km in western Nepal. As a peculiarity, another distinctive cinnamon-bellied form is known from a single population so far. Genetic admixture of western and eastern mitochondrial lineages was restricted to the narrow zone of phenotypically intermediate populations. The cline width was estimated 46 km only with a center close to the population of the cinnamon-bellied phenotype. In contrast, allelic introgression of microsatellite loci was asymmetrical from eastern P. a. aemodius into far western populations of phenotypic P. a. melanolophus but not vice versa. Accordingly, the microsatellite cline was about 3.7 times wider than the mitochondrial one.
Collapse
Affiliation(s)
- Hannes Wolfgramm
- Senckenberg Natural History Collections DresdenDresdenGermany
- Present address:
Department of Functional GenomicsInterfaculty Institute of Genetics and Functional GenomicsUniversity Medicine GreifswaldGreifswaldGermany
| | - Jochen Martens
- Institute of Organismic and Molecular Evolution (iomE)Johannes Gutenberg UniversityMainzGermany
| | - Till Töpfer
- Leibniz Institute for the Analysis of Biodiversity ChangeZoological Research Museum Alexander KoenigBonnGermany
| | | | - Abhinaya Pathak
- Department of National Parks and Wildlife ConservationKathmanduNepal
| | - Heiko Stuckas
- Senckenberg Natural History Collections DresdenDresdenGermany
| | - Martin Päckert
- Senckenberg Natural History Collections DresdenDresdenGermany
| |
Collapse
|
8
|
Del-Rio G, Rego MA, Whitney BM, Schunck F, Silveira LF, Faircloth BC, Brumfield RT. Displaced clines in an avian hybrid zone (Thamnophilidae: Rhegmatorhina) within an Amazonian interfluve. Evolution 2021; 76:455-475. [PMID: 34626500 DOI: 10.1111/evo.14377] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022]
Abstract
Secondary contact between species often results in the formation of a hybrid zone, with the eventual fates of the hybridizing species dependent on evolutionary and ecological forces. We examine this process in the Amazon Basin by conducting the first genomic and phenotypic characterization of the hybrid zone formed after secondary contact between two obligate army-ant-followers: the White-breasted Antbird (Rhegmatorhina hoffmannsi) and the Harlequin Antbird (Rhegmatorhina berlepschi). We found a major geographic displacement (∼120 km) between the mitochondrial and nuclear clines, and we explore potential hypotheses for the displacement, including sampling error, genetic drift, and asymmetric cytonuclear incompatibilities. We cannot exclude roles for sampling error and genetic drift in contributing to the discordance; however, the data suggest expansion and unidirectional introgression of hoffmannsi into the distribution of berlepschi.
Collapse
Affiliation(s)
- Glaucia Del-Rio
- Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, 70803.,Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Marco A Rego
- Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, 70803.,Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Bret M Whitney
- Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, 70803.,Museu de Zoologia, Universidade de São Paulo, São Paulo, SP, 04263-000, Brazil
| | - Fabio Schunck
- Museu de Zoologia, Universidade de São Paulo, São Paulo, SP, 04263-000, Brazil
| | - Luís F Silveira
- Museu de Zoologia, Universidade de São Paulo, São Paulo, SP, 04263-000, Brazil
| | - Brant C Faircloth
- Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, 70803.,Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Robb T Brumfield
- Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, 70803.,Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| |
Collapse
|
9
|
Lopez KA, McDiarmid CS, Griffith SC, Lovette IJ, Hooper DM. Evaluating evidence of mitonuclear incompatibilities with the sex chromosomes in an avian hybrid zone. Evolution 2021; 75:1395-1414. [PMID: 33908624 DOI: 10.1111/evo.14243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/15/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
The exploration of hybrid zones and the intergenomic conflicts exposed through hybridization provide windows into the processes of divergence and speciation. Sex chromosomes and mitonuclear incompatibilities have strong associations with the genetics of hybrid dysfunction. In ZW sex-determining systems, maternal co-inheritance of the mitochondrial and W chromosomes immediately exposes incompatibilities between these maternal contributions of one species and the Z chromosome of another. We analyze mitochondrial and Z chromosome admixture in the long-tailed finch (Poephila acuticauda) of Australia, where hybridizing subspecies differ prominently in Z chromosome genotype and in bill color, yet the respective centers of geographic admixture for these two traits are offset by 350 km. We report two well-defined mitochondrial clades that diverged ∼0.5 million years ago. Mitochondrial contact is geographically co-located within a hybrid zone of Z chromosome admixture and is displaced from bill color admixture by nearly 400 km. Consistent with Haldane's rule expectations, hybrid zone females are significantly less likely than males to carry an admixed Z chromosome or have mismatched Z-mitochondrial genotypes. Furthermore, there are significantly fewer than expected mitonuclear mismatches in hybrid zone females and paternal backcross males. Results suggest a potential for mitonuclear/sex chromosome incompatibilities in the emergence of reproductive isolation in this system.
