1
|
Meriño BM, Villalobos-Barrantes HM, Guerrero PC. Pleistocene climate oscillations have shaped the expansion and contraction speciation model of the globose Eriosyce sect. Neoporteria cacti in Central Chile. ANNALS OF BOTANY 2024; 134:651-664. [PMID: 38824400 PMCID: PMC11523624 DOI: 10.1093/aob/mcae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND AND AIMS Pleistocene climatic oscillations, characterized by arid (interglacial) and pluvial (glacial) phases, have profoundly impacted the floras of Mediterranean climates. Our study investigates the hypothesis that these climatic extremes have promoted phases of range expansion and contraction in the Eriosyce sect. Neoporteria, resulting in pronounced genetic structuring and restricted gene flow. METHODS Using nuclear microsatellite markers, we genotyped 251 individuals across 18 populations, encompassing all 14 species and one subspecies within the Eriosyce sect. Neoporteria. Additionally, species distribution models were used to reconstruct past (Last Interglacial, Last Glacial Maximum and Mid-Holocene) and current potential distribution patterns, aiming to delineate the climatic influences on species range dynamics. KEY RESULTS The gene flow analysis disclosed disparate levels of genetic interchange among species, with marked restrictions observed between entities that are geographically or ecologically separated. Notably, Eriosyce subgibbosa from Hualpen emerged as genetically distinct, warranting its exclusion for clearer genetic clustering into north, central and south clusters. The species distribution models corroborated these findings, showing marked range expansions during warmer periods and contractions during colder times, indicating significant shifts in distribution patterns in response to climatic changes. CONCLUSIONS Our findings emphasize the critical role of Pleistocene climatic fluctuations in driving the dynamic patterns of range expansions and contractions that have led to geographical isolation and speciation within the Eriosyce sect. Neoporteria. Even in the face of ongoing gene flow, these climate-driven processes have played a pivotal role in sculpting the genetic architecture and diversity of species. This study elucidates the complex interplay between climatic variability and evolutionary dynamics among mediterranean cacti in central Chile, highlighting the necessity of considering historical climatic millennial oscillations in conservation and evolutionary biology studies.
Collapse
Affiliation(s)
- Beatriz M Meriño
- Departamento de Botánica, Facultad de Ciencias Naturales & Oceanográficas, Universidad de Concepción, 4030000, Concepción, Chile
- Institute of Ecology and Biodiversity (IEB), 4030000, Concepción, Chile
| | - Heidy M Villalobos-Barrantes
- Departamento de Botánica, Facultad de Ciencias Naturales & Oceanográficas, Universidad de Concepción, 4030000, Concepción, Chile
- Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Pablo C Guerrero
- Departamento de Botánica, Facultad de Ciencias Naturales & Oceanográficas, Universidad de Concepción, 4030000, Concepción, Chile
- Institute of Ecology and Biodiversity (IEB), 4030000, Concepción, Chile
- Millennium Institute Biodiversity of Antarctic and Sub-Antarctic Ecosystems, 7800003, Santiago, Chile
| |
Collapse
|
2
|
São-Mateus WMB, Fernandes MF, Queiroz LPD, Meireles JE, Jardim JG, Delgado-Salinas A, Dorado Ó, Lima HCD, Rodríguez RR, González Gutiérrez PA, Lewis GP, Wojciechowski MF, Cardoso D. Molecular phylogeny and divergence time of Harpalyce (Leguminosae, Papilionoideae), a lineage with amphitropical diversification in seasonally dry forests and savannas. Mol Phylogenet Evol 2024; 194:108031. [PMID: 38360081 DOI: 10.1016/j.ympev.2024.108031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Our knowledge of the systematics of the papilionoid legume tribe Brongniartieae has greatly benefitted from recent advances in molecular phylogenetics. The tribe was initially described to include species marked by a strongly bilabiate calyx and an embryo with a straight radicle, but recent research has placed taxa from the distantly related core Sophoreae and Millettieae within it. Despite these advances, the most species-rich genera within the Brongniartieae are still not well studied, and their morphological and biogeographical evolution remains poorly understood. Comprising 35 species, Harpalyce is one of these poorly studied genera. In this study, we present a comprehensive, multi-locus molecular phylogeny of the Brongniartieae, with an increased sampling of Harpalyce, to investigate morphological and biogeographical evolution within the group. Our results confirm the monophyly of Harpalyce and indicate that peltate glandular trichomes and a strongly bilabiate calyx with a carinal lip and three fused lobes are synapomorphies for the genus, which is internally divided into three distinct ecologically and geographically divergent lineages, corresponding to the previously recognized sections. Our biogeographical reconstructions demonstrate that Brongniartieae originated in South America during the Eocene, with subsequent pulses of diversification in South America, Mesoamerica, and Australia. Harpalyce also originated in South America during the Miocene at around 20 Ma, with almost synchronous later diversification in South America and Mexico/Mesoamerica beginning 10 Ma, but mostly during the Pliocene. Migration of Harpalyce from South to North America was accompanied by a biome and ecological shift from savanna to seasonally dry forest.
