1
|
Thumbadoo KM, Dieriks BV, Murray HC, Swanson MEV, Yoo JH, Mehrabi NF, Turner C, Dragunow M, Faull RLM, Curtis MA, Siddique T, Shaw CE, Newell KL, Henden L, Williams KL, Nicholson GA, Scotter EL. Hippocampal aggregation signatures of pathogenic UBQLN2 in amyotrophic lateral sclerosis and frontotemporal dementia. Brain 2024; 147:3547-3561. [PMID: 38703371 PMCID: PMC11449146 DOI: 10.1093/brain/awae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 05/06/2024] Open
Abstract
Pathogenic variants in the UBQLN2 gene cause X-linked dominant amyotrophic lateral sclerosis and/or frontotemporal dementia characterized by ubiquilin 2 aggregates in neurons of the motor cortex, hippocampus and spinal cord. However, ubiquilin 2 neuropathology is also seen in sporadic and familial amyotrophic lateral sclerosis and/or frontotemporal dementia cases not caused by UBQLN2 pathogenic variants, particularly C9orf72-linked cases. This makes the mechanistic role of mutant ubiquilin 2 protein and the value of ubiquilin 2 pathology for predicting genotype unclear. Here we examine a cohort of 44 genotypically diverse amyotrophic lateral sclerosis cases with or without frontotemporal dementia, including eight cases with UBQLN2 variants [resulting in p.S222G, p.P497H, p.P506S, p.T487I (two cases) and p.P497L (three cases)]. Using multiplexed (five-label) fluorescent immunohistochemistry, we mapped the co-localization of ubiquilin 2 with phosphorylated TDP-43, dipeptide repeat aggregates and p62 in the hippocampus of controls (n = 6), or amyotrophic lateral sclerosis with or without frontotemporal dementia in sporadic (n = 20), unknown familial (n = 3), SOD1-linked (n = 1), FUS-linked (n = 1), C9orf72-linked (n = 5) and UBQLN2-linked (n = 8) cases. We differentiate between (i) ubiquilin 2 aggregation together with phosphorylated TDP-43 or dipeptide repeat proteins; and (ii) ubiquilin 2 self-aggregation promoted by UBQLN2 pathogenic variants that cause amyotrophic lateral sclerosis and/or frontotemporal dementia. Overall, we describe a hippocampal protein aggregation signature that fully distinguishes mutant from wild-type ubiquilin 2 in amyotrophic lateral sclerosis with or without frontotemporal dementia, whereby mutant ubiquilin 2 is more prone than wild-type to aggregate independently of driving factors. This neuropathological signature can be used to assess the pathogenicity of UBQLN2 gene variants and to understand the mechanisms of UBQLN2-linked disease.
Collapse
Affiliation(s)
- Kyrah M Thumbadoo
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
| | - Birger V Dieriks
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Helen C Murray
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Molly E V Swanson
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Ji Hun Yoo
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1010, New Zealand
| | - Nasim F Mehrabi
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Clinton Turner
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland 1010, New Zealand
| | - Michael Dragunow
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1010, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Teepu Siddique
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Christopher E Shaw
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- UK Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lyndal Henden
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kelly L Williams
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Garth A Nicholson
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Northcott Neuroscience Laboratory, Australian and New Zealand Army Corps (ANZAC) Research Institute, Concord, New South Wales 2139, Australia
- Faculty of Medicine, University of Sydney, Sydney, New South Wales 2050, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia
| | - Emma L Scotter
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Kamada Y, Ohnishi Y, Nakashima C, Fujii A, Terakawa M, Hamano I, Nakayamada U, Katoh S, Hirata N, Tateishi H, Fukuda R, Takahashi H, Lukacs GL, Okiyoneda T. HERC3 facilitates ERAD of select membrane proteins by recognizing membrane-spanning domains. J Cell Biol 2024; 223:e202308003. [PMID: 38722278 PMCID: PMC11082371 DOI: 10.1083/jcb.202308003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 05/12/2024] Open
Abstract
Aberrant proteins located in the endoplasmic reticulum (ER) undergo rapid ubiquitination by multiple ubiquitin (Ub) E3 ligases and are retrotranslocated to the cytosol as part of the ER-associated degradation (ERAD). Despite several ERAD branches involving different Ub E3 ligases, the molecular machinery responsible for these ERAD branches in mammalian cells remains not fully understood. Through a series of multiplex knockdown/knockout experiments with real-time kinetic measurements, we demonstrate that HERC3 operates independently of the ER-embedded ubiquitin ligases RNF5 and RNF185 (RNF5/185) to mediate the retrotranslocation and ERAD of misfolded CFTR. While RNF5/185 participates in the ERAD process of both misfolded ABCB1 and CFTR, HERC3 uniquely promotes CFTR ERAD. In vitro assay revealed that HERC3 directly interacts with the exposed membrane-spanning domains (MSDs) of CFTR but not with the MSDs embedded in liposomes. Therefore, HERC3 could play a role in the quality control of MSDs in the cytoplasm and might be crucial for the ERAD pathway of select membrane proteins.
Collapse
Affiliation(s)
- Yuka Kamada
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Yuko Ohnishi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Chikako Nakashima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Aika Fujii
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Mana Terakawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Ikuto Hamano
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Uta Nakayamada
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Saori Katoh
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Noriaki Hirata
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Hazuki Tateishi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Ryosuke Fukuda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Hirotaka Takahashi
- Division of Cell-Free Sciences, Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
| | - Gergely L. Lukacs
- Department of Physiology, McGill University, Montréal, Canada
- Department of Biochemistry, McGill University, Montréal, Canada
| | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
3
|
Dao TP, Rajendran A, Galagedera SKK, Haws W, Castañeda CA. Short disordered termini and proline-rich domain are major regulators of UBQLN1/2/4 phase separation. Biophys J 2024; 123:1449-1457. [PMID: 38041404 PMCID: PMC11163289 DOI: 10.1016/j.bpj.2023.11.3401] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/03/2023] Open
Abstract
Highly homologous ubiquitin-binding shuttle proteins UBQLN1, UBQLN2, and UBQLN4 differ in both their specific protein quality control functions and their propensities to localize to stress-induced condensates, cellular aggregates, and aggresomes. We previously showed that UBQLN2 phase separates in vitro, and that the phase separation propensities of UBQLN2 deletion constructs correlate with their ability to form condensates in cells. Here, we demonstrated that full-length UBQLN1, UBQLN2, and UBQLN4 exhibit distinct phase behaviors in vitro. Strikingly, UBQLN4 phase separates at a much lower saturation concentration than UBQLN1. However, neither UBQLN1 nor UBQLN4 phase separates with a strong temperature dependence, unlike UBQLN2. We determined that the temperature-dependent phase behavior of UBQLN2 stems from its unique proline-rich region, which is absent in the other UBQLNs. We found that the short N-terminal disordered regions of UBQLN1, UBQLN2, and UBQLN4 inhibit UBQLN phase separation via electrostatics interactions. Charge variants of the N-terminal regions exhibit altered phase behaviors. Consistent with the sensitivity of UBQLN phase separation to the composition of the N-terminal regions, epitope tags placed on the N-termini of the UBQLNs tune phase separation. Overall, our in vitro results have important implications for studies of UBQLNs in cells, including the identification of phase separation as a potential mechanism to distinguish the cellular roles of UBQLNs and the need to apply caution when using epitope tags to prevent experimental artifacts.
Collapse
Affiliation(s)
- Thuy P Dao
- Departments of Biology and Chemistry, Syracuse University, Syracuse, New York
| | - Anitha Rajendran
- Departments of Biology and Chemistry, Syracuse University, Syracuse, New York
| | | | - William Haws
- Departments of Biology and Chemistry, Syracuse University, Syracuse, New York
| | - Carlos A Castañeda
- Departments of Biology and Chemistry, Syracuse University, Syracuse, New York; Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, New York; BioInspired Institute, Syracuse University, Syracuse, New York.
| |
Collapse
|
4
|
Jiang Q, Chen H, Zhou S, Zhu T, Liu W, Wu H, Zhang Y, Liu F, Sun Y. Ubiquilin-4 induces immune escape in gastric cancer by activating the notch signaling pathway. Cell Oncol (Dordr) 2024; 47:303-319. [PMID: 37702916 DOI: 10.1007/s13402-023-00869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/14/2023] Open
Abstract
PURPOSE We aimed to investigate the role of ubiquilin-4 in predicting the immunotherapy response in gastric cancer. METHODS Retrospective RNA-sequencing and immunohistochemical analysis were performed for patients with gastric cancer who received programmed death-1 blockade therapy after recurrence. Multiplex immunohistochemistry identified immune cell types in gastric cancer tissues. We used immunocompetent 615 mice and immunodeficient nude mice to perform tumorigenic experiments. RESULTS Ubiquilin-4 expression was significantly higher in responders (p < 0.05, false discovery rate > 2.5) and showed slight superiority over programmed death ligand 1 in predicting programmed death-1 inhibitor therapy response (area under the curve: 87.08 vs. 72.50). Ubiquilin-4-high patients exhibited increased CD4+ and CD8+ T cells, T follicular helper cells, monocytes, and macrophages. Ubiquilin-4-overexpressed mouse forestomach carcinoma cells showed significantly enhanced growth in immunocompetent mice but not in immunodeficient mice. Upregulation or downregulation of ubiquilin-4 synergistically affected programmed death ligand 1 at the protein and messenger RNA levels. Functional enrichment analysis revealed significant enrichment of the Notch, JAK-STAT, and WNT signaling pathways in ubiquilin-4-high gastric cancers. Ubiquilin-4 promoted Numb degaration, activating the Notch signaling pathway and upregulating programmed death ligand 1. CONCLUSIONS Ubiquilin-4 may contribute to immune escape in gastric cancer by upregulating programmed death ligand 1 expression in tumor cells through Notch signaling activation. Thus, ubiquilin-4 could serve as a predictive marker for programmed death ligand 1 inhibitor therapy response in gastric cancer.
Collapse
Affiliation(s)
- Quan Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Retroperitoneal Tumor and Soft Tissue Sarcoma Surgery, Fudan University, Shanghai, China
| | - Hao Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shixin Zhou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Retroperitoneal Tumor and Soft Tissue Sarcoma Surgery, Fudan University, Shanghai, China
| | - Wenshuai Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Retroperitoneal Tumor and Soft Tissue Sarcoma Surgery, Fudan University, Shanghai, China.
| | - Fenglin Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yihong Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Dao TP, Rajendran A, Galagedera SKK, Haws W, Castañeda CA. Short N-terminal disordered regions and the proline-rich domain are major regulators of phase transitions for full-length UBQLN1, UBQLN2 and UBQLN4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559790. [PMID: 37808720 PMCID: PMC10557701 DOI: 10.1101/2023.09.27.559790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Highly homologous ubiquitin-binding shuttle proteins UBQLN1, UBQLN2 and UBQLN4 differ in both their specific protein quality control functions and their propensities to localize to stress-induced condensates, cellular aggregates and aggresomes. We previously showed that UBQLN2 phase separates in vitro, and that the phase separation propensities of UBQLN2 deletion constructs correlate with their ability to form condensates in cells. Here, we demonstrated that full-length UBQLN1, UBQLN2 and UBQLN4 exhibit distinct phase behaviors in vitro. Strikingly, UBQLN4 phase separates at a much lower saturation concentration than UBQLN1. However, neither UBQLN1 nor UBQLN4 phase separates with a strong temperature dependence, unlike UBQLN2. We determined that the temperature-dependent phase behavior of UBQLN2 stems from its unique proline-rich (Pxx) region, which is absent in the other UBQLNs. We found that the short N-terminal disordered regions of UBQLN1, UBQLN2 and UBQLN4 inhibit UBQLN phase separation via electrostatics interactions. Charge variants of the N-terminal regions exhibit altered phase behaviors. Consistent with the sensitivity of UBQLN phase separation to the composition of the N-terminal regions, epitope tags placed on the N-termini of the UBQLNs tune phase separation. Overall, our in vitro results have important implications for studies of UBQLNs in cells, including the identification of phase separation as a potential mechanism to distinguish the cellular roles of UBQLNs, and the need to apply caution when using epitope tags to prevent experimental artifacts.