Collapse
Affiliation(s)
- Kelsie A Lopez
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Callum S McDiarmid
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Irby J Lovette
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Daniel M Hooper
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA.,Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
10
|
Terraneo TI, Benzoni F, Arrigoni R, Baird AH, Mariappan KG, Forsman ZH, Wooster MK, Bouwmeester J, Marshell A, Berumen ML. Phylogenomics of Porites from the Arabian Peninsula. Mol Phylogenet Evol 2021; 161:107173. [PMID: 33813021 DOI: 10.1016/j.ympev.2021.107173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
The advent of high throughput sequencing technologies provides an opportunity to resolve phylogenetic relationships among closely related species. By incorporating hundreds to thousands of unlinked loci and single nucleotide polymorphisms (SNPs), phylogenomic analyses have a far greater potential to resolve species boundaries than approaches that rely on only a few markers. Scleractinian taxa have proved challenging to identify using traditional morphological approaches and many groups lack an adequate set of molecular markers to investigate their phylogenies. Here, we examine the potential of Restriction-site Associated DNA sequencing (RADseq) to investigate phylogenetic relationships and species limits within the scleractinian coral genus Porites. A total of 126 colonies were collected from 16 localities in the seas surrounding the Arabian Peninsula and ascribed to 12 nominal and two unknown species based on their morphology. Reference mapping was used to retrieve and compare nearly complete mitochondrial genomes, ribosomal DNA, and histone loci. De novo assembly and reference mapping to the P. lobata coral transcriptome were compared and used to obtain thousands of genome-wide loci and SNPs. A suite of species discovery methods (phylogenetic, ordination, and clustering analyses) and species delimitation approaches (coalescent-based, species tree, and Bayesian Factor delimitation) suggested the presence of eight molecular lineages, one of which included six morphospecies. Our phylogenomic approach provided a fully supported phylogeny of Porites from the Arabian Peninsula, suggesting the power of RADseq data to solve the species delineation problem in this speciose coral genus.
Collapse
Affiliation(s)
- Tullia I Terraneo
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4811, QLD, Australia.
| | - Francesca Benzoni
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Roberto Arrigoni
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; European Commission, Joint Research Centre (JRC), Ispra, Italy; Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Napoli, Italy
| | - Andrew H Baird
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4811, QLD, Australia
| | - Kiruthiga G Mariappan
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zac H Forsman
- Hawaii Institute of Marine Biology, Kaneohe 96744, HI, USA
| | - Michael K Wooster
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | | | - Alyssa Marshell
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Michael L Berumen
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
McEntee JP, Burleigh JG, Singhal S. Dispersal Predicts Hybrid Zone Widths across Animal Diversity: Implications for Species Borders under Incomplete Reproductive Isolation. Am Nat 2020; 196:9-28. [PMID: 32552108 DOI: 10.1086/709109] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hybrid zones occur as range boundaries for many animal taxa. One model for how hybrid zones form and stabilize is the tension zone model, a version of which predicts that hybrid zone widths are determined by a balance between random dispersal into hybrid zones and selection against hybrids. Here, we examine whether random dispersal and proxies for selection against hybrids (genetic distances between hybridizing pairs) can explain variation in hybrid zone widths across 131 hybridizing pairs of animals. We show that these factors alone can explain ∼40% of the variation in zone width among animal hybrid zones, with dispersal explaining far more of the variation than genetic distances. Patterns within clades were idiosyncratic. Genetic distances predicted hybrid zone widths particularly well for reptiles, while this relationship was opposite tension zone predictions in birds. Last, the data suggest that dispersal and molecular divergence set lower bounds on hybrid zone widths in animals, indicating that there are geographic restrictions on hybrid zone formation. Overall, our analyses reinforce the fundamental importance of dispersal in hybrid zone formation and more generally in the ecology of range boundaries.
Collapse
|
12
|
Linck E, Epperly K, Van Els P, Spellman GM, Bryson RW, McCormack JE, Canales-Del-Castillo R, Klicka J. Dense Geographic and Genomic Sampling Reveals Paraphyly and a Cryptic Lineage in a Classic Sibling Species Complex. Syst Biol 2020; 68:956-966. [PMID: 31135028 DOI: 10.1093/sysbio/syz027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 01/13/2023] Open
Abstract
Incomplete or geographically biased sampling poses significant problems for research in phylogeography, population genetics, phylogenetics, and species delimitation. Despite the power of using genome-wide genetic markers in systematics and related fields, approaches such as the multispecies coalescent remain unable to easily account for unsampled lineages. The Empidonax difficilis/Empidonax occidentalis complex of small tyrannid flycatchers (Aves: Tyrannidae) is a classic example of widely distributed species with limited phenotypic geographic variation that was broken into two largely cryptic (or "sibling") lineages following extensive study. Though the group is well-characterized north of the US Mexico border, the evolutionary distinctiveness and phylogenetic relationships of southern populations remain obscure. In this article, we use dense genomic and geographic sampling across the majority of the range of the E. difficilis/E. occidentalis complex to assess whether current taxonomy and species limits reflect underlying evolutionary patterns, or whether they are an artifact of historically biased or incomplete sampling. We find that additional samples from Mexico render the widely recognized species-level lineage E. occidentalis paraphyletic, though it retains support in the best-fit species delimitation model from clustering analyses. We further identify a highly divergent unrecognized lineage in a previously unsampled portion of the group's range, which a cline analysis suggests is more reproductively isolated than the currently recognized species E. difficilis and E. occidentalis. Our phylogeny supports a southern origin of these taxa. Our results highlight the pervasive impacts of biased geographic sampling, even in well-studied vertebrate groups like birds, and illustrate what is a common problem when attempting to define species in the face of recent divergence and reticulate evolution.