Collapse
Affiliation(s)
- Wallace M B São-Mateus
- Programa de Pós-Graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, 59072-970, Natal, Rio Grande do Norte, Brazil.
| | - Moabe Ferreira Fernandes
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s.n., Ondina, 40170-115 Salvador, Bahia, Brazil; Department of Geography, University of Exeter, Exeter, UK; Royal Botanic Gardens, Kew, Richmond TW93AE, UK
| | - Luciano Paganucci de Queiroz
- Universidade Estadual de Feira de Santana (HUEFS), Av. Transnordestina, s/n, Novo Horizonte, 44036-900 Feira de Santana, Bahia, Brazil
| | - José Eduardo Meireles
- School of Biology and Ecology, University of Maine, 5735 Hitchner Hall, 04469 Orono, ME, USA
| | - Jomar Gomes Jardim
- Universidade Federal do Sul da Bahia, Centro de Formação em Ciências Agroflorestais, Campus Jorge Amado, 45613-204 Itabuna, Bahia, Brazil; Herbário Centro de Pesquisas do Cacau - CEPEC, Km 29, Rod. Ilhéus-Itabuna, 45603-811 Itabuna, Bahia, Brazil
| | - Alfonso Delgado-Salinas
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-233, 04510 Coyoacán, Cd. México, Mexico
| | - Óscar Dorado
- Centro de Educación Ambiental e Investigación Sierra de Huautla, Universidad Autónoma del Estado de Morelos, Mexico
| | - Haroldo Cavalcante de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915 22460-030 Rio de Janeiro, Brazil
| | - Rosa Rankin Rodríguez
- Jardín Botánico Nacional, Universidad de la Habana, Carretera "El Rocío", km 3.5, Calabazar C.P. 19230, Boyeros, La Habana, Cuba
| | - Pedro Alejandro González Gutiérrez
- Centro de Investigaciones y Servicios Ambientales de Holguín (CISAT), CITMA, Calle 18 sn, entre 1ª y Maceo, Reparto "El Llano", Holguín 80 100, Cuba
| | | | | | - Domingos Cardoso
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s.n., Ondina, 40170-115 Salvador, Bahia, Brazil; Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915 22460-030 Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Dellinger AS, Paun O, Baar J, Temsch EM, Fernández‐Fernández D, Schönenberger J. Population structure in Neotropical plants: Integrating pollination biology, topography and climatic niches. Mol Ecol 2022; 31:2264-2280. [PMID: 35175652 PMCID: PMC9310734 DOI: 10.1111/mec.16403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Abstract
Animal pollinators mediate gene flow among plant populations, but in contrast to well-studied topographic and (Pleistocene) environmental isolating barriers, their impact on population genetic differentiation remains largely unexplored. Comparing how these multifarious factors drive microevolutionary histories is, however, crucial for better resolving macroevolutionary patterns of plant diversification. Here we combined genomic analyses with landscape genetics and niche modelling across six related Neotropical plant species (424 individuals across 33 localities) differing in pollination strategy to test the hypothesis that highly mobile (vertebrate) pollinators more effectively link isolated localities than less mobile (bee) pollinators. We found consistently higher genetic differentiation (FST ) among localities of bee- than vertebrate-pollinated species with increasing geographical distance, topographic barriers and historical climatic instability. High admixture among montane populations further suggested relative climatic stability of Neotropical montane forests during the Pleistocene. Overall, our results indicate that pollinators may differentially impact the potential for allopatric speciation, thereby critically influencing diversification histories at macroevolutionary scales.