Collapse
Affiliation(s)
- Thuy P. Dao
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Anitha Rajendran
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | | | - William Haws
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Carlos A. Castañeda
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, USA
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
6
|
Gu X, Nardone C, Kamitaki N, Mao A, Elledge SJ, Greenberg ME. The midnolin-proteasome pathway catches proteins for ubiquitination-independent degradation. Science 2023; 381:eadh5021. [PMID: 37616343 PMCID: PMC10617673 DOI: 10.1126/science.adh5021] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/11/2023] [Indexed: 08/26/2023]
Abstract
Cells use ubiquitin to mark proteins for proteasomal degradation. Although the proteasome also eliminates proteins that are not ubiquitinated, how this occurs mechanistically is unclear. Here, we found that midnolin promoted the destruction of many nuclear proteins, including transcription factors encoded by the immediate-early genes. Diverse stimuli induced midnolin, and its overexpression was sufficient to cause the degradation of its targets by a mechanism that did not require ubiquitination. Instead, midnolin associated with the proteasome via an α helix, used its Catch domain to bind a region within substrates that can form a β strand, and used a ubiquitin-like domain to promote substrate destruction. Thus, midnolin contains three regions that function in concert to target a large set of nuclear proteins to the proteasome for degradation.
Collapse
Affiliation(s)
- Xin Gu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Nardone
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Nolan Kamitaki
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Aoyue Mao
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Stephen J. Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
7
|
Ni R, Jiang J, Zhao M, Huang S, Huang C. Knockdown of UBQLN1 Functions as a Strategy to Inhibit CRC Progression through the ERK-c-Myc Pathway. Cancers (Basel) 2023; 15:3088. [PMID: 37370699 DOI: 10.3390/cancers15123088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
PURPOSE Colorectal cancer (CRC) is characterized by the absence of obvious symptoms in the early stage. Due to the high rate of late diagnosis of CRC patients, the mortality rate of CRC is higher than that of other malignant tumors. Accumulating evidence has demonstrated that UBQLN1 plays an important role in many biological processes. However, the role of UBQLN1 in CRC progression is still elusive. METHODS AND RESULTS we found that UBQLN1 was significantly highly expressed in CRC tissues compared with normal tissues. Enhanced/reduced UBQLN1 promoted/inhibited CRC cell proliferation, colony formation, epithelial-mesenchymal transition (EMT) in vitro, and knockdown of UBQLN1 inhibited CRC cells' tumorigenesis and metastasis in nude mice in vivo. Moreover, the knockdown of UBQLN1 reduced the expression of c-Myc by downregulating the ERK-MAPK pathway. Furthermore, the elevation of c-Myc in UBQLN1-deficient cells rescued proliferation caused by UBQLN1 silencing. CONCLUSIONS Knockdown of UBQLN1 inhibits the progression of CRC through the ERK-c-Myc pathway, which provides new insights into the mechanism of CRC progression. UBQLN1 may be a potential prognostic biomarker and therapeutic target of CRC.
Collapse
Affiliation(s)
- Ruoxuan Ni
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianwei Jiang
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mei Zhao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shengkai Huang
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Changzhi Huang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
8
|
Black HH, Hanson JL, Roberts JE, Leslie SN, Campodonico W, Ebmeier CC, Holling GA, Tay JW, Matthews AM, Ung E, Lau CI, Whiteley AM. UBQLN2 restrains the domesticated retrotransposon PEG10 to maintain neuronal health in ALS. eLife 2023; 12:e79452. [PMID: 36951542 PMCID: PMC10076021 DOI: 10.7554/elife.79452] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron dysfunction and loss. A portion of ALS cases are caused by mutation of the proteasome shuttle factor Ubiquilin 2 (UBQLN2), but the molecular pathway leading from UBQLN2 dysfunction to disease remains unclear. Here, we demonstrate that UBQLN2 regulates the domesticated gag-pol retrotransposon 'paternally expressed gene 10 (PEG10)' in human cells and tissues. In cells, the PEG10 gag-pol protein cleaves itself in a mechanism reminiscent of retrotransposon self-processing to generate a liberated 'nucleocapsid' fragment, which uniquely localizes to the nucleus and changes the expression of genes involved in axon remodeling. In spinal cord tissue from ALS patients, PEG10 gag-pol is elevated compared to healthy controls. These findings implicate the retrotransposon-like activity of PEG10 as a contributing mechanism in ALS through the regulation of gene expression, and restraint of PEG10 as a primary function of UBQLN2.
Collapse
Affiliation(s)
- Holly H Black
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | - Jessica L Hanson
- Institute for Behavioral Genetics, University of Colorado BoulderBoulderUnited States
| | - Julia E Roberts
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | - Shannon N Leslie
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | - Will Campodonico
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | | | - G Aaron Holling
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | - Jian Wei Tay
- Biofrontiers Institute, University of Colorado BoulderBoulderUnited States
| | - Autumn M Matthews
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | - Elizabeth Ung
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | - Cristina I Lau
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | | |
Collapse
|
9
|
Phung TH, Tatman M, Monteiro MJ. UBQLN2 undergoes a reversible temperature-induced conformational switch that regulates binding with HSPA1B: ALS/FTD mutations cripple the switch but do not destroy HSPA1B binding. Biochim Biophys Acta Gen Subj 2023; 1867:130284. [PMID: 36423739 PMCID: PMC9792439 DOI: 10.1016/j.bbagen.2022.130284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/23/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Here we present evidence, based on alterations of its intrinsic tryptophan fluorescence, that UBQLN2 protein undergoes a conformational switch when the temperature is raised from 37 °C to 42 °C. The switch is reset on restoration of the temperature. We speculate that the switch regulates UBQLN2 function in the heat shock response because elevation of the temperature from 37 °C to 42 °C dramatically increased in vitro binding between UBQLN2 and HSPA1B. Furthermore, restoration of the temperature to 37 °C decreased HSPA1B binding. By comparison to wild type (WT) UBQLN2, we found that all five ALS/FTD mutant UBQLN2 proteins we examined had attenuated alterations in tryptophan fluorescence when shifted to 42 °C, suggesting that the conformational switch is crippled in the mutants. Paradoxically, all five mutants bound similar amounts of HSPA1B compared to WT UBQLN2 protein at 42 °C, suggesting that either the conformational switch is not instrumental for HSPA1B binding, or that, although damaged, it is still functional. Comparison of the poly-ubiquitin chain binding revealed that WT UBQLN2 binds more avidly with K63 than with K48 chains. The avidity may explain the involvement of UBQLN2 in autophagy and cell signaling. Consistent with its function in autophagy, we found UBQLN2 binds directly with LC3, the autophagosomal-specific membrane-tethered protein. Finally, we provide evidence that WT UBQLN2 can homodimerize, and heterodimerize with WT UBQLN1. We show that ALS mutant P497S-UBQLN2 protein can oligomerize with either WT UBQLN1 or 2, providing a possible mechanism for how mutant UBQLN2 proteins could bind and inactivate UBQLN proteins, causing loss of function.
Collapse
Affiliation(s)
- Trong H Phung
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Micaela Tatman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mervyn J Monteiro
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Genomic Amplification of UBQLN4 Is a Prognostic and Treatment Resistance Factor. Cells 2022; 11:cells11203311. [PMID: 36291176 PMCID: PMC9600423 DOI: 10.3390/cells11203311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Ubiquilin-4 (UBQLN4) is a proteasomal shuttle factor that directly binds to ubiquitylated proteins and delivers its cargo to the 26S proteasome for degradation. We previously showed that upregulated UBQLN4 determines the DNA damage response (DDR) through the degradation of MRE11A. However, the regulatory mechanism at DNA level, transcriptionally and post-transcriptional levels that control UBQLN4 mRNA levels remains unknown. In this study, we screened 32 solid tumor types and validated our findings by immunohistochemistry analysis. UBQLN4 is upregulated at both mRNA and protein levels and the most significant values were observed in liver, breast, ovarian, lung, and esophageal cancers. Patients with high UBQLN4 mRNA levels had significantly poor prognoses in 20 of 32 cancer types. DNA amplification was identified as the main mechanism promoting UBQLN4 upregulation in multiple cancers, even in the early phases of tumor development. Using CRISPR screen datasets, UBQLN4 was identified as a common essential gene for tumor cell viability in 81.1% (860/1,060) of the solid tumor derived cell lines. Ovarian cancer cell lines with high UBQLN4 mRNA levels were platinum-based chemotherapy resistant, while they were more sensitive to poly (adenosine diphosphate-ribose) polymerase inhibitors (PARPi). Our findings highlight the utilities of UBQLN4 as a significant pan-cancer theranostic factor and a precision oncology biomarker for DDR-related drug resistance.
Collapse
|
11
|
Lin BC, Higgins NR, Phung TH, Monteiro MJ. UBQLN proteins in health and disease with a focus on UBQLN2 in ALS/FTD. FEBS J 2022; 289:6132-6153. [PMID: 34273246 PMCID: PMC8761781 DOI: 10.1111/febs.16129] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 01/12/2023]
Abstract
Ubiquilin (UBQLN) proteins are a dynamic and versatile family of proteins found in all eukaryotes that function in the regulation of proteostasis. Besides their canonical function as shuttle factors in delivering misfolded proteins to the proteasome and autophagy systems for degradation, there is emerging evidence that UBQLN proteins play broader roles in proteostasis. New information suggests the proteins function as chaperones in protein folding, protecting proteins prior to membrane insertion, and as guardians for mitochondrial protein import. In this review, we describe the evidence for these different roles, highlighting how different domains of the proteins impart these functions. We also describe how changes in the structure and phase separation properties of UBQLNs may regulate their activity and function. Finally, we discuss the pathogenic mechanisms by which mutations in UBQLN2 cause amyotrophic lateral sclerosis and frontotemporal dementia. We describe the animal model systems made for different UBQLN2 mutations and how lessons learnt from these systems provide fundamental insight into the molecular mechanisms by which UBQLN2 mutations drive disease pathogenesis through disturbances in proteostasis.
Collapse
Affiliation(s)
- Brian C. Lin
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA,Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicole R. Higgins
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA,Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Trong H. Phung
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mervyn J. Monteiro
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA,Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA,Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Abu-Halima M, Becker LS, Ayesh BM, Meese E. MicroRNA-targeting in male infertility: Sperm microRNA-19a/b-3p and its spermatogenesis related transcripts content in men with oligoasthenozoospermia. Front Cell Dev Biol 2022; 10:973849. [PMID: 36211460 PMCID: PMC9533736 DOI: 10.3389/fcell.2022.973849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
Objective: To elucidate and validate the potential regulatory function of miR-19a/b-3p and its spermatogenesis-related transcripts content in sperm samples collected from men with oligoasthenozoospermia. Methods: Men presenting at an infertility clinic were enrolled. MicroRNA (miRNA) and target genes evaluation were carried out using in silico prediction analysis, Reverse transcription-quantitative PCR (RT-qPCR) validation, and Western blot confirmation. Results: The expression levels of miRNA-19a/b-3p were significantly up-regulated and 51 target genes were significantly down-regulated in oligoasthenozoospermic men compared with age-matched normozoospermic men as determined by RT-qPCR. Correlation analysis highlighted that sperm count, motility, and morphology were negatively correlated with miRNA-19a/b-3p and positively correlated with the lower expression level of 51 significantly identified target genes. Furthermore, an inverse correlation between higher expression levels of miRNA-19a/b-3p and lower expression levels of 51 target genes was observed. Consistent with the results of the RT-qPCR, reduced expression levels of STK33 and DNAI1 protein levels were identified in an independent cohort of sperm samples collected from men with oligoasthenozoospermia. Conclusion: Findings suggest that the higher expression of miRNA-19a/b-3p or the lower expression of target genes are associated with oligoasthenozoospermia and male infertility, probably through influencing basic semen parameters. This study lay the groundwork for future studies focused on investigating therapies for male infertility.