Collapse
Affiliation(s)
- Ethan Linck
- Burke Museum of Natural History and Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Kevin Epperly
- Burke Museum of Natural History and Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Paul Van Els
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9700 CC, The Netherlands.,Museum of Natural Science, 119 Foster Hall, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Garth M Spellman
- Department of Zoology, Denver Museum of Nature & Science, Denver, CO 80205, USA
| | - Robert W Bryson
- Burke Museum of Natural History and Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - John E McCormack
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA 90041, USA
| | - Ricardo Canales-Del-Castillo
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León 66455, México
| | - John Klicka
- Burke Museum of Natural History and Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Billerman SM, Walsh J. Historical DNA as a tool to address key questions in avian biology and evolution: A review of methods, challenges, applications, and future directions. Mol Ecol Resour 2019; 19:1115-1130. [PMID: 31336408 DOI: 10.1111/1755-0998.13066] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 11/30/2022]
Abstract
Museum specimens play a crucial role in addressing key questions in systematics, evolution, ecology, and conservation. With the advent of high-throughput sequencing technologies, specimens that have long been the foundation of important biological discoveries can inform new perspectives as sources of genomic data. Despite the many possibilities associated with analyzing DNA from historical specimens, several challenges persist. Using avian systems as a model, we review DNA extraction protocols, sequencing technologies, and capture methods that are helping researchers overcome some of these difficulties. We highlight empirical examples in which researchers have used these technologies to address fundamental questions related to avian conservation and evolution. Increasing accessibility to new sequencing technologies will provide researchers with tools to tap into the wealth of information contained within our valuable natural history collections.
Collapse
Affiliation(s)
- Shawn M Billerman
- Fuller Evolutionary Biology Program, Cornell Laboratory of Ornithology, Cornell University, Ithaca, NY, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Jennifer Walsh
- Fuller Evolutionary Biology Program, Cornell Laboratory of Ornithology, Cornell University, Ithaca, NY, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
14
|
Comparison of ultraconserved elements (UCEs) to microsatellite markers for the study of avian hybrid zones: a test in Aphelocoma jays. BMC Res Notes 2019; 12:456. [PMID: 31340859 PMCID: PMC6657088 DOI: 10.1186/s13104-019-4481-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/15/2019] [Indexed: 11/22/2022] Open
Abstract
Objective Hybrid zones are geographic regions where genetically distinct taxa interbreed, resulting in offspring of mixed ancestry. California Scrub-Jays (Aphelocoma californica) and Woodhouse’s Scrub-Jays (A. woodhouseii) come into secondary contact and hybridize in western Nevada. Although previous work investigated divergence and gene flow between these species using a handful of microsatellite markers, the hybrid zone has not been studied using genome-scale markers, providing an opportunity to assess genome-wide introgression, test for a genetic basis for ecomorphological traits, and compare these estimates to those derived from microsatellites. Results Using variant sites flanking ultraconserved elements (UCEs), we performed population assignment and quantified hybrid ancestry for 16 individuals across the zone of secondary contact. Our study included 2468 SNPs distributed throughout the genome, allowing discrimination of genetic affinities of hybrid individuals that were similar to estimates from microsatellites. We show a relationship between bill and wing length and the genetic composition of individuals that was not found in prior work using microsatellites, suggesting a genetic basis for these traits. Our analyses demonstrate the utility of UCEs for the analysis of hybrid zones and provide a basis for future studies to identify the genomic architecture of speciation and phenotypic differences between these incipient species. Electronic supplementary material The online version of this article (10.1186/s13104-019-4481-z) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Quattrini AM, Wu T, Soong K, Jeng MS, Benayahu Y, McFadden CS. A next generation approach to species delimitation reveals the role of hybridization in a cryptic species complex of corals. BMC Evol Biol 2019; 19:116. [PMID: 31170912 PMCID: PMC6555025 DOI: 10.1186/s12862-019-1427-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/23/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Our ability to investigate processes shaping the evolutionary diversification of corals (Cnidaria: Anthozoa) is limited by a lack of understanding of species boundaries. Discerning species of corals has been challenging due to a multitude of factors, including homoplasious and plastic morphological characters and the use of molecular markers that are either not informative or have not completely sorted. Hybridization can also blur species boundaries by leading to incongruence between morphology and genetics. We used traditional DNA barcoding and restriction-site associated DNA sequencing combined with coalescence-based and allele-frequency methods to elucidate species boundaries and simultaneously examine the potential role of hybridization in a speciose genus of octocoral, Sinularia. RESULTS Species delimitations using two widely used DNA barcode markers, mtMutS and 28S rDNA, were incongruent with one another and with the morphospecies identifications. When mtMutS and 28S were concatenated, a 0.3% genetic distance threshold delimited the majority of morphospecies. In contrast, 12 of the 15 examined morphospecies formed well-supported monophyletic clades in both concatenated RAxML phylogenies and SNAPP species trees of > 6000 RADSeq loci. DAPC and Structure analyses also supported morphospecies assignments, but indicated the potential for two additional cryptic species. Three morphologically distinct species pairs could not, however, be distinguished genetically. ABBA-BABA tests demonstrated significant admixture between some of those species, suggesting that hybridization may confound species delimitation in Sinularia. CONCLUSIONS A genomic approach can help to guide species delimitation while simultaneously elucidating the processes generating coral diversity. Results support the hypothesis that hybridization is an important mechanism in the evolution of Anthozoa, including octocorals, and future research should examine the contribution of this mechanism in generating diversity across the coral tree of life.