Collapse
Affiliation(s)
- Agnes S. Dellinger
- Department of Botany and Biodiversity ResearchUniversity of ViennaWienAustria
- Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA
| | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaWienAustria
| | - Juliane Baar
- Department of Botany and Biodiversity ResearchUniversity of ViennaWienAustria
| | - Eva M. Temsch
- Department of Botany and Biodiversity ResearchUniversity of ViennaWienAustria
| | | | - Jürg Schönenberger
- Department of Botany and Biodiversity ResearchUniversity of ViennaWienAustria
| |
Collapse
|
4
|
Understanding Diversity and Systematics in Australian Fabaceae Tribe Mirbelieae. DIVERSITY 2021. [DOI: 10.3390/d13080391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Australia has a very diverse pea-flowered legume flora with 1715 native and naturalised species currently recognised. Tribe Mirbelieae s.l. includes 44% of Australia’s peas in 24 genera with 756 recognised species. However, several genera within the Pultenaea alliance in tribe Mirbelieae are considered to be non-monophyletic and two main options have been proposed: option one is to merge ca. 18 genera containing ca. 540 species (the largest genus, Pultenaea has nomenclatural priority); and option two is to re-circumscribe some genera and describe new genera as required to form monophyletic groups. At the species level, option one would require 76% of names to be changed; whereas based on available data, option two is likely to require, at most, 8.3% of names to change. Option two therefore provides the least nomenclatural disruption but cannot be implemented without a robust phylogenetic framework to define new generic limits. Here we present novel analyses of available plastid DNA data (trnL-F) which suggest that option two would be feasible once sufficient data are generated to resolve relationships. However, the reticulate evolutionary histories or past rapid speciation suggested for this group may prevent the resolution of all nodes. We propose targeted use of Next-Generation Sequencing technology as the best way to resolve relationships between the key clades in the tribe and present a framework for such a study. An overview of current taxonomy in the tribe is presented, along with the state of taxonomic knowledge and availability of published descriptions for electronic flora treatments. Several new combinations and typifications are published in an appendix.
Collapse
|
5
|
Rose JP, Sytsma KJ. Complex interactions underlie the correlated evolution of floral traits and their association with pollinators in a clade with diverse pollination systems. Evolution 2021; 75:1431-1449. [PMID: 33818785 DOI: 10.1111/evo.14220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 02/15/2021] [Accepted: 03/14/2021] [Indexed: 11/28/2022]
Abstract
Natural selection by pollinators is an important factor in the morphological diversity and adaptive radiation of flowering plants. Selection by similar pollinators in unrelated plants leads to convergence in floral morphology, or "floral syndromes." Previous investigations into floral syndromes have mostly studied relatively small and/or simple systems, emphasizing vertebrate pollination. Despite the importance of multiple floral traits in plant-pollinator interactions, these studies have examined few quantitative traits, so their co-variation and phenotypic integration have been underexplored. To gain better insights into pollinator-trait dynamics, we investigate the model system of the phlox family (Polemoniaceae), a clade of ∼400 species pollinated by a diversity of vectors. Using a comprehensive phylogeny and large dataset of traits and observations of pollinators, we reconstruct ancestral pollination system, accounting for the temporal history of pollinators. We conduct phylogenetically controlled analyses of trait co-variation and association with pollinators, integrating many analyses over phylogenetic uncertainty. Pollinator shifts are more heterogeneous than previously hypothesized. The evolution of floral traits is partially constrained by phylogenetic history and trait co-variation, but traits are convergent and differences are associated with different pollinators. Trait shifts are usually gradual, rather than rapid, suggesting complex genetic and ecological interactions of flowers at macroevolutionary scales.