Collapse
Affiliation(s)
| | | | - Basim M Ayesh
- Department of Laboratory Medical Sciences, Alaqsa University, Gaza, Palestine
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Homburg, Germany
| |
Collapse
|
13
|
Wang LN, Huang KJ, Wang L, Cheng HY. Overexpression of Ubiquilin4 is associated with poor prognosis in patients with cervical cancer. World J Clin Cases 2022; 10:2783-2791. [PMID: 35434088 PMCID: PMC8968826 DOI: 10.12998/wjcc.v10.i9.2783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/26/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ubiquilins (UBQLNs) are important factors for cell proteostasis maintenance. UBQLNs are involved in the modulation of the cell cycle, as well as in apoptosis, membrane receptors regulation, DNA repair, epithelial-mesenchymal transition, and miRNA activities. They also affect the selection of double-strand break repair pathways. Abnormal UBQLNs expression can lead to many diseases, including cancer. Studies have found that the expression of Ubiquilin4 (UBQLN4) is associated with the development of several tumor types. However, the association between UBQLN4 and cervical cancer has not been examined yet.
AIM To investigate the expression of UBQLN4 in cervical cancer and to evaluate its correlation with disease prognosis.
METHODS Immunohistochemistry was performed to examine the expression of UBQLN4 in 117 cervical cancer tissues and 32 matching pericervical tissues. Paired t-test (two-tailed) was used to compare the differences between groups. We collected patients’ clinical characteristics, including age, histological grade, pathologic type, lymph node metastasis, and FIGO stage (2018) and compared them by chi-square test. All patients were followed for 5.5 to 6.8 years. Kaplan-Meier method and log-rank test were used to compare the differences in the overall survival (OS) and progression-free survival (PFS) among the different groups.
RESULTS Overexpression of UBQLN4 was observed in 70.9% (83/117) of all cervical cancer tissues and in 15.6% (5/32) of the paired parauterine tissues. The expression of UBQLN4 was associated with lymph node metastasis, poor differentiation, and advanced stage, but the difference was not significant. Kaplan-Meier and log-rank test results suggested the high expression of UBQLN4 was associated with short OS and PFS. Regardless of UBQLN4 expression, the patient age and FIGO stage were also associated with disease prognosis. The statistically significant variables obtained from univariate the Kaplan-Meier analysis were subjected to Cox multivariate survival regression analysis, which showed that, in addition to the FIGO stage and age, UBQLN4 was also an independent prognostic marker for OS and PFS (P = 0.011 and P = 0.024, respectively).
CONCLUSION The overexpression of UBQLN4 was associated with poor prognosis in cervical cancer. Our study proposed a novel prognostic factor and improved the existing understanding of the pathogenesis of cervical cancer.
Collapse
Affiliation(s)
- Li-Na Wang
- Department of Gynaecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Ke-Jin Huang
- Department of Gynaecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Le Wang
- Department of Gynaecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Hai-Yan Cheng
- Department of Gynaecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| |
Collapse
|
14
|
Mohan HM, Trzeciakiewicz H, Pithadia A, Crowley EV, Pacitto R, Safren N, Trotter B, Zhang C, Zhou X, Zhang Y, Basrur V, Paulson HL, Sharkey LM. RTL8 promotes nuclear localization of UBQLN2 to subnuclear compartments associated with protein quality control. Cell Mol Life Sci 2022; 79:176. [PMID: 35247097 PMCID: PMC9376861 DOI: 10.1007/s00018-022-04170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022]
Abstract
The brain-expressed ubiquilins (UBQLNs) 1, 2 and 4 are a family of ubiquitin adaptor proteins that participate broadly in protein quality control (PQC) pathways, including the ubiquitin proteasome system (UPS). One family member, UBQLN2, has been implicated in numerous neurodegenerative diseases including ALS/FTD. UBQLN2 typically resides in the cytoplasm but in disease can translocate to the nucleus, as in Huntington's disease where it promotes the clearance of mutant Huntingtin. How UBQLN2 translocates to the nucleus and clears aberrant nuclear proteins, however, is not well understood. In a mass spectrometry screen to discover UBQLN2 interactors, we identified a family of small (13 kDa), highly homologous uncharacterized proteins, RTL8, and confirmed the interaction between UBQLN2 and RTL8 both in vitro using recombinant proteins and in vivo using mouse brain tissue. Under endogenous and overexpressed conditions, RTL8 localizes to nucleoli. When co-expressed with UBQLN2, RTL8 promotes nuclear translocation of UBQLN2. RTL8 also facilitates UBQLN2's nuclear translocation during heat shock. UBQLN2 and RTL8 colocalize within ubiquitin-enriched subnuclear structures containing PQC components. The robust effect of RTL8 on the nuclear translocation and subnuclear localization of UBQLN2 does not extend to the other brain-expressed ubiquilins, UBQLN1 and UBQLN4. Moreover, compared to UBQLN1 and UBQLN4, UBQLN2 preferentially stabilizes RTL8 levels in human cell lines and in mouse brain, supporting functional heterogeneity among UBQLNs. As a novel UBQLN2 interactor that recruits UBQLN2 to specific nuclear compartments, RTL8 may regulate UBQLN2 function in nuclear protein quality control.
Collapse
Affiliation(s)
- Harihar Milaganur Mohan
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA.,Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | | | - Amit Pithadia
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Emily V Crowley
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Regina Pacitto
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Nathaniel Safren
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA.,Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Bryce Trotter
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Xiaogen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA. .,Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109-2200, USA.
| | - Lisa M Sharkey
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA. .,Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
15
|
Shah PP, Saurabh K, Kurlawala Z, Vega AA, Siskind LJ, Beverly LJ. Towards a molecular understanding of the overlapping and distinct roles of UBQLN1 and UBQLN2 in lung cancer progression and metastasis. Neoplasia 2022; 25:1-8. [PMID: 35063704 PMCID: PMC8864381 DOI: 10.1016/j.neo.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
The Ubiquilin family of proteins (UBQLN) consists of five related proteins (UBQLN1-4 and UBQLNL). Herein, we showed that loss of UBQLN1 and/or UBQLN2 induces cellular processes involved in tumor progression and metastasis, including proliferation, clonogenic potential and migration in lung adenocarcinoma cells. Molecular, biochemical and RNAseq analyses in multiple cellular systems, identified overlapping and distinct gene sets and pathways that were altered following loss of UBQLN1 and/or UBQLN2. The present study, provide evidence that UBQLN1 and UBQLN2 perform similar, but distinct molecular functions in a variety of cell types.
The Ubiquilin family of proteins (UBQLN) consists of five related proteins (UBQLN1-4 and UBQLNL) that all contain ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains. UBQLN1 and UBQLN2 are the most closely related and have been the most well-studied, however their biochemical, biological and cellular functions are still not well understood. Previous studies from our lab reported that loss of UBQLN1 or UBQLN2 induces epithelial mesenchymal transition (EMT) in lung adenocarcinoma cells. Herein, we showed that loss of UBQLN1 and/or UBQLN2 induces cellular processes involved in tumor progression and metastasis, including proliferation, clonogenic potential and migration in lung adenocarcinoma cells. In fact, following simultaneous loss of both UBQLN1 and UBQLN2 many of these processes were further enhanced. To understand the molecular mechanisms by which UBQLN1 and UBQLN2 loss could be additive, we performed molecular, biochemical and RNAseq analyses in multiple cellular systems. We identified overlapping and distinct gene sets and pathways that were altered following loss of UBQLN1 and/or UBQLN2. We have also begun to define cell type specific gene regulation of UBQLN1 and UBQLN2, as well as understand how loss of either gene can alter differentiation of normal cells. The data presented here demonstrate that UBQLN1 and UBQLN2 perform similar, but distinct molecular functions in a variety of cell types.
Collapse
Affiliation(s)
- Parag P Shah
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, CTRB rm 204, Louisville, KY 40202, USA
| | - Kumar Saurabh
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, CTRB rm 204, Louisville, KY 40202, USA
| | - Zimple Kurlawala
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, CTRB rm 204, Louisville, KY 40202, USA
| | - Alexis A Vega
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
| | - Leah J Siskind
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, CTRB rm 204, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Levi J Beverly
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, CTRB rm 204, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA; Department of Medicine, Division of Hematology and Oncology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
16
|
Lin BC, Phung TH, Higgins NR, Greenslade JE, Prado MA, Finley D, Karbowski M, Polster BM, Monteiro MJ. ALS/FTD mutations in UBQLN2 are linked to mitochondrial dysfunction through loss-of-function in mitochondrial protein import. Hum Mol Genet 2021; 30:1230-1246. [PMID: 33891006 PMCID: PMC8212775 DOI: 10.1093/hmg/ddab116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 01/12/2023] Open
Abstract
UBQLN2 mutations cause amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD), but the pathogenic mechanisms by which they cause disease remain unclear. Proteomic profiling identified 'mitochondrial proteins' as comprising the largest category of protein changes in the spinal cord (SC) of the P497S UBQLN2 mouse model of ALS/FTD. Immunoblots confirmed P497S animals have global changes in proteins predictive of a severe decline in mitochondrial health, including oxidative phosphorylation (OXPHOS), mitochondrial protein import and network dynamics. Functional studies confirmed mitochondria purified from the SC of P497S animals have age-dependent decline in nearly all steps of OXPHOS. Mitochondria cristae deformities were evident in spinal motor neurons of aged P497S animals. Knockout (KO) of UBQLN2 in HeLa cells resulted in changes in mitochondrial proteins and OXPHOS activity similar to those seen in the SC. KO of UBQLN2 also compromised targeting and processing of the mitochondrial import factor, TIMM44, resulting in accumulation in abnormal foci. The functional OXPHOS deficits and TIMM44-targeting defects were rescued by reexpression of WT UBQLN2 but not by ALS/FTD mutant UBQLN2 proteins. In vitro binding assays revealed ALS/FTD mutant UBQLN2 proteins bind weaker with TIMM44 than WT UBQLN2 protein, suggesting that the loss of UBQLN2 binding may underlie the import and/or delivery defect of TIMM44 to mitochondria. Our studies indicate a potential key pathogenic disturbance in mitochondrial health caused by UBQLN2 mutations.
Collapse
Affiliation(s)
- Brian C Lin
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Trong H Phung
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nicole R Higgins
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jessie E Greenslade
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mariusz Karbowski
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brian M Polster
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mervyn J Monteiro
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
17
|
UBQLN2-HSP70 axis reduces poly-Gly-Ala aggregates and alleviates behavioral defects in the C9ORF72 animal model. Neuron 2021; 109:1949-1962.e6. [PMID: 33991504 DOI: 10.1016/j.neuron.2021.04.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/09/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Expansion of a hexanucleotide repeat GGGGCC (G4C2) in the intron of the C9ORF72 gene is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Transcripts carrying G4C2 repeat expansions generate neurotoxic dipeptide repeat (DPR) proteins, including poly-Gly-Ala (poly-GA), which tends to form protein aggregates. Here, we demonstrate that UBQLN2, another ALS/FTD risk factor, is recruited to reduce poly-GA aggregates and alleviate poly-GA-induced neurotoxicity. UBQLN2 could recognize HSP70 ubiquitination, which facilitates the UBQLN2-HSP70-GA complex formation and promotes poly-GA degradation. ALS/FTD-related UBQLN2 mutants fail to bind HSP70 and clear poly-GA aggregates. Disruption of the interaction between UBQLN2 and HSP70 inhibits poly-GA aggregation in C9-ALS/FTD iPSC-derived neurons. Finally, enhancing HSP70 by the chemical compound 17AAG at the adult stage mitigates behavioral defects in poly-GA animals. Our findings suggest a critical role of the UBQLN2-HSP70 axis in protein aggregate clearance in C9-ALS/FTD.