Collapse
Affiliation(s)
- Andrea M. Quattrini
- Biology Department, Harvey Mudd College, 1250 N. Dartmouth Ave, Claremont, CA 91711 USA
| | - Tiana Wu
- Biology Department, Harvey Mudd College, 1250 N. Dartmouth Ave, Claremont, CA 91711 USA
| | - Keryea Soong
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Shiou Jeng
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yehuda Benayahu
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| | - Catherine S. McFadden
- Biology Department, Harvey Mudd College, 1250 N. Dartmouth Ave, Claremont, CA 91711 USA
| |
Collapse
|
16
|
Peñalba JV, Joseph L, Moritz C. Current geography masks dynamic history of gene flow during speciation in northern Australian birds. Mol Ecol 2019; 28:630-643. [PMID: 30561150 DOI: 10.1111/mec.14978] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/25/2022]
Abstract
Genome divergence is greatly influenced by gene flow during early stages of speciation. As populations differentiate, geographic barriers can constrain gene flow and so affect the dynamics of divergence and speciation. Current geography, specifically disjunction and continuity of ranges, is often used to predict the historical gene flow during the divergence process. We test this prediction in eight meliphagoid bird species complexes codistributed in four regions. These regions are separated by known biogeographical barriers across northern Australia and Papua New Guinea. We find that bird populations currently separated by terrestrial habitat barriers within Australia and marine barriers between Australia and Papua New Guinea have a range of divergence levels and probability of gene flow not associated with current range connectivity. Instead, geographic distance and historical range connectivity better predict divergence and probability of gene flow. In this dynamic environmental context, we also find support for a nonlinear decrease of the probability of gene flow during the divergence process. The probability of gene flow initially decreases gradually after a certain level of divergence is reached. Its decrease then accelerates until the probability is close to zero. This implies that although geographic connectivity may have more of an effect early in speciation, other factors associated with higher divergence may play a more important role in influencing gene flow midway through and later in speciation. Current geographic connectivity may then mislead inferences regarding potential for gene flow during speciation under a complex and dynamic history of geographic and reproductive isolation.
Collapse
Affiliation(s)
- Joshua V Peñalba
- Ecology and Evolution, Australian National University, Acton, ACT, Australia.,Centre for Biodiversity Analysis, Acton, ACT, Australia.,Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Canberra, ACT, Australia.,Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Germany
| | - Leo Joseph
- Centre for Biodiversity Analysis, Acton, ACT, Australia.,Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Canberra, ACT, Australia
| | - Craig Moritz
- Ecology and Evolution, Australian National University, Acton, ACT, Australia.,Centre for Biodiversity Analysis, Acton, ACT, Australia
| |
Collapse
|
17
|
Zarza E, Connors EM, Maley JM, Tsai WLE, Heimes P, Kaplan M, McCormack JE. Combining ultraconserved elements and mtDNA data to uncover lineage diversity in a Mexican highland frog ( Sarcohyla; Hylidae). PeerJ 2018; 6:e6045. [PMID: 30581665 PMCID: PMC6294053 DOI: 10.7717/peerj.6045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022] Open
Abstract
Molecular studies have uncovered significant diversity in the Mexican Highlands, leading to the description of many new endemic species. DNA approaches to this kind of species discovery have included both mitochondrial DNA (mtDNA) sequencing and multilocus genomic methods. While these marker types have often been pitted against one another, there are benefits to deploying them together, as linked mtDNA data can provide the bridge between uncovering lineages through rigorous multilocus genomic analysis and identifying lineages through comparison to existing mtDNA databases. Here, we apply one class of multilocus genomic marker, ultraconserved elements (UCEs), and linked mtDNA data to a species complex of frogs (Sarcohyla bistincta, Hylidae) found in the Mexican Highlands. We generated data from 1,891 UCEs, which contained 1,742 informative SNPs for S. bistincta and closely related species and captured mitochondrial genomes for most samples. Genetic analyses based on both whole loci and SNPs agree there are six to seven distinct lineages within what is currently described as S. bistincta. Phylogenies from UCEs and mtDNA mostly agreed in their topologies, and the few differences suggested a more complex evolutionary history of the mtDNA marker. Our study demonstrates that the Mexican Highlands still hold substantial undescribed diversity, making their conservation a particularly urgent goal. The Trans-Mexican Volcanic Range stands out as a significant geographic feature in Sarcohyla and may have acted as a dispersal corridor for S. bistincta to spread to the north. Combining multilocus genomic data with linked mtDNA data is a useful approach for identifying potential new species and associating them with already described taxa, which will be especially important in groups with undescribed subadult phenotypes and cryptic species.
Collapse
Affiliation(s)
- Eugenia Zarza
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, United States of America
| | - Elizabeth M Connors
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, United States of America
| | - James M Maley
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, United States of America
| | - Whitney L E Tsai
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, United States of America
| | | | | | - John E McCormack
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, United States of America
| |
Collapse
|
18
|
Venkatraman MX, Deraad DA, Tsai WLE, Zarza E, Zellmer AJ, Maley JM, Mccormack JE. Cloudy with a chance of speciation: integrative taxonomy reveals extraordinary divergence within a Mesoamerican cloud forest bird. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Madhvi X Venkatraman
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, USA
- Biology Department, Occidental College, Los Angeles, CA, USA
| | - Devon A Deraad
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, USA
- Biology Department, Occidental College, Los Angeles, CA, USA
| | - Whitney L E Tsai
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, USA
| | - Eugenia Zarza
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, USA
| | | | - James M Maley
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, USA
| | - John E Mccormack
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, USA
- Biology Department, Occidental College, Los Angeles, CA, USA
| |
Collapse
|
19
|
Hooper DM, Griffith SC, Price TD. Sex chromosome inversions enforce reproductive isolation across an avian hybrid zone. Mol Ecol 2018; 28:1246-1262. [PMID: 30230092 DOI: 10.1111/mec.14874] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022]
Abstract
Across hybrid zones, the sex chromosomes are often more strongly differentiated than the autosomes. This is regularly attributed to the greater frequency of reproductive incompatibilities accumulating on sex chromosomes and their exposure in the heterogametic sex. Working within an avian hybrid zone, we explore the possibility that chromosome inversions differentially accumulate on the Z chromosome compared to the autosomes and thereby contribute to Z chromosome differentiation. We analyse the northern Australian hybrid zone between two subspecies of the long-tailed finch (Poephila acuticauda), first described based on differences in bill colour, using reduced-representation genomic sequencing for 293 individuals over a 1,530-km transect. Autosomal differentiation between subspecies is minimal. In contrast, 75% of the Z chromosome is highly differentiated and shows a steep genomic cline, which is displaced 350 km to the west of the cline in bill colour. Differentiation is associated with two or more putative chromosomal inversions, each predominating in one subspecies. If inversions reduce recombination between hybrid incompatibilities, they are selectively favoured and should therefore accumulate in hybrid zones. We argue that this predisposes inversions to differentially accumulate on the Z chromosome. One genomic region affecting bill colour is on the Z, but the main candidates are on chromosome 8. This and the displacement of the bill colour and Z chromosome cline centres suggest that bill colour has not strongly contributed to inversion accumulation. Based on cline width, however, the Z chromosome and bill colour both contribute to reproductive isolation established between this pair of subspecies.