Collapse
Affiliation(s)
- Jeffrey P Rose
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706.,Current Address: Department of Biology, University of Nebraska at Kearney, Kearney, Nebraska, 68849
| | - Kenneth J Sytsma
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
6
|
Wessinger CA. From pollen dispersal to plant diversification: genetic consequences of pollination mode. THE NEW PHYTOLOGIST 2021; 229:3125-3132. [PMID: 33159813 DOI: 10.1111/nph.17073] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Pollinators influence patterns of plant speciation, and one intuitive hypothesis is that pollinators affect rates of plant diversification through their effects on pollen dispersal. By specifying mating events and pollen flow across the landscape, distinct types of pollinators may cause different opportunities for allopatric speciation. This pollen dispersal-dependent speciation hypothesis predicts that pollination mode has effects on the spatial context of mating events that scale up to impact population structure and rates of species formation. Here I consider recent comparative studies, including genetic analyses of plant mating events, population structure and comparative phylogenetic analyses, to examine evidence for this model. These studies suggest that highly mobile pollinators conduct greater gene flow within and among populations, compared to less mobile pollinators. These differences influence patterns of population structure across the landscape. However, the effects of pollination mode on speciation rates is less predictable. In some contexts, the predicted effects of pollen dispersal are outweighed by other factors that govern speciation rates. A multiscale approach to examine effects of pollination mode on plant mating system, population structure and rates of diversification is key to determining the role of pollen dispersal on plant speciation for model clades.
Collapse
Affiliation(s)
- Carolyn A Wessinger
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 27708, USA
| |
Collapse
|
7
|
Ku YS, Contador CA, Ng MS, Yu J, Chung G, Lam HM. The Effects of Domestication on Secondary Metabolite Composition in Legumes. Front Genet 2020; 11:581357. [PMID: 33193705 PMCID: PMC7530298 DOI: 10.3389/fgene.2020.581357] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Legumes are rich in secondary metabolites, such as polyphenols, alkaloids, and saponins, which are important defense compounds to protect the plant against herbivores and pathogens, and act as signaling molecules between the plant and its biotic environment. Legume-sourced secondary metabolites are well known for their potential benefits to human health as pharmaceuticals and nutraceuticals. During domestication, the color, smell, and taste of crop plants have been the focus of artificial selection by breeders. Since these agronomic traits are regulated by secondary metabolites, the basis behind the genomic evolution was the selection of the secondary metabolite composition. In this review, we will discuss the classification, occurrence, and health benefits of secondary metabolites in legumes. The differences in their profiles between wild legumes and their cultivated counterparts will be investigated to trace the possible effects of domestication on secondary metabolite compositions, and the advantages and drawbacks of such modifications. The changes in secondary metabolite contents will also be discussed at the genetic level to examine the genes responsible for determining the secondary metabolite composition that might have been lost due to domestication. Understanding these genes would enable breeding programs and metabolic engineering to produce legume varieties with favorable secondary metabolite profiles for facilitating adaptations to a changing climate, promoting beneficial interactions with biotic factors, and enhancing health-beneficial secondary metabolite contents for human consumption.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Carolina A. Contador
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Jeongjun Yu
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
8
|
Affiliation(s)
- Alicia Toon
- School of Biological Sciences; The University of Queensland; Brisbane Queensland 4072 Australia
| | - L. Irene Terry
- School of Biological Sciences; University of Utah; Salt Lake City Utah USA
| | | | - Gimme H. Walter
- School of Biological Sciences; The University of Queensland; Brisbane Queensland 4072 Australia
| | - Lyn G. Cook
- School of Biological Sciences; The University of Queensland; Brisbane Queensland 4072 Australia
| |
Collapse
|
9
|
Guo W, Zhang X, Peng Q, Luo D, Jiao K, Su S. Love on wings, a Dof family protein regulates floral vasculature in Vigna radiata. BMC PLANT BIOLOGY 2019; 19:495. [PMID: 31726995 PMCID: PMC6854777 DOI: 10.1186/s12870-019-2099-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/24/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND The interaction among plants and their pollinators has been a major factor which enriched floral traits known as pollination syndromes and promoted the diversification of flowering plants. One of the bee-pollination syndromes in Faboideae with keel blossoms is the formation of a landing platform by wing and keel petals. However, the molecular mechanisms of elaborating a keel blossom remain unclear. RESULTS By performing large scale mutagenesis, we isolated and characterized a mutant in Vigna radiata, love on wings (low), which shows developmental defects in petal asymmetry and vasculature, leading to a failure in landing platform formation. We cloned the locus through map-based cloning together with RNA-sequencing (RNA-seq) analysis. We found that LOW encoded a nucleus-localized Dof-like protein and was expressed in the flower provascular and vascular tissues. A single copy of LOW was detected in legumes, in contrast with other taxa where there seems to be at least 2 copies. Thirty one Dof proteins have been identified from the V. radiata's genome, which can be further divided into four Major Cluster of Orthologous Groups (MCOGs). We also showed that ectopic expression of LOW in Arabidopsis driven by its native promoter caused changes in petal vasculature pattern. CONCLUSIONS To summarize, our study isolated a legume Dof-like factor LOW from V. radiata, which affects vasculature development in this species and this change can, in turn, impact petal development and overall morphology of keel blossom.