Collapse
|
18
|
Kong KYE, Coelho JPL, Feige MJ, Khmelinskii A. Quality control of mislocalized and orphan proteins. Exp Cell Res 2021; 403:112617. [PMID: 33930402 DOI: 10.1016/j.yexcr.2021.112617] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/10/2021] [Accepted: 04/18/2021] [Indexed: 12/16/2022]
Abstract
A healthy and functional proteome is essential to cell physiology. However, this is constantly being challenged as most steps of protein metabolism are error-prone and changes in the physico-chemical environment can affect protein structure and function, thereby disrupting proteome homeostasis. Among a variety of potential mistakes, proteins can be targeted to incorrect compartments or subunits of protein complexes may fail to assemble properly with their partners, resulting in the formation of mislocalized and orphan proteins, respectively. Quality control systems are in place to handle these aberrant proteins, and to minimize their detrimental impact on cellular functions. Here, we discuss recent findings on quality control mechanisms handling mislocalized and orphan proteins. We highlight common principles involved in their recognition and summarize how accumulation of these aberrant molecules is associated with aging and disease.
Collapse
Affiliation(s)
| | - João P L Coelho
- Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Matthias J Feige
- Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
19
|
Fry MY, Saladi SM, Clemons WM. The STI1-domain is a flexible alpha-helical fold with a hydrophobic groove. Protein Sci 2021; 30:882-898. [PMID: 33620121 PMCID: PMC7980504 DOI: 10.1002/pro.4049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/05/2023]
Abstract
STI1-domains are present in a variety of co-chaperone proteins and are required for the transfer of hydrophobic clients in various cellular processes. The domains were first identified in the yeast Sti1 protein where they were referred to as DP1 and DP2. Based on hidden Markov model searches, this domain had previously been found in other proteins including the mammalian co-chaperone SGTA, the DNA damage response protein Rad23, and the chloroplast import protein Tic40. Here, we refine the domain definition and carry out structure-based sequence alignment of STI1-domains showing conservation of five amphipathic helices. Upon examinations of these identified domains, we identify a preceding helix 0 and unifying sequence properties, determine new molecular models, and recognize that STI1-domains nearly always occur in pairs. The similarity at the sequence, structure, and molecular levels likely supports a unified functional role.
Collapse
Affiliation(s)
- Michelle Y. Fry
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Shyam M. Saladi
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - William M. Clemons
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| |
Collapse
|
20
|
Murakami T, Shoji Y, Nishi T, Chang SC, Jachimowicz RD, Hoshimoto S, Ono S, Shiloh Y, Takeuchi H, Kitagawa Y, Hoon DSB, Bustos MA. Regulation of MRE11A by UBQLN4 leads to cisplatin resistance in patients with esophageal squamous cell carcinoma. Mol Oncol 2021; 15:1069-1087. [PMID: 33605536 PMCID: PMC8024730 DOI: 10.1002/1878-0261.12929] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/20/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Resistance to standard cisplatin‐based chemotherapies leads to worse survival outcomes for patients with esophageal squamous cell carcinoma (ESCC). Therefore, there is an urgent need to understand the aberrant mechanisms driving resistance in ESCC tumors. We hypothesized that ubiquilin‐4 (UBQLN4), a protein that targets ubiquitinated proteins to the proteasome, regulates the expression of Meiotic Recombination 11 Homolog A (MRE11A), a critical component of the MRN complex and DNA damage repair pathways. Initially, immunohistochemistry analysis was conducted in specimens from patients with ESCC (n = 120). In endoscopic core ESCC biopsies taken from 61 patients who underwent neoadjuvant chemotherapy (NAC) (5‐fluorouracil and cisplatin), low MRE11A and high UBQLN4 protein levels were associated with reduced pathological response to NAC (P < 0.001 and P < 0.001, respectively). Multivariable analysis of surgically resected ESCC tissues from 59 patients revealed low MRE11A and high UBLQN4 expression as independent factors that can predict shorter overall survival [P = 0.01, hazard ratio (HR) = 5.11, 95% confidence interval (CI), 1.45–18.03; P = 0.02, HR = 3.74, 95% CI, 1.19–11.76, respectively]. Suppression of MRE11A expression was associated with cisplatin resistance in ESCC cell lines. Additionally, MRE11A was found to be ubiquitinated after cisplatin treatment. We observed an amplification of UBQLN4 gene copy numbers and an increase in UBQLN4 protein levels in ESCC tissues. Binding of UBQLN4 to ubiquitinated‐MRE11A increased MRE11A degradation, thereby regulating MRE11A protein levels following DNA damage and promoting cisplatin resistance. In summary, MRE11A and UBQLN4 protein levels can serve as predictors for NAC response and as prognostic markers in ESCC patients.
Collapse
Affiliation(s)
- Tomohiro Murakami
- Department of Translational Molecular Medicine, Division of Molecular Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA.,Department of Surgery, Hamamatsu University School of Medicine, Japan
| | - Yoshiaki Shoji
- Department of Translational Molecular Medicine, Division of Molecular Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA.,Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Tomohiko Nishi
- Department of Translational Molecular Medicine, Division of Molecular Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA.,Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Shu-Ching Chang
- Medical Data Research Center Providence Health and Services at Providence Saint Joseph's Health, Portland, OR, USA
| | - Ron D Jachimowicz
- Clinic I of Internal Medicine, University Hospital Cologne, Germany.,Max Planck Institute for Biology of Ageing, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Ageing-Associated Diseases, University of Cologne, Germany
| | - Sojun Hoshimoto
- Department of Translational Molecular Medicine, Division of Molecular Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA.,Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Shigeshi Ono
- Department of Translational Molecular Medicine, Division of Molecular Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA.,Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Yosef Shiloh
- David and Inez Myers Laboratory for Cancer Genetics, Sackler School of Medicine, Tel Aviv University, Israel
| | - Hiroya Takeuchi
- Department of Surgery, Hamamatsu University School of Medicine, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Division of Molecular Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Matias A Bustos
- Department of Translational Molecular Medicine, Division of Molecular Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| |
Collapse
|
21
|
Gerson JE, Linton H, Xing J, Sutter AB, Kakos FS, Ryou J, Liggans N, Sharkey LM, Safren N, Paulson HL, Ivanova MI. Shared and divergent phase separation and aggregation properties of brain-expressed ubiquilins. Sci Rep 2021; 11:287. [PMID: 33431932 PMCID: PMC7801659 DOI: 10.1038/s41598-020-78775-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
The brain-expressed ubiquilins, UBQLNs 1, 2 and 4, are highly homologous proteins that participate in multiple aspects of protein homeostasis and are implicated in neurodegenerative diseases. Studies have established that UBQLN2 forms liquid-like condensates and accumulates in pathogenic aggregates, much like other proteins linked to neurodegenerative diseases. However, the relative condensate and aggregate formation of the three brain-expressed ubiquilins is unknown. Here we report that the three ubiquilins differ in aggregation propensity, revealed by in-vitro experiments, cellular models, and analysis of human brain tissue. UBQLN4 displays heightened aggregation propensity over the other ubiquilins and, like amyloids, UBQLN4 forms ThioflavinT-positive fibrils in vitro. Measuring fluorescence recovery after photobleaching (FRAP) of puncta in cells, we report that all three ubiquilins undergo liquid-liquid phase transition. UBQLN2 and 4 exhibit slower recovery than UBQLN1, suggesting the condensates formed by these brain-expressed ubiquilins have different compositions and undergo distinct internal rearrangements. We conclude that while all brain-expressed ubiquilins exhibit self-association behavior manifesting as condensates, they follow distinct courses of phase-separation and aggregation. We suggest that this variability among ubiquilins along the continuum from liquid-like to solid informs both the normal ubiquitin-linked functions of ubiquilins and their accumulation and potential contribution to toxicity in neurodegenerative diseases.
Collapse
Affiliation(s)
- Julia E Gerson
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA.
| | - Hunter Linton
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Jiazheng Xing
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Alexandra B Sutter
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
- Neuroscience Graduate Program, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Fayth S Kakos
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Jaimie Ryou
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Nyjerus Liggans
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Lisa M Sharkey
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Nathaniel Safren
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA.
| | - Magdalena I Ivanova
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA.
- Department of Neurology, Biophysics Program, University of Michigan, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
22
|
Whiteley AM, Prado MA, de Poot SAH, Paulo JA, Ashton M, Dominguez S, Weber M, Ngu H, Szpyt J, Jedrychowski MP, Easton A, Gygi SP, Kurz T, Monteiro MJ, Brown EJ, Finley D. Global proteomics of Ubqln2-based murine models of ALS. J Biol Chem 2020; 296:100153. [PMID: 33277362 PMCID: PMC7873701 DOI: 10.1074/jbc.ra120.015960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/21/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Familial neurodegenerative diseases commonly involve mutations that result in either aberrant proteins or dysfunctional components of the proteolytic machinery that act on aberrant proteins. UBQLN2 is a ubiquitin receptor of the UBL/UBA family that binds the proteasome through its ubiquitin-like domain and is thought to deliver ubiquitinated proteins to proteasomes for degradation. UBQLN2 mutations result in familial amyotrophic lateral sclerosis (ALS)/frontotemporal dementia in humans through an unknown mechanism. Quantitative multiplexed proteomics was used to provide for the first time an unbiased and global analysis of the role of Ubqln2 in controlling the composition of the proteome. We studied several murine models of Ubqln2-linked ALS and also generated Ubqln2 null mutant mice. We identified impacts of Ubqln2 on diverse physiological pathways, most notably serotonergic signaling. Interestingly, we observed an upregulation of proteasome subunits, suggesting a compensatory response to diminished proteasome output. Among the specific proteins whose abundance is linked to UBQLN2 function, the strongest hits were the ubiquitin ligase TRIM32 and two retroelement-derived proteins, PEG10 and CXX1B. Cycloheximide chase studies using induced human neurons and HEK293 cells suggested that PEG10 and TRIM32 are direct clients. Although UBQLN2 directs the degradation of multiple proteins via the proteasome, it surprisingly conferred strong protection from degradation on the Gag-like protein CXX1B, which is expressed from the same family of retroelement genes as PEG10. In summary, this study charts the proteomic landscape of ALS-related Ubqln2 mutants and identifies candidate client proteins that are altered in vivo in disease models and whose degradation is promoted by UBQLN2.
Collapse
Affiliation(s)
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marissa Ashton
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara Dominguez
- Department of Neuroscience, Genentech Inc, South San Francisco, California, USA
| | - Martin Weber
- Department of Neuroscience, Genentech Inc, South San Francisco, California, USA
| | - Hai Ngu
- Department of Pathology, Genentech Inc, South San Francisco, California, USA
| | - John Szpyt
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark P Jedrychowski
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Amy Easton
- Department of Neuroscience, Genentech Inc, South San Francisco, California, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Thimo Kurz
- Henry Wellcome Lab of Cell Biology, College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Mervyn J Monteiro
- Center for Biomedical Engineering and Technology, Department of Anatomy and Neurobiology, University of Maryland Medical School, Baltimore, Maryland, USA
| | - Eric J Brown
- Department of Immunology and Infectious Diseases, Genentech Inc, South San Francisco, California, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
23
|
Zhang X, Su Y, Lin H, Yao X. The impacts of ubiquilin 1 (UBQLN1) knockdown on cells viability, proliferation, and apoptosis are mediated by p53 in A549 lung cancer cells. J Thorac Dis 2020; 12:5887-5895. [PMID: 33209421 PMCID: PMC7656338 DOI: 10.21037/jtd-20-1362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Little is known about the relationship between ubiquilin 1 (UBQLN1) and p53, both of them have been implicated in the development and progression of non-small cell lung cancer (NSCLC). In this study, we aimed to explore the role of loss of UBQLN1 in cell viability and proliferation, and cell apoptosis in human lung adenocarcinoma A549 cells. Methods Cell viability, proliferation, and apoptosis were determined by MTT, BrdU, and TUNEL assays, respectively. Adenoviruses carrying cDNA or siRNA were used to overexpress or silence target protein. Dihydroethidium (DHE) staining was performed to measure the real-time formation of intracellular reactive oxygen species (ROS). The chymotrypsin-like activity of 20S proteasome core was determined by using synthetic fluorogenic peptide substrate. Results UBQLN1 silencing led to a reduction of p53 protein levels and overexpression of p53 reversed the effects of UBQLN1 knockdown (KD) on cell viability, proliferation, and apoptosis. Furthermore, deficiency of UBQLN1 activated autophagy activity but did not affect proteasome activity. Inhibition of autophagy restored p53 protein levels in UBQLN1-KD A549 cells. In addition, UBQLN1 KD markedly inhibited phosphorylation of mammalian target of rapamycin (mTOR) and its downstream ribosomal S6 kinase (S6K). Conclusions Our experiments suggested that the regulation of UBQLN1 on cell viability, proliferation, and apoptosis was mediated by mTOR/autophagy/p53 signaling pathway.