Collapse
Affiliation(s)
- Daniel M Hooper
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York.,Committe on Evolutionary Biology, University of Chicago, Chicago, Illinois
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Trevor D Price
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois
| |
Collapse
|
20
|
Lam A, Toussaint EFA, Kindler C, Van Dam MH, Panjaitan R, Roderick GK, Balke M. Stream flow alone does not predict population structure of diving beetles across complex tropical landscapes. Mol Ecol 2018; 27:3541-3554. [PMID: 30030868 DOI: 10.1111/mec.14807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 01/30/2023]
Abstract
Recent theoretical advances have hypothesized a central role of habitat persistence on population genetic structure and resulting biodiversity patterns of freshwater organisms. Here, we address the hypothesis that lotic species, or lineages adapted to comparably geologically stable running water habitats (streams and their marginal habitats), have high levels of endemicity and phylogeographic structure due to the persistent nature of their habitat. We use a nextRAD DNA sequencing approach to investigate the population structure and phylogeography of a putatively widespread New Guinean species of diving beetle, Philaccolilus ameliae (Dytiscidae). We find that P. ameliae is a complex of morphologically cryptic, but geographically and genetically well-differentiated clades. The pattern of population connectivity is consistent with theoretical predictions associated with stable lotic habitats. However, in two clades, we find a more complex pattern of low population differentiation, revealing dispersal across rugged mountains and watersheds of New Guinea up to 430 km apart. These results, while surprising, were also consistent with the original formulation of the habitat template concept by Southwood, involving lineage-idiosyncratic evolution in response to abiotic factors. In our system, low population differentiation might reflect a young species in a phase of range expansion utilizing vast available habitat. We suggest that predictions of life history variation resulting from the dichotomy between lotic and lentic organisms require more attention to habitat characterization and microhabitat choice. Our results also underpin the necessity to study fine-scale processes but at a larger geographical scale, as compared to solely documenting macroecological patterns, to understand ecological drivers of regional biodiversity. Comprehensive sampling especially of tropical lineages in complex and threatened environments such as New Guinea remains a critical challenge.
Collapse
Affiliation(s)
- Athena Lam
- SNSB-Zoologische Staatssammlung München, Munich, Germany.,Department of Environmental Science, Policy and Management, University of California, Berkeley, California.,Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California
| | | | | | - Matthew H Van Dam
- SNSB-Zoologische Staatssammlung München, Munich, Germany.,Department of Environmental Science, Policy and Management, University of California, Berkeley, California.,Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California
| | - Rawati Panjaitan
- Department of Biology, Faculty of Sciences and Mathematics, State University of Papua (UNIPA), Manokwari, West Papua, Indonesia
| | - George K Roderick
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California
| | - Michael Balke
- SNSB-Zoologische Staatssammlung München, Munich, Germany.,GeoBioCenter, Ludwig-Maximilians-University, München, Germany
| |
Collapse
|
21
|
Lam AW, Gueuning M, Kindler C, Van Dam M, Alvarez N, Panjaitan R, Shaverdo H, White LT, Roderick GK, Balke M. Phylogeography and population genomics of a lotic water beetle across a complex tropical landscape. Mol Ecol 2018; 27:3346-3356. [PMID: 30010208 DOI: 10.1111/mec.14796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 11/30/2022]
Abstract
The habitat template concept applied to a freshwater system indicates that lotic species, or those which occupy permanent habitats along stream courses, are less dispersive than lentic species, or those that occur in more ephemeral aquatic habitats. Thus, populations of lotic species will be more structured than those of lentic species. Stream courses include both flowing water and small, stagnant microhabitats that can provide refuge when streams are low. Many species occur in these microhabitats but remain poorly studied. Here, we present population genetic data for one such species, the tropical diving beetle Exocelina manokwariensis (Dytiscidae), sampled from six localities along a ~300 km transect across the Birds Head Peninsula of New Guinea. Molecular data from both mitochondrial (CO1 sequences) and nuclear (ddRAD loci) regions document fine-scale population structure across populations that are ~45 km apart. Our results are concordant with previous phylogenetic and macroecological studies that applied the habitat template concept to aquatic systems. This study also illustrates that these diverse but mostly overlooked microhabitats are promising study systems in freshwater ecology and evolutionary biology. With the advent of next-generation sequencing, fine-scale population genomic studies are feasible for small nonmodel organisms to help illuminate the effect of habitat stability on species' natural history, population structure and geographic distribution.