Collapse
Affiliation(s)
- Wuxiu Guo
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Haizhu district, Guangzhou, 510275 Guangdong China
| | - Xue Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Haizhu district, Guangzhou, 510275 Guangdong China
| | - Qincheng Peng
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Haizhu district, Guangzhou, 510275 Guangdong China
| | - Da Luo
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Haizhu district, Guangzhou, 510275 Guangdong China
| | - Keyuan Jiao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632 Guangdong China
| | - Shihao Su
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan
| |
Collapse
|
10
|
Pauw A. A Bird's-Eye View of Pollination: Biotic Interactions as Drivers of Adaptation and Community Change. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024845] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nectarivorous birds and bird-pollinated plants are linked by a network of interactions. Here I ask how these interactions influence evolution and community composition. I find near complete evidence for the effect of birds on plant evolution. Experiments show the process in action—birds select among floral phenotypes in a population—and comparative studies find the resulting pattern—bird-pollinated species have long-tubed, red flowers with large nectar volumes. Speciation is accomplished in one “magical” step when adaptation for bird pollination brings about divergent morphology and reproductive isolation. In contrast, evidence that plants drive bird evolution is fragmentary. Studies of selection on population-level variation are lacking, but the resulting pattern is clear—nectarivorous birds have evolved a remarkable number of times and often have long bills and brush-tipped or tubular tongues. At the level of the ecological guild, birds select among plant species via an effect on seed set and thus determine plant community composition. Plants simultaneously influence the relative fitness of bird species and thus determine the composition of the bird guild. Interaction partners may give one guild member a constant fitness advantage, resulting in competitive exclusion and community change, or may act as limiting resources that depress the fitness of frequent species, thus stabilizing community composition and allowing the coexistence of diversity within bird and plant guilds.
Collapse
Affiliation(s)
- Anton Pauw
- Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa
| |
Collapse
|
11
|
Bezemer N, Hopper SD, Krauss SL, Phillips RD, Roberts DG. Primary pollinator exclusion has divergent consequences for pollen dispersal and mating in different populations of a bird‐pollinated tree. Mol Ecol 2019; 28:4883-4898. [DOI: 10.1111/mec.15264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Nicole Bezemer
- Centre of Excellence in Natural Resource Management School of Agriculture and Environment The University of Western Australia Albany WA Australia
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
| | - Stephen D. Hopper
- Centre of Excellence in Natural Resource Management School of Agriculture and Environment The University of Western Australia Albany WA Australia
| | - Siegy L. Krauss
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
- Biological Sciences The University of Western Australia Crawley WA Australia
| | - Ryan D. Phillips
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
- Department of Ecology, Environment and Evolution La Trobe University Melbourne Vic. Australia
| | - David G. Roberts
- Centre of Excellence in Natural Resource Management School of Agriculture and Environment The University of Western Australia Albany WA Australia
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
| |
Collapse
|
12
|
“Pro-bird” floral traits discourage bumblebee visits to Penstemon gentianoides (Plantaginaceae), a mixed-pollinated herb. Naturwissenschaften 2018; 106:1. [DOI: 10.1007/s00114-018-1595-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
|
13
|