Collapse
Affiliation(s)
- Xinghua Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunshu Su
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huiqing Lin
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Yao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Wang S, Tatman M, Monteiro MJ. Overexpression of UBQLN1 reduces neuropathology in the P497S UBQLN2 mouse model of ALS/FTD. Acta Neuropathol Commun 2020; 8:164. [PMID: 33028421 PMCID: PMC7539388 DOI: 10.1186/s40478-020-01039-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Missense mutations in UBQLN2 cause X-linked dominant inheritance of amyotrophic lateral sclerosis with frontotemporal dementia (ALS/FTD). UBQLN2 belongs to a family of four highly homologous proteins expressed in humans that play diverse roles in maintaining proteostasis, but whether one isoform can substitute for another is not known. Here, we tested whether overexpression of UBQLN1 can alleviate disease in the P497S UBQLN2 mouse model of ALS/FTD by crossing transgenic (Tg) mouse lines expressing the two proteins and characterizing the resulting genotypes using a battery of pathologic and behavioral tests. The pathologic findings revealed UBQLN1 overexpression dramatically reduced the burden of UBQLN2 inclusions, neuronal loss and disturbances in proteostasis in double Tg mice compared to single P497S Tg mice. The beneficial effects of UBQLN1 overexpression were primarily confirmed by behavioral improvements seen in rotarod performance and grip strength in male, but not female mice. Paradoxically, although UBQLN1 overexpression reduced pathologic signatures of disease in P497S Tg mice, female mice had larger percentage of body weight loss than males, and this correlated with a corresponding lack of behavioral improvements in the females. These findings lead us to speculate that methods to upregulate UBQLN1 expression may reduce pathogenicity caused by UBQLN2 mutations, but may also lead to gender-specific outcomes that will have to be carefully weighed with the therapeutic benefits of UBQLN1 upregulation.
Collapse
|
25
|
Zheng T, Yang Y, Castañeda CA. Structure, dynamics and functions of UBQLNs: at the crossroads of protein quality control machinery. Biochem J 2020; 477:3471-3497. [PMID: 32965492 PMCID: PMC7737201 DOI: 10.1042/bcj20190497] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Cells rely on protein homeostasis to maintain proper biological functions. Dysregulation of protein homeostasis contributes to the pathogenesis of many neurodegenerative diseases and cancers. Ubiquilins (UBQLNs) are versatile proteins that engage with many components of protein quality control (PQC) machinery in cells. Disease-linked mutations of UBQLNs are most commonly associated with amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and other neurodegenerative disorders. UBQLNs play well-established roles in PQC processes, including facilitating degradation of substrates through the ubiquitin-proteasome system (UPS), autophagy, and endoplasmic-reticulum-associated protein degradation (ERAD) pathways. In addition, UBQLNs engage with chaperones to sequester, degrade, or assist repair of misfolded client proteins. Furthermore, UBQLNs regulate DNA damage repair mechanisms, interact with RNA-binding proteins (RBPs), and engage with cytoskeletal elements to regulate cell differentiation and development. Important to the myriad functions of UBQLNs are its multidomain architecture and ability to self-associate. UBQLNs are linked to numerous types of cellular puncta, including stress-induced biomolecular condensates, autophagosomes, aggresomes, and aggregates. In this review, we focus on deciphering how UBQLNs function on a molecular level. We examine the properties of oligomerization-driven interactions among the structured and intrinsically disordered segments of UBQLNs. These interactions, together with the knowledge from studies of disease-linked mutations, provide significant insights to UBQLN structure, dynamics and function.
Collapse
Affiliation(s)
- Tongyin Zheng
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, U.S.A
| | - Yiran Yang
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, U.S.A
| | - Carlos A. Castañeda
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, U.S.A
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, U.S.A
- Bioinspired Institute, and the Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, U.S.A
| |
Collapse
|
26
|
Kurlawala Z, Saurabh K, Dunaway R, Shah PP, Siskind LJ, Beverly LJ. Ubiquilin proteins regulate EGFR levels and activity in lung adenocarcinoma cells. J Cell Biochem 2020; 122:43-52. [PMID: 32720736 DOI: 10.1002/jcb.29830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Ubiquilin (UBQLN) proteins are involved in diverse cellular processes like endoplasmic reticulum-associated degradation, autophagy, apoptosis, and epithelial-to-mesenchymal transition. UBQLNs interact with a variety of substrates, including cell surface receptors, transcription factor regulators, proteasomal machinery proteins, and transmembrane proteins. In addition, previous work from our lab shows that UBQLN1 interacts with insulin-like growth factor receptor family members (IGF1R, IGF2R, and INSR) and this interaction regulates the activity and proteostasis of IGFR family members. We wondered whether UBQLN proteins could also bind and regulate additional receptor tyrosine kinases. Thus, we investigated a link between UBQLN and the oncogene epidermal growth factor receptor (EGFR) in lung adenocarcinoma cells. Loss of UBQLN1 occurs at high frequency in human lung cancer patient samples and we have shown that the loss of UBQLN1 is capable of altering processes involved in cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition in lung adenocarcinoma cell lines. Here, we present data that loss of UBQLN1 resulted in increased turnover of total EGFR while increasing the relative amount of phosphorylated EGFR in lung adenocarcinoma cells, especially in the presence of its ligand EGF. Furthermore, the loss of UBQLN1 led to a more invasive cell phenotype as manifested by increased proliferation, migration, and speed of movement of these lung adenocarcinoma cells. Taken together, UBQLN1 regulates the expression and stability of EGFR in lung cancer cells.
Collapse
Affiliation(s)
- Zimple Kurlawala
- James Graham Brown Cancer Center, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Kumar Saurabh
- James Graham Brown Cancer Center, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Rain Dunaway
- School of Medicine, University of Louisville, Louisville, Kentucky
| | - Parag P Shah
- James Graham Brown Cancer Center, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Leah J Siskind
- James Graham Brown Cancer Center, School of Medicine, University of Louisville, Louisville, Kentucky.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Levi J Beverly
- James Graham Brown Cancer Center, School of Medicine, University of Louisville, Louisville, Kentucky.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky.,Division of Hematology and Oncology, School of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
27
|
Jantrapirom S, Lo Piccolo L, Pruksakorn D, Potikanond S, Nimlamool W. Ubiquilin Networking in Cancers. Cancers (Basel) 2020; 12:E1586. [PMID: 32549375 PMCID: PMC7352256 DOI: 10.3390/cancers12061586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Ubiquilins or UBQLNs, members of the ubiquitin-like and ubiquitin-associated domain (UBL-UBA) protein family, serve as adaptors to coordinate the degradation of specific substrates via both proteasome and autophagy pathways. The UBQLN substrates reveal great diversity and impact a wide range of cellular functions. For decades, researchers have been attempting to uncover a puzzle and understand the role of UBQLNs in human cancers, particularly in the modulation of oncogene's stability and nucleotide excision repair. In this review, we summarize the UBQLNs' genetic variants that are associated with the most common cancers and also discuss their reliability as a prognostic marker. Moreover, we provide an overview of the UBQLNs networks that are relevant to cancers in different ways, including cell cycle, apoptosis, epithelial-mesenchymal transition, DNA repairs and miRNAs. Finally, we include a future prospective on novel ubiquilin-based cancer therapies.
Collapse
Affiliation(s)
- Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.J.); (S.P.)
| | - Luca Lo Piccolo
- Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (L.L.P.); (D.P.)
| | - Dumnoensun Pruksakorn
- Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (L.L.P.); (D.P.)
- Department of Orthopedics, Orthopedic Laboratory and Research Network Center (OLARN), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Excellence Center in Osteology Research and Training Center (ORTC), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.J.); (S.P.)
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.J.); (S.P.)
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
28
|
Luo Y, Yu H, Liu X, Huang D, Dai H, Fang L, Zhang Y, Lai J, Jiang Y, Shuai L, Zhang L, Chen G, Bie P, Xie C. Prognostic and predicted significance of Ubqln2 in patients with hepatocellular carcinoma. Cancer Med 2020; 9:4083-4094. [PMID: 32293796 PMCID: PMC7300399 DOI: 10.1002/cam4.3040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/26/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a common malignant cancer and the third leading cause of death worldwide. The molecular mechanism of HCC remains unclear. Recent studies have demonstrated that the ubiquitin-proteasome system (UPS) is associated with HCC. Ubqln2, a member of the UPS, is abnormally expressed in HCC. However, whether Ubqln2 is associated with HCC prognosis remains unknown. PATIENTS AND METHODS We analyzed the associations between overall survival and various risk factors in 355 HCC tissue samples obtained from the Cancer Genomic Atlas (TCGA) database at the mRNA level and in 166 HCC tissue samples from Southwest Hospital at the protein level. qRCR was used to determinate Ubqln2 expression in cancer and noncancerous tissues. The association between Ubqln2 and Ki-67 was analyzed by immunohistochemistry. The association between Ubqln2 expression and survival was analyzed using Kaplan-Meier curve and Cox proportional hazards models. A nomogram was used to predict the impact of Ubqln2 on prognosis. Mutated genes were analyzed to determine the potential mechanism. RESULTS Ubqln2 highly expressed in HCC tissues. The Ubqln2 mRNA level had significant relations with UICC tumor stage (P = .022), UICC stage (P = .034) and resection potential (P = .017). Concordantly, the Ubqln2 protein was closely associated with tumor size (P = .005), UICC stage (P = .012), and recurrence (P = .009). Ubqln2 was highly expressed in HCC and positively associated with poor survival. The nomogram precisely predicted the prognosis of HCC patients with high or low Ubqln2 expression. A genomic waterfall plot suggested that Ubqln2 expression was closely associated with mutated CTNNB1. CONCLUSION Our findings reveal that Ubqln2, an independent risk factor for HCC, is a potential prognostic marker in HCC patients. Ubqln2 expression is positively associated with mutated CTNNB1.