Collapse
Affiliation(s)
- Athena Wai Lam
- SNSB-Zoologische Staatssammlung München, Munich, Germany
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California
| | - Morgan Gueuning
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
- Competence Division for Research Technology and Knowledge Exchange, Method Development and Analytics, Agroscope, Wädenswil, Switzerland
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | | | - Matthew Van Dam
- SNSB-Zoologische Staatssammlung München, Munich, Germany
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California
| | - Nadir Alvarez
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Rawati Panjaitan
- Department of Biology, Faculty of Sciences and Mathematics, State University of Papua (UNIPA), Manokwari, West Papua, Indonesia
| | | | - Lloyd T White
- School of Earth and Environmental Sciences, University of Wollongong, New South Wales, Australia
| | - George K Roderick
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California
| | - Michael Balke
- SNSB-Zoologische Staatssammlung München, Munich, Germany
- GeoBioCenter, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
22
|
Morales-Rozo A, Tenorio EA, Carling MD, Cadena CD. Origin and cross-century dynamics of an avian hybrid zone. BMC Evol Biol 2017; 17:257. [PMID: 29246108 PMCID: PMC5732383 DOI: 10.1186/s12862-017-1096-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/27/2017] [Indexed: 01/07/2023] Open
Abstract
Background Characterizations of the dynamics of hybrid zones in space and time can give insights about traits and processes important in population divergence and speciation. We characterized a hybrid zone between tanagers in the genus Ramphocelus (Aves, Thraupidae) located in southwestern Colombia. We evaluated whether this hybrid zone originated as a result of secondary contact or of primary differentiation, and described its dynamics across time using spatial analyses of molecular, morphological, and coloration data in combination with paleodistribution modeling. Results Models of potential historical distributions based on climatic data and genetic signatures of demographic expansion suggested that the hybrid zone likely originated following secondary contact between populations that expanded their ranges out of isolated areas in the Quaternary. Concordant patterns of variation in phenotypic characters across the hybrid zone and its narrow extent are suggestive of a tension zone, maintained by a balance between dispersal and selection against hybrids. Estimates of phenotypic cline parameters obtained using specimens collected over nearly a century revealed that, in recent decades, the zone appears to have moved to the east and to higher elevations, and may have become narrower. Genetic variation was not clearly structured along the hybrid zone, but comparisons between historical and contemporary specimens suggested that temporal changes in its genetic makeup may also have occurred. Conclusions Our data suggest that the hybrid zone likey resulted from secondary contact between populations. The observed changes in the hybrid zone may be a result of sexual selection, asymmetric gene flow, or environmental change. Electronic supplementary material The online version of this article (doi: 10.1186/s12862-017-1096-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Morales-Rozo
- Laboratorio de Biología Evolutiva de Vertebrados, Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia.,Programa de Biología y Museo de Historia Natural, Universidad de los Llanos, Sede Barcelona, Villavicencio, Colombia
| | - Elkin A Tenorio
- Laboratorio de Biología Evolutiva de Vertebrados, Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia.,Calima: Fundación para la Investigación de la Biodiversidad y Conservación en el Trópico, Cali, Colombia
| | - Matthew D Carling
- Cornell Laboratory of Ornithology, Cornell University, Ithaca, NY, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Carlos Daniel Cadena
- Laboratorio de Biología Evolutiva de Vertebrados, Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia.
| |
Collapse
|
23
|
Oatley G, De Swardt DH, Nuttall RJ, Crowe TM, Bowie RCK. Phenotypic and genotypic variation across a stable white-eye (Zosterops sp.) hybrid zone in central South Africa. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
24
|
Zarza E, Faircloth BC, Tsai WL, Bryson RW, Klicka J, McCormack JE. Hidden histories of gene flow in highland birds revealed with genomic markers. Mol Ecol 2016; 25:5144-5157. [DOI: 10.1111/mec.13813] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Eugenia Zarza
- Moore Laboratory of Zoology Occidental College Los Angeles CA 90041 USA
| | - Brant C. Faircloth
- Department of Biological Sciences and Museum of Natural Science Louisiana State University Baton Rouge LA 70803 USA
| | - Whitney L.E. Tsai
- Moore Laboratory of Zoology Occidental College Los Angeles CA 90041 USA
| | - Robert W. Bryson
- Moore Laboratory of Zoology Occidental College Los Angeles CA 90041 USA
- Burke Museum of Natural History and Culture and Department of Biology University of Washington Seattle WA 98195 USA
| | - John Klicka
- Burke Museum of Natural History and Culture and Department of Biology University of Washington Seattle WA 98195 USA
| | - John E. McCormack
- Moore Laboratory of Zoology Occidental College Los Angeles CA 90041 USA
| |
Collapse
|
25
|
Bryson RW, Savary WE, Zellmer AJ, Bury RB, McCormack JE. Genomic data reveal ancient microendemism in forest scorpions across the California Floristic Province. Mol Ecol 2016; 25:3731-51. [DOI: 10.1111/mec.13707] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/03/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Robert W. Bryson
- Department of Biology and Burke Museum of Natural History and Culture; University of Washington; Box 351800 Seattle WA 98195-1800 USA
| | - Warren E. Savary
- Department of Entomology; California Academy of Sciences; 55 Music Concourse Drive, Golden Gate Park San Francisco CA 94118 USA
| | - Amanda J. Zellmer
- Department of Biology; Occidental College; 1600 Campus Road Los Angeles CA 90041 USA
| | | | - John E. McCormack
- Department of Biology; Occidental College; 1600 Campus Road Los Angeles CA 90041 USA
- Moore Laboratory of Zoology; Occidental College; 1600 Campus Road Los Angeles CA 90041 USA
| |
Collapse
|
26
|
Engebretsen KN, Barrow LN, Rittmeyer EN, Brown JM, Moriarty Lemmon E. Quantifying the spatiotemporal dynamics in a chorus frog (Pseudacris) hybrid zone over 30 years. Ecol Evol 2016; 6:5013-31. [PMID: 27547330 PMCID: PMC4979724 DOI: 10.1002/ece3.2232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022] Open
Abstract
Although theory suggests that hybrid zones can move or change structure over time, studies supported by direct empirical evidence for these changes are relatively limited. We present a spatiotemporal genetic study of a hybrid zone between Pseudacris nigrita and P. fouquettei across the Pearl River between Louisiana and Mississippi. This hybrid zone was initially characterized in 1980 as a narrow and steep “tension zone,” in which hybrid populations were inferior to parentals and were maintained through a balance between selection and dispersal. We reanalyzed historical tissue samples and compared them to samples of recently collected individuals using microsatellites. Clinal analyses indicate that the cline has not shifted in roughly 30 years but has widened significantly. Anthropogenic and natural changes may have affected selective pressure or dispersal, and our results suggest that the zone may no longer best be described as a tension zone. To the best of our knowledge, this study provides the first evidence of significant widening of a hybrid cline but stasis of its center. Continued empirical study of dynamic hybrid zones will provide insight into the forces shaping their structure and the evolutionary potential they possess for the elimination or generation of species.