Lamont BB, He T, Yan Z. Evolutionary history of fire‐stimulated resprouting, flowering, seed release and germination. Biol Rev Camb Philos Soc 2018; 94:903-928. [DOI: 10.1111/brv.12483] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/23/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Byron B. Lamont
- School of Molecular and Life Sciences Curtin University PO Box U1987, Perth, WA 6845 Australia
| | - Tianhua He
- School of Molecular and Life Sciences Curtin University PO Box U1987, Perth, WA 6845 Australia
| | - Zhaogui Yan
- College of Horticulture and Forestry Sciences Huazhong Agricultural University Wuhan 430070 China
| |
Collapse
|
14
|
Genetic differentiation and diversity of two sympatric subspecies of Castilleja affinis; a comparison between the endangered serpentine endemic (spp. neglecta) and its widespread congener (ssp. affinis). CONSERV GENET 2017. [DOI: 10.1007/s10592-017-1009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Salas-Arcos L, Lara C, Ornelas JF. Reproductive biology and nectar secretion dynamics of Penstemon gentianoides (Plantaginaceae): a perennial herb with a mixed pollination system? PeerJ 2017; 5:e3636. [PMID: 28828248 PMCID: PMC5554440 DOI: 10.7717/peerj.3636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/12/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND In many plant species, pollination syndromes predict the most effective pollinator. However, other floral visitors may also offer effective pollination services and promote mixed pollination systems. Several species of the species-rich Penstemon (Plantaginaceae) exhibit a suite of floral traits that suggest adaptation for pollination by both hymenopterans and hummingbirds. Transitions from the ancestral hymenopteran pollination syndrome to more derived hummingbird pollination syndrome may be promoted if the quantity or quality of visits by hummingbirds is increased and if the ancestral pollinator group performs less efficiently. The quantification of such shifts in pollination systems in the group is still limited. We aimed to investigate floral traits linked to this pollination syndrome in Penstemon gentianoides with flowers visited by bumblebees and hummingbirds. METHODS We investigated the floral biology, pollinator assemblages, breeding system and nectar production patterns of P. gentianoides inhabiting a temperate montane forest in central Mexico. Pollination experiments were also conducted to assess the pollinator effectiveness of bumblebees and hummingbirds. RESULTS P. gentianoides flowers are protandrous, with 8-d male phase (staminate) flowers, followed by the ∼1-7 d female phase (pistillate phase). Flowers display traits associated with hymenopteran pollination, including purple flowers abruptly ampliate-ventricose to a broad throat with anthers and stigmas included, and long lifespans. However, the nectar available in the morning hours was abundant and dilute, traits linked to flowers with a hummingbird pollination syndrome. Two hummingbird species made most of the visits to flowers, Selasphorus platycercus (30.3% of all visits), followed by Archilochus colubris (11.3%). Bumblebees (Bombus ephippiatus, B. huntii and B. weisi) accounted for 51.8% of all recorded visits, but their foraging activity was restricted to the warmer hours. Hummingbirds made more foraging bouts and visited more flowers than hymenopteran species. Flowers experimentally pollinated by B. ephippiatus produced significantly more fruits than those pollinated by S. platycercus. However, there was no statistical difference in the number of seeds produced per fruit when a bumblebee or a hummingbird was the pollinator. CONCLUSIONS We have shown that bumblebees and hummingbirds visit and pollinate P. gentianoides flowers. Despite floral traits resembling the hymenoptera pollination syndrome, flowers of P. gentianoides offer characteristic nectar rewards to flowers with a hummingbird pollination syndrome. Although pollination efficiency is higher among flowers visited by hymenoptera, the noteworthy percentage of fruit production and number of seeds per fruit derived from hummingbird pollination highlights the importance of hummingbirds as a functional group of pollinators that might have potential evolutionary consequences to the plants.