Collapse
Affiliation(s)
- Yuan‐Deng Luo
- Key Laboratory of Hepatobiliary and Pancreatic SurgeryInstitute of Hepatobiliary SurgerySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Hong‐Qiang Yu
- Key Laboratory of Hepatobiliary and Pancreatic SurgeryInstitute of Hepatobiliary SurgerySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Xiao‐Yu Liu
- School of Medicinethe Southern University of Science and TechnologyShenzhenGuangdongChina
| | - Deng Huang
- Key Laboratory of Hepatobiliary and Pancreatic SurgeryInstitute of Hepatobiliary SurgerySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Hai‐Su Dai
- Key Laboratory of Hepatobiliary and Pancreatic SurgeryInstitute of Hepatobiliary SurgerySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Lei Fang
- Key Laboratory of Hepatobiliary and Pancreatic SurgeryInstitute of Hepatobiliary SurgerySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yu‐Jun Zhang
- Key Laboratory of Hepatobiliary and Pancreatic SurgeryInstitute of Hepatobiliary SurgerySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Jie‐Juan Lai
- Key Laboratory of Hepatobiliary and Pancreatic SurgeryInstitute of Hepatobiliary SurgerySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yan Jiang
- Key Laboratory of Hepatobiliary and Pancreatic SurgeryInstitute of Hepatobiliary SurgerySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Ling Shuai
- Key Laboratory of Hepatobiliary and Pancreatic SurgeryInstitute of Hepatobiliary SurgerySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Lei‐Da Zhang
- Key Laboratory of Hepatobiliary and Pancreatic SurgeryInstitute of Hepatobiliary SurgerySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Geng Chen
- Key Laboratory of Hepatobiliary and Pancreatic SurgeryInstitute of Hepatobiliary SurgerySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Ping Bie
- Key Laboratory of Hepatobiliary and Pancreatic SurgeryInstitute of Hepatobiliary SurgerySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Hepatobiliary SurgeryThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Chuan‐Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic SurgeryInstitute of Hepatobiliary SurgerySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| |
Collapse
|
29
|
Gadhave K, Kumar P, Kapuganti SK, Uversky VN, Giri R. Unstructured Biology of Proteins from Ubiquitin-Proteasome System: Roles in Cancer and Neurodegenerative Diseases. Biomolecules 2020; 10:E796. [PMID: 32455657 PMCID: PMC7278180 DOI: 10.3390/biom10050796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
The 26S proteasome is a large (~2.5 MDa) protein complex consisting of at least 33 different subunits and many other components, which form the ubiquitin proteasomal system (UPS), an ATP-dependent protein degradation system in the cell. UPS serves as an essential component of the cellular protein surveillance machinery, and its dysfunction leads to cancer, neurodegenerative and immunological disorders. Importantly, the functions and regulations of proteins are governed by the combination of ordered regions, intrinsically disordered protein regions (IDPRs) and molecular recognition features (MoRFs). The structure-function relationships of UPS components have not been identified completely; therefore, in this study, we have carried out the functional intrinsic disorder and MoRF analysis for potential neurodegenerative disease and anti-cancer targets of this pathway. Our report represents the presence of significant intrinsic disorder and disorder-based binding regions in several UPS proteins, such as extraproteasomal polyubiquitin receptors (UBQLN1 and UBQLN2), proteasome-associated polyubiquitin receptors (ADRM1 and PSMD4), deubiquitinating enzymes (DUBs) (ATXN3 and USP14), and ubiquitinating enzymes (E2 (UBE2R2) and E3 (STUB1) enzyme). We believe this study will have implications for the conformation-specific roles of different regions of these proteins. This will lead to a better understanding of the molecular basis of UPS-associated diseases.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; (K.G.); (P.K.); (S.K.K.)
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; (K.G.); (P.K.); (S.K.K.)
| | - Shivani K. Kapuganti
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; (K.G.); (P.K.); (S.K.K.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA;
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Cientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; (K.G.); (P.K.); (S.K.K.)
| |
Collapse
|
30
|
Jara O, Mysliwiec H, Minogue PJ, Berthoud VM, Beyer EC. p62/Sequestosome 1 levels increase and phosphorylation is altered in Cx50D47A lenses, but deletion of p62/sequestosome 1 does not improve transparency. Mol Vis 2020; 26:204-215. [PMID: 32214786 PMCID: PMC7090271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/16/2020] [Indexed: 11/07/2022] Open
Abstract
Purpose p62/Sequestosome 1 (p62) is a stress-induced protein that is involved in several different intracellular pathways, including regulation of aspects of protein degradation. p62 levels are elevated in several types of cataracts. We investigated whether levels of p62 and its phosphorylation were altered in the lenses of Cx50D47A mice, which express a mutant of connexin50 (Cx50) that leads to cataracts and impaired lens differentiation. To evaluate the importance of p62 in the lens defects caused by a connexin50 mutant, we also examined the effect of deleting p62 in homozygous Cx50D47A mice. Methods Protein levels were determined with immunoblotting. Mouse lenses were examined with dark-field illumination microscopy. Intensities of the opacities and lens equatorial diameters were quantified using ImageJ. Nuclei and nuclear remnants were detected with fluorescence microscopy of lens sections stained with 4',6-diamino-2-phenylindole dihydrochloride (DAPI). Results Levels of total p62 were increased in the lenses of homozygous Cx50D47A mice compared to those of the wild-type animals. The ratio of p62 phosphorylated at threonine-269/serine-272 (T269/S272) to total p62 was significantly decreased, whereas the ratio of p62 phosphorylated at serine-349 (S349) to total p62 was significantly increased in lenses of homozygous Cx50D47A mice. However, deletion of p62 did not affect the sizes of the lenses or the severity of their cataracts in homozygous Cx50D47A mice. Deletion of p62 did not improve connexin50 or connexin46 levels. Moreover, deletion of p62 did not change the levels of crystallins, histone H3, the mitochondrial import receptor subunit TOM20 homolog, or the abundance of nuclei and nuclear fragments in the lenses of homozygous Cx50D47A mice. Homozygous deletion of p62 led to an 84% increase in the levels of ubiquilin 2, but did not significantly affect the levels of ubiquilin 1 or ubiquilin 4. Conclusions Although homozygous Cx50D47A lenses have increased levels of p62, a specific reduction in p62 phosphorylation at T269/S272, and a specific increase in p62 phosphorylation at S349, this protein is not a critical determinant of the severity of the abnormalities of these lenses (reduced growth or differentiation and cataracts). The lens may utilize redundant or compensatory systems (such as changes in levels of ubiquilin 2) to compensate for the lack of p62 in homozygous Cx50D47A lenses.
Collapse
Affiliation(s)
- Oscar Jara
- Department of Pediatrics, University of Chicago, Chicago, IL
| | | | - Peter J Minogue
- Department of Pediatrics, University of Chicago, Chicago, IL
| | | | - Eric C Beyer
- Department of Pediatrics, University of Chicago, Chicago, IL
| |
Collapse
|
31
|
Alvarez-Rodriguez M, Martinez C, Wright D, Barranco I, Roca J, Rodriguez-Martinez H. The Transcriptome of Pig Spermatozoa, and Its Role in Fertility. Int J Mol Sci 2020; 21:ijms21051572. [PMID: 32106598 PMCID: PMC7084236 DOI: 10.3390/ijms21051572] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
In the study presented here we identified transcriptomic markers for fertility in the cargo of pig ejaculated spermatozoa using porcine-specific micro-arrays (GeneChip® miRNA 4.0 and GeneChip® Porcine Gene 1.0 ST). We report (i) the relative abundance of the ssc-miR-1285, miR-16, miR-4332, miR-92a, miR-671-5p, miR-4334-5p, miR-425-5p, miR-191, miR-92b-5p and miR-15b miRNAs, and (ii) the presence of 347 up-regulated and 174 down-regulated RNA transcripts in high-fertility breeding boars, based on differences of farrowing rate (FS) and litter size (LS), relative to low-fertility boars in the (Artificial Insemination) AI program. An overrepresentation analysis of the protein class (PANTHER) identified significant fold-increases for C-C chemokine binding (GO:0019957): CCR7, which activates B- and T-lymphocytes, 8-fold increase), XCR1 and CXCR4 (with ubiquitin as a natural ligand, 1.24-fold increase), cytokine receptor activity (GO:0005126): IL23R receptor of the IL23 protein, associated to JAK2 and STAT3, 3.4-fold increase), the TGF-receptor (PC00035) genes ACVR1C and ACVR2B (12-fold increase). Moreover, two micro-RNAs (miR-221 and mir-621) were down- and up-regulated, respectively, in high-fertility males. In conclusion, boars with different fertility performance possess a wide variety of differentially expressed RNA present in spermatozoa that would be attractive targets as non-invasive molecular markers for predicting fertility.
Collapse
Affiliation(s)
- Manuel Alvarez-Rodriguez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (C.M.); (H.R.-M.)
- Correspondence: e-mail: ; Phone: +46-(0)729427883
| | - Cristina Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (C.M.); (H.R.-M.)
| | - Dominic Wright
- Department of Physics, Chemistry and Biology, Faculty of Science and Engineering, Linköping University, SE-58183 Linköping, Sweden
| | - Isabel Barranco
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, 17003 Girona, Spain;
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (C.M.); (H.R.-M.)
| |
Collapse
|
32
|
Chaudhuri P, Prajapati KP, Anand BG, Dubey K, Kar K. Amyloid cross-seeding raises new dimensions to understanding of amyloidogenesis mechanism. Ageing Res Rev 2019; 56:100937. [PMID: 31430565 DOI: 10.1016/j.arr.2019.100937] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/21/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
Hallmarks of most of the amyloid pathologies are surprisingly found to be heterocomponent entities such as inclusions and plaques which contain diverse essential proteins and metabolites. Experimental studies have already revealed the occurrence of coaggregation and cross-seeding during amyloid formation of several proteins and peptides, yielding multicomponent assemblies of amyloid nature. Further, research reports on the co-occurrence of more than one type of amyloid-linked pathologies in the same individual suggest the possible cross-talk among the disease related amyloidogenic protein species during their amyloid growth. In this review paper, we have tried to gain more insight into the process of coaggregation and cross-seeding during amyloid aggregation of proteins, particularly focusing on their relevance to the pathogenesis of the protein misfolding diseases. Revelation of amyloid cross-seeding and coaggregation seems to open new dimensions in our mechanistic understanding of amyloidogenesis and such knowledge may possibly inspire better designing of anti-amyloid therapeutics.
Collapse
|
33
|
Boso G, Shaffer E, Liu Q, Cavanna K, Buckler-White A, Kozak CA. Evolution of the rodent Trim5 cluster is marked by divergent paralogous expansions and independent acquisitions of TrimCyp fusions. Sci Rep 2019; 9:11263. [PMID: 31375773 PMCID: PMC6677749 DOI: 10.1038/s41598-019-47720-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/23/2019] [Indexed: 01/07/2023] Open
Abstract
Evolution of cellular innate immune genes in response to viral threats represents a rich area of study for understanding complex events that shape mammalian genomes. One of these genes, TRIM5, is a retroviral restriction factor that mediates a post-entry block to infection. Previous studies on the genomic cluster that contains TRIM5 identified different patterns of gene amplification and the independent birth of CypA gene fusions in various primate species. However, the evolution of Trim5 in the largest order of mammals, Rodentia, remains poorly characterized. Here, we present an expansive phylogenetic and genomic analysis of the Trim5 cluster in rodents. Our findings reveal substantial evolutionary changes including gene amplifications, rearrangements, loss and fusion. We describe the first independent evolution of TrimCyp fusion genes in rodents. We show that the TrimCyp gene found in some Peromyscus species was acquired about 2 million years ago. When ectopically expressed, the P. maniculatus TRIMCyp shows anti-retroviral activity that is reversed by cyclosporine, but it does not activate Nf-κB or AP-1 promoters, unlike the primate TRIMCyps. These results describe a complex pattern of differential gene amplification in the Trim5 cluster of rodents and identify the first functional TrimCyp fusion gene outside of primates and tree shrews.
Collapse
Affiliation(s)
- Guney Boso
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Esther Shaffer
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Kathryn Cavanna
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA.
| |
Collapse
|
34
|
Hecker N, Lächele U, Stuckas H, Giere P, Hiller M. Convergent vomeronasal system reduction in mammals coincides with convergent losses of calcium signalling and odorant-degrading genes. Mol Ecol 2019; 28:3656-3668. [PMID: 31332871 DOI: 10.1111/mec.15180] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/16/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
The vomeronasal system (VNS) serves crucial functions for detecting olfactory clues often related to social and sexual behaviour. Intriguingly, two of the main components of the VNS, the vomeronasal organ (VNO) and the accessory olfactory bulb, are regressed in aquatic mammals, several bats and primates, likely due to adaptations to different ecological niches. To detect genomic changes that are associated with the convergent reduction of the VNS, we performed the first systematic screen for convergently inactivated protein-coding genes associated with convergent VNS reduction, considering 106 mammalian genomes. Extending previous studies, our results support that Trpc2, a cation channel that is important for calcium signalling in the VNO, is a predictive molecular marker for the presence of a VNS. Our screen also detected the convergent inactivation of the calcium-binding protein S100z, the aldehyde oxidase Aox2 that is involved in odorant degradation, and the uncharacterized Mslnl gene that is expressed in the VNO and olfactory epithelium. Furthermore, we found that Trpc2 and S100z or Aox2 are also inactivated in otters and Phocid seals for which no morphological data about the VNS are available yet. This predicts a VNS reduction in these semi-aquatic mammals. By examining the genomes of 115 species in total, our study provides a detailed picture of how the convergent reduction of the VNS coincides with gene inactivation in placental mammals. These inactivated genes provide experimental targets for studying the evolution and biological significance of the olfactory system under different environmental conditions.