Collapse
Affiliation(s)
- Kristin N Engebretsen
- Department of Biological Science Florida State University 319 Stadium Drive Tallahassee Florida 32306
| | - Lisa N Barrow
- Department of Biological Science Florida State University 319 Stadium Drive Tallahassee Florida 32306
| | - Eric N Rittmeyer
- Department of Biological Sciences Museum of Natural Science Louisiana State University 202 Life Sciences Building Baton Rouge Louisiana 70803; Research School of Biology The Australian National University Gould Building 116 Canberra ACT 2601 Australia
| | - Jeremy M Brown
- Department of Biological Sciences Museum of Natural Science Louisiana State University 202 Life Sciences Building Baton Rouge Louisiana 70803
| | - Emily Moriarty Lemmon
- Department of Biological Science Florida State University 319 Stadium Drive Tallahassee Florida 32306
| |
Collapse
|
27
|
McEntee JP, Peñalba JV, Werema C, Mulungu E, Mbilinyi M, Moyer D, Hansen L, Fjeldså J, Bowie RCK. Social selection parapatry in Afrotropical sunbirds. Evolution 2016; 70:1307-21. [PMID: 27167078 DOI: 10.1111/evo.12950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 04/18/2016] [Accepted: 04/30/2016] [Indexed: 01/01/2023]
Abstract
The extent of range overlap of incipient and recent species depends on the type and magnitude of phenotypic divergence that separates them, and the consequences of phenotypic divergence on their interactions. Signal divergence by social selection likely initiates many speciation events, but may yield niche-conserved lineages predisposed to limit each others' ranges via ecological competition. Here, we examine this neglected aspect of social selection speciation theory in relation to the discovery of a nonecotonal species border between sunbirds. We find that Nectarinia moreaui and Nectarinia fuelleborni meet in a ∼6 km wide contact zone, as estimated by molecular cline analysis. These species exploit similar bioclimatic niches, but sing highly divergent learned songs, consistent with divergence by social selection. Cline analyses suggest that within-species stabilizing social selection on song-learning predispositions maintains species differences in song despite both hybridization and cultural transmission. We conclude that ecological competition between moreaui and fuelleborni contributes to the stabilization of the species border, but that ecological competition acts in conjunction with reproductive interference. The evolutionary maintenance of learned song differences in a hybrid zone recommend this study system for future studies on the mechanisms of learned song divergence and its role in speciation.
Collapse
Affiliation(s)
- Jay P McEntee
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, California, 94720. .,Current Address: Department of Biology, University of Florida, P. O. Box 118525, 220 Bartram Hall, Gainesville, Florida, 32611.
| | - Joshua V Peñalba
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, California, 94720.,Current Address: Australian National University, Canberra
| | - Chacha Werema
- Department of Zoology and Wildlife Conservation, University of Dar-es-salaam, Dar-es-salaam, Tanzania
| | | | | | - David Moyer
- Field Museum of Natural History, Chicago, Illinois, 60605
| | - Louis Hansen
- Center for Macroecology, Evolution and Climate, University of Copenhagen, Denmark
| | - Jon Fjeldså
- Center for Macroecology, Evolution and Climate, University of Copenhagen, Denmark
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, California, 94720
| |
Collapse
|
28
|
McCormack JE, Tsai WLE, Faircloth BC. Sequence capture of ultraconserved elements from bird museum specimens. Mol Ecol Resour 2015; 16:1189-203. [PMID: 26391430 DOI: 10.1111/1755-0998.12466] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/19/2015] [Accepted: 09/03/2015] [Indexed: 01/22/2023]
Abstract
New DNA sequencing technologies are allowing researchers to explore the genomes of the millions of natural history specimens collected prior to the molecular era. Yet, we know little about how well specific next-generation sequencing (NGS) techniques work with the degraded DNA typically extracted from museum specimens. Here, we use one type of NGS approach, sequence capture of ultraconserved elements (UCEs), to collect data from bird museum specimens as old as 120 years. We targeted 5060 UCE loci in 27 western scrub-jays (Aphelocoma californica) representing three evolutionary lineages that could be species, and we collected an average of 3749 UCE loci containing 4460 single nucleotide polymorphisms (SNPs). Despite older specimens producing fewer and shorter loci in general, we collected thousands of markers from even the oldest specimens. More sequencing reads per individual helped to boost the number of UCE loci we recovered from older specimens, but more sequencing was not as successful at increasing the length of loci. We detected contamination in some samples and determined that contamination was more prevalent in older samples that were subject to less sequencing. For the phylogeny generated from concatenated UCE loci, contamination led to incorrect placement of some individuals. In contrast, a species tree constructed from SNPs called within UCE loci correctly placed individuals into three monophyletic groups, perhaps because of the stricter analytical procedures used for SNP calling. This study and other recent studies on the genomics of museum specimens have profound implications for natural history collections, where millions of older specimens should now be considered genomic resources.