Collapse
Affiliation(s)
- Lucía Salas-Arcos
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxala, Mexico
| | - Carlos Lara
- Centro de Investigaciones en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | | |
Collapse
|
16
|
Tripp EA, Tsai YHE. Disentangling geographical, biotic, and abiotic drivers of plant diversity in neotropical Ruellia (Acanthaceae). PLoS One 2017; 12:e0176021. [PMID: 28472046 PMCID: PMC5417425 DOI: 10.1371/journal.pone.0176021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/04/2017] [Indexed: 11/19/2022] Open
Abstract
It has long been hypothesized that biotic interactions are important drivers of biodiversity evolution, yet such interactions have been relatively less studied than abiotic factors owing to the inherent complexity in and the number of types of such interactions. Amongst the most prominent of biotic interactions worldwide are those between plants and pollinators. In the Neotropics, the most biodiverse region on Earth, hummingbird and bee pollination have contributed substantially to plant fitness. Using comparative methods, we test the macroevolutionary consequences of bird and bee pollination within a species rich lineage of flowering plants: Ruellia. We additionally explore impacts of species occupancy of ever-wet rainforests vs. dry ecosystems including cerrado and seasonally dry tropical forests. We compared outcomes based on two different methods of model selection: a traditional approach that utilizes a series of transitive likelihood ratio tests as well as a weighted model averaging approach. Analyses yield evidence for increased net diversification rates among Neotropical Ruellia (compared to Paleotropical lineages) as well as among hummingbird-adapted species. In contrast, we recovered no evidence of higher diversification rates among either bee- or non-bee-adapted lineages and no evidence for higher rates among wet or dry habitat lineages. Understanding fully the factors that have contributed to biases in biodiversity across the planet will ultimately depend upon incorporating knowledge of biotic interactions as well as connecting microevolutionary processes to macroevolutionary patterns.
Collapse
Affiliation(s)
- Erin A. Tripp
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
- Museum of Natural History, University of Colorado, Boulder, Colorado, United States of America
| | - Yi-Hsin Erica Tsai
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
- Museum of Natural History, University of Colorado, Boulder, Colorado, United States of America
| |
Collapse
|
17
|
Krauss SL, Phillips RD, Karron JD, Johnson SD, Roberts DG, Hopper SD. Novel Consequences of Bird Pollination for Plant Mating. TRENDS IN PLANT SCIENCE 2017; 22:395-410. [PMID: 28412035 DOI: 10.1016/j.tplants.2017.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/12/2017] [Accepted: 03/07/2017] [Indexed: 06/07/2023]
Abstract
Pollinator behaviour has profound effects on plant mating. Pollinators are predicted to minimise energetic costs during foraging bouts by moving between nearby flowers. However, a review of plant mating system studies reveals a mismatch between behavioural predictions and pollen-mediated gene dispersal in bird-pollinated plants. Paternal diversity of these plants is twice that of plants pollinated solely by insects. Comparison with the behaviour of other pollinator groups suggests that birds promote pollen dispersal through a combination of high mobility, limited grooming, and intra- and interspecies aggression. Future opportunities to test these predictions include seed paternity assignment following pollinator exclusion experiments, single pollen grain genotyping, new tracking technologies for small pollinators, and motion-triggered cameras and ethological experimentation for quantifying pollinator behaviour.
Collapse
Affiliation(s)
- Siegfried L Krauss
- Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, Fraser Avenue, Kings Park, WA 6005, Australia; School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Ryan D Phillips
- Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, Fraser Avenue, Kings Park, WA 6005, Australia; School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Jeffrey D Karron
- Department of Biological Sciences, PO Box 413, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Steven D Johnson
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| | - David G Roberts
- Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, Fraser Avenue, Kings Park, WA 6005, Australia; Centre of Excellence in Natural Resource Management and School of Plant Biology, University of Western Australia, 35 Stirling Terrace, Albany, WA 6330, Australia
| | - Stephen D Hopper
- Centre of Excellence in Natural Resource Management and School of Plant Biology, University of Western Australia, 35 Stirling Terrace, Albany, WA 6330, Australia
| |
Collapse
|
18
|
|
19
|
Distribution and Evolution of Mycorrhizal Types and Other Specialised Roots in Australia. BIOGEOGRAPHY OF MYCORRHIZAL SYMBIOSIS 2017. [DOI: 10.1007/978-3-319-56363-3_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Tedersoo L. Global Biogeography and Invasions of Ectomycorrhizal Plants: Past, Present and Future. BIOGEOGRAPHY OF MYCORRHIZAL SYMBIOSIS 2017. [DOI: 10.1007/978-3-319-56363-3_20] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
21
|
André T, Salzman S, Wendt T, Specht CD. Speciation dynamics and biogeography of Neotropical spiral gingers (Costaceae). Mol Phylogenet Evol 2016; 103:55-63. [PMID: 27400627 DOI: 10.1016/j.ympev.2016.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
Species can arise via the divisive effects of allopatry as well as due to ecological and/or reproductive character displacement within sympatric populations. Two separate lineages of Costaceae are native to the Neotropics; an early-diverging clade endemic to South America (consisting of ca. 16 species in the genera Monocostus, Dimerocostus and Chamaecostus); and the Neotropical Costus clade (ca. 50 species), a diverse assemblage of understory herbs comprising nearly half of total familial species richness. We use a robust dated molecular phylogeny containing most of currently known species to inform macroevolutionary reconstructions, enabling us to examine the context of speciation in Neotropical lineages. Analyses of speciation rate revealed a significant variation among clades, with a rate shift at the most recent common ancestor of the Neotropical Costus clade. There is an overall predominance of allopatric speciation in the South American clade, as most species display little range overlap. In contrast, sympatry is much higher within the Neotropical Costus clade, independent of node age. Our results show that speciation dynamics during the history of Costaceae is strongly heterogeneous, and we suggest that the Costus radiation in the Neotropics arose at varied geographic contexts.