Collapse
Affiliation(s)
- Nikolai Hecker
- Center for Systems Biology Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Ulla Lächele
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Heiko Stuckas
- Population Genetics, Senckenberg Natural History Collections Dresden, Dresden, Germany.,Leibniz Institution for Biodiversity and Earth System Research, Dresden, Germany
| | - Peter Giere
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Michael Hiller
- Center for Systems Biology Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| |
Collapse
|
35
|
Harman CA, Monteiro MJ. The specificity of ubiquitin binding to ubiquilin-1 is regulated by sequences besides its UBA domain. Biochim Biophys Acta Gen Subj 2019; 1863:1568-1574. [PMID: 31175912 DOI: 10.1016/j.bbagen.2019.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
Abstract
UBQLN proteins regulate proteostasis by facilitating clearance of misfolded proteins through the proteasome and autophagy degradation pathways. Consistent with its proteasomal function, UBQLN proteins contain both UBL and UBA domains, which bind subunits of the proteasome, including the S5a subunit, and ubiquitin chains, respectively. Conclusions regarding the binding properties of UBQLN proteins have been derived principally through studies of its individual domains, not the full-length (FL) proteins. Here we describe the in vitro binding properties of FL-UBQLN1 with the S5a subunit of the proteasome and two different lysine-linked (K48 or K63) ubiquitin chains. We show that in contrast to its isolated UBA domain, which binds almost equally well with both K48 and K63 ubiquitin chains, FL UBQLN1 binds preferentially with K63 chains. Furthermore, we show that deletion of the UBL domain from UBQLN1 abrogates ubiquitin binding. Taken together these results suggest that sequences outside of the UBA domain in UBQLN1 function to regulate the specificity and binding with different ubiquitin moieties. We also show that the UBL domain of UBQLN1 is required for S5a binding and that its binding to UBQLN1, in turn, enhances K48 ubiquitin chain binding to the complex. We discuss the implications of our findings with the known function of UBQLN proteins in protein degradation.
Collapse
Affiliation(s)
- Christine A Harman
- Center for Biomedical Engineering and Technology, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Mervyn J Monteiro
- Center for Biomedical Engineering and Technology, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
36
|
Non-Proteasomal UbL-UbA Family of Proteins in Neurodegeneration. Int J Mol Sci 2019; 20:ijms20081893. [PMID: 30999567 PMCID: PMC6514573 DOI: 10.3390/ijms20081893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Ubiquitin-like/ubiquitin-associated proteins (UbL-UbA) are a well-studied family of non-proteasomal ubiquitin receptors that are evolutionarily conserved across species. Members of this non-homogenous family facilitate and support proteasomal activity by promoting different effects on proteostasis but exhibit diverse extra-proteasomal activities. Dysfunctional UbL-UbA proteins render cells, particularly neurons, more susceptible to stressors or aging and may cause earlier neurodegeneration. In this review, we summarized the properties and functions of UbL-UbA family members identified to date, with an emphasis on new findings obtained using Drosophila models showing a direct or indirect role in some neurodegenerative diseases.
Collapse
|
37
|
Chen X, Ebelle DL, Wright BJ, Sridharan V, Hooper E, Walters KJ. Structure of hRpn10 Bound to UBQLN2 UBL Illustrates Basis for Complementarity between Shuttle Factors and Substrates at the Proteasome. J Mol Biol 2019; 431:939-955. [PMID: 30664872 PMCID: PMC6389388 DOI: 10.1016/j.jmb.2019.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/07/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022]
Abstract
The 26S proteasome is a highly complex 2.5-MDa molecular machine responsible for regulated protein degradation. Proteasome substrates are typically marked by ubiquitination for recognition at receptor sites contributed by Rpn1/S2/PSMD2, Rpn10/S5a, and Rpn13/Adrm1. Each receptor site can bind substrates directly by engaging conjugated ubiquitin chains or indirectly by binding to shuttle factors Rad23/HR23, Dsk2/PLIC/UBQLN, or Ddi1, which contain a ubiquitin-like domain (UBL) that adopts the ubiquitin fold. Previous structural studies have defined how each of the proteasome receptor sites binds to ubiquitin chains as well as some of the interactions that occur with the shuttle factors. Here, we define how hRpn10 binds to the UBQLN2 UBL domain, solving the structure of this complex by NMR, and determine affinities for each UIM region by a titration experiment. UBQLN2 UBL exhibits 25-fold stronger affinity for the N-terminal UIM-1 over UIM-2 of hRpn10. Moreover, we discover that UBQLN2 UBL is fine-tuned for the hRpn10 UIM-1 site over the UIM-2 site by taking advantage of the additional contacts made available through the longer UIM-1 helix. We also test hRpn10 versatility for the various ubiquitin chains to find less specificity for any particular linkage type compared to hRpn1 and hRpn13, as expected from the flexible linker region that connects the two UIMs; nonetheless, hRpn10 does exhibit some preference for K48 and K11 linkages. Altogether, these results provide new insights into the highly complex and complementary roles of the proteasome receptor sites and shuttle factors.
Collapse
Affiliation(s)
- Xiang Chen
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Danielle L Ebelle
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Brandon J Wright
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Vinidhra Sridharan
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Evan Hooper
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Linganore High School, Frederick, MD 21701, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
38
|
Ubiquilin 2 modulates ALS/FTD-linked FUS-RNA complex dynamics and stress granule formation. Proc Natl Acad Sci U S A 2018; 115:E11485-E11494. [PMID: 30442662 DOI: 10.1073/pnas.1811997115] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ubiquitin-like protein ubiquilin 2 (UBQLN2) has been genetically and pathologically linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but its normal cellular functions are not well understood. In a search for UBQLN2-interacting proteins, we found an enrichment of stress granule (SG) components, including ALS/FTD-linked heterogeneous ribonucleoprotein fused in sarcoma (FUS). Through the use of an optimized SG detection method, we observed UBQLN2 and its interactors at SGs. A low complexity, Sti1-like repeat region in UBQLN2 was sufficient for its localization to SGs. Functionally, UBQLN2 negatively regulated SG formation. UBQLN2 increased the dynamics of FUS-RNA interaction and promoted the fluidity of FUS-RNA complexes at a single-molecule level. This solubilizing effect corresponded to a dispersal of FUS liquid droplets in vitro and a suppression of FUS SG formation in cells. ALS-linked mutations in UBQLN2 reduced its association with FUS and impaired its function in regulating FUS-RNA complex dynamics and SG formation. These results reveal a previously unrecognized role for UBQLN2 in regulating the early stages of liquid-liquid phase separation by directly modulating the fluidity of protein-RNA complexes and the dynamics of SG formation.
Collapse
|
39
|
Samant RS, Livingston CM, Sontag EM, Frydman J. Distinct proteostasis circuits cooperate in nuclear and cytoplasmic protein quality control. Nature 2018; 563:407-411. [PMID: 30429547 PMCID: PMC6707801 DOI: 10.1038/s41586-018-0678-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 09/04/2018] [Indexed: 11/09/2022]
Abstract
Protein misfolding is linked to a wide array of human disorders, including Alzheimer's disease, Parkinson's disease and type II diabetes1,2. Protective cellular protein quality control (PQC) mechanisms have evolved to selectively recognize misfolded proteins and limit their toxic effects3-9, thus contributing to the maintenance of the proteome (proteostasis). Here we examine how molecular chaperones and the ubiquitin-proteasome system cooperate to recognize and promote the clearance of soluble misfolded proteins. Using a panel of PQC substrates with distinct characteristics and localizations, we define distinct chaperone and ubiquitination circuitries that execute quality control in the cytoplasm and nucleus. In the cytoplasm, proteasomal degradation of misfolded proteins requires tagging with mixed lysine 48 (K48)- and lysine 11 (K11)-linked ubiquitin chains. A distinct combination of E3 ubiquitin ligases and specific chaperones is required to achieve each type of linkage-specific ubiquitination. In the nucleus, however, proteasomal degradation of misfolded proteins requires only K48-linked ubiquitin chains, and is thus independent of K11-specific ligases and chaperones. The distinct ubiquitin codes for nuclear and cytoplasmic PQC appear to be linked to the function of the ubiquilin protein Dsk2, which is specifically required to clear nuclear misfolded proteins. Our work defines the principles of cytoplasmic and nuclear PQC as distinct, involving combinatorial recognition by defined sets of cooperating chaperones and E3 ligases. A better understanding of how these organelle-specific PQC requirements implement proteome integrity has implications for our understanding of diseases linked to impaired protein clearance and proteostasis dysfunction.
Collapse
Affiliation(s)
- Rahul S Samant
- Department of Biology, Stanford University, Stanford, CA, USA.
| | - Christine M Livingston
- Department of Biology, Stanford University, Stanford, CA, USA. .,Janssen Research and Development, Spring House, PA, USA.
| | - Emily M Sontag
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA. .,Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
40
|
Bustamante HA, González AE, Cerda-Troncoso C, Shaughnessy R, Otth C, Soza A, Burgos PV. Interplay Between the Autophagy-Lysosomal Pathway and the Ubiquitin-Proteasome System: A Target for Therapeutic Development in Alzheimer's Disease. Front Cell Neurosci 2018; 12:126. [PMID: 29867359 PMCID: PMC5954036 DOI: 10.3389/fncel.2018.00126] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of age-related dementia leading to severe irreversible cognitive decline and massive neurodegeneration. While therapeutic approaches for managing symptoms are available, AD currently has no cure. AD associates with a progressive decline of the two major catabolic pathways of eukaryotic cells—the autophagy-lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS)—that contributes to the accumulation of harmful molecules implicated in synaptic plasticity and long-term memory impairment. One protein recently highlighted as the earliest initiator of these disturbances is the amyloid precursor protein (APP) intracellular C-terminal membrane fragment β (CTFβ), a key toxic agent with deleterious effects on neuronal function that has become an important pathogenic factor for AD and a potential biomarker for AD patients. This review focuses on the involvement of regulatory molecules and specific post-translational modifications (PTMs) that operate in the UPS and ALP to control a single proteostasis network to achieve protein balance. We discuss how these aspects can contribute to the development of novel strategies to strengthen the balance of key pathogenic proteins associated with AD.
Collapse
Affiliation(s)
- Hianara A Bustamante
- Institute of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Alexis E González
- Institute of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Fundación Ciencia y Vida, Santiago, Chile
| | - Cristobal Cerda-Troncoso
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Ronan Shaughnessy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carola Otth
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Institute of Clinical Microbiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia V Burgos
- Institute of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
41
|
Jantrapirom S, Lo Piccolo L, Yoshida H, Yamaguchi M. A new Drosophila model of Ubiquilin knockdown shows the effect of impaired proteostasis on locomotive and learning abilities. Exp Cell Res 2017; 362:461-471. [PMID: 29247619 DOI: 10.1016/j.yexcr.2017.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 12/12/2022]
Abstract
Ubiquilin (UBQLN) plays a crucial role in cellular proteostasis through its involvement in the ubiquitin proteasome system and autophagy. Mutations in the UBQLN2 gene have been implicated in amyotrophic lateral sclerosis (ALS) and ALS with frontotemporal lobar dementia (ALS/FTLD). Previous studies reported a key role for UBQLN in Alzheimer's disease (AD); however, the mechanistic involvement of UBQLN in other neurodegenerative diseases remains unclear. The genome of Drosophila contains a single UBQLN homolog (dUbqn) that shows high similarity to UBQLN1 and UBQLN2; therefore, the fly is a useful model for characterizing the role of UBQLN in vivo in neurological disorders affecting locomotion and learning abilities. We herein performed a phenotypic and molecular characterization of diverse dUbqn RNAi lines. We found that the depletion of dUbqn induced the accumulation of polyubiquitinated proteins and caused morphological defects in various tissues. Our results showed that structural defects in larval neuromuscular junctions, abdominal neuromeres, and mushroom bodies correlated with limited abilities in locomotion, learning, and memory. These results contribute to our understanding of the impact of impaired proteostasis in neurodegenerative diseases and provide a useful Drosophila model for the development of promising therapies for ALS and FTLD.