Collapse
Affiliation(s)
- John E McCormack
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, 90041, USA
| | - Whitney L E Tsai
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, 90041, USA
| | - Brant C Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
29
|
Chávez-Galarza J, Henriques D, Johnston JS, Carneiro M, Rufino J, Patton JC, Pinto MA. Revisiting the Iberian honey bee (Apis mellifera iberiensis) contact zone: maternal and genome-wide nuclear variations provide support for secondary contact from historical refugia. Mol Ecol 2015; 24:2973-92. [PMID: 25930679 DOI: 10.1111/mec.13223] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 12/30/2022]
Abstract
Dissecting diversity patterns of organisms endemic to Iberia has been truly challenging for a variety of taxa, and the Iberian honey bee is no exception. Surveys of genetic variation in the Iberian honey bee are among the most extensive for any honey bee subspecies. From these, differential and complex patterns of diversity have emerged, which have yet to be fully resolved. Here, we used a genome-wide data set of 309 neutrally tested single nucleotide polymorphisms (SNPs), scattered across the 16 honey bee chromosomes, which were genotyped in 711 haploid males. These SNPs were analysed along with an intergenic locus of the mtDNA, to reveal historical patterns of population structure across the entire range of the Iberian honey bee. Overall, patterns of population structure inferred from nuclear loci by multiple clustering approaches and geographic cline analysis were consistent with two major clusters forming a well-defined cline that bisects Iberia along a northeastern-southwestern axis, a pattern that remarkably parallels that of the mtDNA. While a mechanism of primary intergradation or isolation by distance could explain the observed clinal variation, our results are more consistent with an alternative model of secondary contact between divergent populations previously isolated in glacial refugia, as proposed for a growing list of other Iberian taxa. Despite current intense honey bee management, human-mediated processes have seemingly played a minor role in shaping Iberian honey bee genetic structure. This study highlights the complexity of the Iberian honey bee patterns and reinforces the importance of Iberia as a reservoir of Apis mellifera diversity.
Collapse
Affiliation(s)
- Julio Chávez-Galarza
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança, Campus de Sta. Apolónia, Apartado 1172, 5301-855, Bragança, Portugal.,Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Dora Henriques
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança, Campus de Sta. Apolónia, Apartado 1172, 5301-855, Bragança, Portugal.,Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | - Miguel Carneiro
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - José Rufino
- Polytechnic Institute of Bragança, 5301-857, Bragança, Portugal
| | - John C Patton
- Department of Forestry and Natural Resources, Purdue University, 715 W State St., West Lafayette, IN, 4797-2061, USA
| | - M Alice Pinto
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança, Campus de Sta. Apolónia, Apartado 1172, 5301-855, Bragança, Portugal
| |
Collapse
|
30
|
Gowen FC, Maley JM, Cicero C, Peterson AT, Faircloth BC, Warr TC, McCormack JE. Speciation in Western Scrub-Jays, Haldane's rule, and genetic clines in secondary contact. BMC Evol Biol 2014; 14:135. [PMID: 24938753 PMCID: PMC4078322 DOI: 10.1186/1471-2148-14-135] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/04/2014] [Indexed: 12/26/2022] Open
Abstract
Background Haldane’s Rule, the tendency for the heterogametic sex to show reduced fertility in hybrid crosses, can obscure the signal of gene flow in mtDNA between species where females are heterogametic. Therefore, it is important when studying speciation and species limits in female-heterogametic species like birds to assess the signature of gene flow in the nuclear genome as well. We studied introgression of microsatellites and mtDNA across a secondary contact zone between coastal and interior lineages of Western Scrub-Jays (Aphelocoma californica) to test for a signature of Haldane’s Rule: a narrower cline of introgression in mtDNA compared to nuclear markers. Results Our initial phylogeographic analysis revealed that there is only one major area of contact between coastal and interior lineages and identified five genetic clusters with strong spatial structuring: Pacific Slope, Interior US, Edwards Plateau (Texas), Northern Mexico, and Southern Mexico. Consistent with predictions from Haldane’s Rule, mtDNA showed a narrower cline than nuclear markers across a transect through the hybrid zone. This result is not being driven by female-biased dispersal because neutral diffusion analysis, which included estimates of sex-specific dispersal rates, also showed less diffusion of mtDNA. Lineage-specific plumage traits were associated with nuclear genetic profiles for individuals in the hybrid zone, indicating that these differences are under genetic control. Conclusions This study adds to a growing list of studies that support predictions of Haldane’s Rule using cline analysis of multiple loci of differing inheritance modes, although alternate hypotheses like selection on different mtDNA types cannot be ruled out. That Haldane’s Rule appears to be operating in this system suggests a measure of reproductive isolation between the Pacific Slope and interior lineages. Based on a variety of evidence from the phenotype, ecology, and genetics, we recommend elevating three lineages to species level: A. californica (Pacific Slope); A. woodhouseii (Interior US plus Edwards Plateau plus Northern Mexico); A. sumichrasti (Southern Mexico). The distinctive Edwards Plateau population in Texas, which was monophyletic in mtDNA except for one individual, should be studied in greater detail given habitat threat.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John E McCormack
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, USA.
| |
Collapse
|