Collapse
Affiliation(s)
- Thiago André
- Departments of Plant and Microbial Biology and Integrative Biology, University of California at Berkeley, 431 Koshland Hall, Berkeley, CA 94720-3102, USA.
| | - Shayla Salzman
- Departments of Plant and Microbial Biology and Integrative Biology, University of California at Berkeley, 431 Koshland Hall, Berkeley, CA 94720-3102, USA.
| | - Tânia Wendt
- Departamento de Botânica, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Sala A1-050, Bloco A, CCS, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Chelsea D Specht
- Departments of Plant and Microbial Biology and Integrative Biology, University of California at Berkeley, 431 Koshland Hall, Berkeley, CA 94720-3102, USA.
| |
Collapse
|
22
|
de Queiroz LP, Pastore JFB, Cardoso D, Snak C, de C. Lima AL, Gagnon E, Vatanparast M, Holland AE, Egan AN. A multilocus phylogenetic analysis reveals the monophyly of a recircumscribed papilionoid legume tribe Diocleae with well-supported generic relationships. Mol Phylogenet Evol 2015; 90:1-19. [DOI: 10.1016/j.ympev.2015.04.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/16/2015] [Accepted: 04/19/2015] [Indexed: 01/07/2023]
|
23
|
Reck-Kortmann M, Silva-Arias GA, Segatto ALA, Mäder G, Bonatto SL, de Freitas LB. Multilocus phylogeny reconstruction: new insights into the evolutionary history of the genus Petunia. Mol Phylogenet Evol 2014; 81:19-28. [PMID: 25196589 DOI: 10.1016/j.ympev.2014.08.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/18/2014] [Accepted: 08/22/2014] [Indexed: 12/25/2022]
Abstract
The phylogeny of Petunia species has been difficult to resolve, primarily due to the recent diversification of the genus. Several studies have included molecular data in phylogenetic reconstructions of this genus, but all of them have failed to include all taxa and/or analyzed few genetic markers. In the present study, we employed the most inclusive genetic and taxonomic datasets for the genus, aiming to reconstruct the evolutionary history of Petunia based on molecular phylogeny, biogeographic distribution, and character evolution. We included all 20 Petunia morphological species or subspecies in these analyses. Based on nine nuclear and five plastid DNA markers, our phylogenetic analysis reinforces the monophyly of the genus Petunia and supports the hypothesis that the basal divergence is more related to the differentiation of corolla tube length, whereas the geographic distribution of species is more related to divergences within these main clades. Ancestral area reconstructions suggest the Pampas region as the area of origin and earliest divergence in Petunia. The state reconstructions suggest that the ancestor of Petunia might have had a short corolla tube and a bee pollination floral syndrome.
Collapse
Affiliation(s)
- Maikel Reck-Kortmann
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Gustavo Adolfo Silva-Arias
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Ana Lúcia Anversa Segatto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Geraldo Mäder
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Sandro Luis Bonatto
- Laboratory of Genomic and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90610-001, Brazil
| | - Loreta Brandão de Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil.
| |
Collapse
|