Collapse
Affiliation(s)
- Salinee Jantrapirom
- Department of Applied Biology Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Luca Lo Piccolo
- Department of Applied Biology Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
42
|
Whiteley AM, Prado MA, Peng I, Abbas AR, Haley B, Paulo JA, Reichelt M, Katakam A, Sagolla M, Modrusan Z, Lee DY, Roose-Girma M, Kirkpatrick DS, McKenzie BS, Gygi SP, Finley D, Brown EJ. Ubiquilin1 promotes antigen-receptor mediated proliferation by eliminating mislocalized mitochondrial proteins. eLife 2017; 6. [PMID: 28933694 PMCID: PMC5608509 DOI: 10.7554/elife.26435] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
Ubiquilins (Ubqlns) are a family of ubiquitin receptors that promote the delivery of hydrophobic and aggregated ubiquitinated proteins to the proteasome for degradation. We carried out a proteomic analysis of a B cell lymphoma-derived cell line, BJAB, that requires UBQLN1 for survival to identify UBQLN1 client proteins. When UBQLN1 expression was acutely inhibited, 120 mitochondrial proteins were enriched in the cytoplasm, suggesting that the accumulation of mitochondrial client proteins in the absence of UBQLN1 is cytostatic. Using a Ubqln1−/− mouse strain, we found that B cell receptor (BCR) ligation of Ubqln1−/− B cells led to a defect in cell cycle entry. As in BJAB cells, mitochondrial proteins accumulated in BCR-stimulated cells, leading to protein synthesis inhibition and cell cycle block. Thus, UBQLN1 plays an important role in clearing mislocalized mitochondrial proteins upon cell stimulation, and its absence leads to suppression of protein synthesis and cell cycle arrest.
Collapse
Affiliation(s)
- Alexandra M Whiteley
- Department of Infectious Disease, Genentech, South San Francisco, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Ivan Peng
- Department of Translational Immunology, Genentech, South San Francisco, United States
| | - Alexander R Abbas
- Department of Bioinformatics, Genentech, South San Francisco, United States
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, South San Francisco, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Mike Reichelt
- Department of Pathology, Genentech, South San Francisco, United States
| | - Anand Katakam
- Department of Pathology, Genentech, South San Francisco, United States
| | - Meredith Sagolla
- Department of Pathology, Genentech, South San Francisco, United States
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, United States
| | - Dong Yun Lee
- Department of Infectious Disease, Genentech, South San Francisco, United States
| | - Merone Roose-Girma
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, United States
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, United States
| | - Brent S McKenzie
- Department of Translational Immunology, Genentech, South San Francisco, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Eric J Brown
- Department of Infectious Disease, Genentech, South San Francisco, United States
| |
Collapse
|
43
|
Wong YY, Johnson B, Friedrich TC, Trepanier LA. Hepatic expression profiles in retroviral infection: relevance to drug hypersensitivity risk. Pharmacol Res Perspect 2017; 5:e00312. [PMID: 28603631 PMCID: PMC5464341 DOI: 10.1002/prp2.312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/11/2022] Open
Abstract
HIV‐infected patients show a markedly increased risk of delayed hypersensitivity (HS) reactions to potentiated sulfonamide antibiotics (trimethoprim/sulfamethoxazole or TMP/SMX). Some studies have suggested altered SMX biotransformation in HIV infection, but hepatic biotransformation pathways have not been evaluated directly. Systemic lupus erythematosus (SLE) is another chronic inflammatory disease with a higher incidence of sulfonamide HS, but it is unclear whether retroviral infection and SLE share risk factors for drug HS. We hypothesized that retroviral infection would lead to dysregulation of hepatic pathways of SMX biotransformation, as well as pathway alterations in common with SLE that could contribute to drug HS risk. We characterized hepatic expression profiles and enzymatic activities in an SIV‐infected macaque model of retroviral infection, and found no evidence for dysregulation of sulfonamide drug biotransformation pathways. Specifically, NAT1,NAT2,CYP2C8,CYP2C9,CYB5R3,MARC1/2, and glutathione‐related genes (GCLC,GCLM,GSS,GSTM1, and GSTP1) were not differentially expressed in drug naïve SIVmac239‐infected male macaques compared to age‐matched controls, and activities for SMX N‐acetylation and SMX hydroxylamine reduction were not different. However, multiple genes that are reportedly over‐expressed in SLE patients were also up‐regulated in retroviral infection, to include enhanced immunoproteasomal processing and presentation of antigens as well as up‐regulation of gene clusters that may be permissive to autoimmunity. These findings support the hypothesis that pathways downstream from drug biotransformation may be primarily important in drug HS risk in HIV infection.
Collapse
Affiliation(s)
- Yat Yee Wong
- Department of Medical Sciences School of Veterinary Medicine Madison Wisconsin
| | - Brian Johnson
- Molecular and Environmental Toxicology Center School of Medicine and Public Health University of Wisconsin-Madison Madison Wisconsin
| | - Thomas C Friedrich
- Department of Pathobiological Sciences School of Veterinary Medicine Madison Wisconsin.,AIDS Vaccine Research Laboratory Wisconsin National Primate Research Center Madison Wisconsin
| | - Lauren A Trepanier
- Department of Medical Sciences School of Veterinary Medicine Madison Wisconsin
| |
Collapse
|
44
|
Saeki Y. Ubiquitin recognition by the proteasome. J Biochem 2017; 161:113-124. [PMID: 28069863 DOI: 10.1093/jb/mvw091] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/21/2016] [Indexed: 12/14/2022] Open
Abstract
The 26S proteasome is a 2.5-MDa complex responsible for the selective, ATP-dependent degradation of ubiquitylated proteins in eukaryotic cells. Substrates in hundreds cellular pathways are timely ubiquitylated and converged to the proteasome by direct recognition or by multiple shuttle factors. Engagement of substrate protein triggers conformational changes of the proteasome, which drive substrate unfolding, deubiquitylation and translocation of substrates to proteolytic sites. Recent studies have challenged the previous paradigm that Lys48-linked tetraubiquitin is a minimal degradation signal: in addition, monoubiquitylation or multiple short ubiquitylations can serve as the targeting signal for proteasomal degradation. In this review, I highlight recent advances in our understanding of the proteasome structure, the ubiquitin topology in proteasome targeting, and the cellular factors that regulate proteasomal degradation.
Collapse
Affiliation(s)
- Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
45
|
Edens BM, Yan J, Miller N, Deng HX, Siddique T, Ma YC. A novel ALS-associated variant in UBQLN4 regulates motor axon morphogenesis. eLife 2017; 6:e25453. [PMID: 28463112 PMCID: PMC5451210 DOI: 10.7554/elife.25453] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/29/2017] [Indexed: 12/12/2022] Open
Abstract
The etiological underpinnings of amyotrophic lateral sclerosis (ALS) are complex and incompletely understood, although contributions to pathogenesis by regulators of proteolytic pathways have become increasingly apparent. Here, we present a novel variant in UBQLN4 that is associated with ALS and show that its expression compromises motor axon morphogenesis in mouse motor neurons and in zebrafish. We further demonstrate that the ALS-associated UBQLN4 variant impairs proteasomal function, and identify the Wnt signaling pathway effector beta-catenin as a UBQLN4 substrate. Inhibition of beta-catenin function rescues the UBQLN4 variant-induced motor axon phenotypes. These findings provide a strong link between the regulation of axonal morphogenesis and a new ALS-associated gene variant mediated by protein degradation pathways.
Collapse
Affiliation(s)
- Brittany M Edens
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, United States
| | - Jianhua Yan
- The Ken & Ruth Davee Department of Neurology, The Les Turner ALS Research and Patient Center, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Nimrod Miller
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, United States
| | - Han-Xiang Deng
- The Ken & Ruth Davee Department of Neurology, The Les Turner ALS Research and Patient Center, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Teepu Siddique
- The Ken & Ruth Davee Department of Neurology, The Les Turner ALS Research and Patient Center, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Yongchao C Ma
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, United States
| |
Collapse
|
46
|
Qiao F, Longley KR, Feng S, Schnack S, Gao H, Li Y, Schlenker EH, Wang H. Reduced body weight gain in ubiquilin-1 transgenic mice is associated with increased expression of energy-sensing proteins. Physiol Rep 2017; 5:e13260. [PMID: 28420763 PMCID: PMC5408289 DOI: 10.14814/phy2.13260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/14/2022] Open
Abstract
Ubiquilin-1 (Ubqln1), a ubiquitin-like protein, is implicated in a variety of pathophysiological processes, but its role in mediating body weight gain or metabolism has not been determined. Here, we demonstrate that global overexpression of Ubqln1 in a transgenic (Tg) mouse reduces the animal's body weight gain. The decreased body weight gain in Tg mice is associated with lower visceral fat content and higher metabolic rate. The Ubqln1 Tg mice exhibited reduced leptin and insulin levels as well as increased insulin sensitivity manifested by homeostatic model assessment of insulin resistance. Additionally, the reduced body weight in Tg mice was associated with the upregulation of two energy-sensing proteins, sirtuin1 (SIRT1) in the hypothalamus and AMP-activated protein kinase (AMPK) in the skeletal muscle. Consistent with the in vivo results, overexpression of Ubqln1 significantly increased SIRT1 and AMPK levels in the mouse embryonic fibroblast cell culture. Thus, our results not only establish the link between Ubqln1 and body weight regulation but also indicate that the metabolic function of Ubqln1 on body weight may be through regulating energy-sensing proteins.
Collapse
Affiliation(s)
- Fangfang Qiao
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Kirsty R Longley
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Shelley Feng
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Sabrina Schnack
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Hongbo Gao
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Yifan Li
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Evelyn H Schlenker
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
47
|
Hjerpe R, Bett JS, Keuss MJ, Solovyova A, McWilliams TG, Johnson C, Sahu I, Varghese J, Wood N, Wightman M, Osborne G, Bates GP, Glickman MH, Trost M, Knebel A, Marchesi F, Kurz T. UBQLN2 Mediates Autophagy-Independent Protein Aggregate Clearance by the Proteasome. Cell 2016; 166:935-949. [PMID: 27477512 PMCID: PMC5003816 DOI: 10.1016/j.cell.2016.07.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/18/2016] [Accepted: 07/02/2016] [Indexed: 12/14/2022]
Abstract
Clearance of misfolded and aggregated proteins is central to cell survival. Here, we describe a new pathway for maintaining protein homeostasis mediated by the proteasome shuttle factor UBQLN2. The 26S proteasome degrades polyubiquitylated substrates by recognizing them through stoichiometrically bound ubiquitin receptors, but substrates are also delivered by reversibly bound shuttles. We aimed to determine why these parallel delivery mechanisms exist and found that UBQLN2 acts with the HSP70-HSP110 disaggregase machinery to clear protein aggregates via the 26S proteasome. UBQLN2 recognizes client-bound HSP70 and links it to the proteasome to allow for the degradation of aggregated and misfolded proteins. We further show that this process is active in the cell nucleus, where another system for aggregate clearance, autophagy, does not act. Finally, we found that mutations in UBQLN2, which lead to neurodegeneration in humans, are defective in chaperone binding, impair aggregate clearance, and cause cognitive deficits in mice. UBQLN2 clears aggregates independent of autophagy via HSP70 and the proteasome A disease mutation in UBQLN2 prevents its binding to HSP70 Mutant UBQLN2 is defective in clearance of aggregates in vivo UBQLN2 knockin mice develop cognitive impairment and brain pathology
Collapse
Affiliation(s)
- Roland Hjerpe
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Davidson Building, Henry Wellcome Lab of Cell Biology, University of Glasgow, G12 8QQ Glasgow, UK; The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - John S Bett
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Davidson Building, Henry Wellcome Lab of Cell Biology, University of Glasgow, G12 8QQ Glasgow, UK; The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland.
| | - Matthew J Keuss
- The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Alexandra Solovyova
- Newcastle University Protein and Proteome Analysis, Devonshire Building, Devonshire Terrace, Newcastle upon Tyne NE1 7RU, UK
| | - Thomas G McWilliams
- The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Clare Johnson
- The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Indrajit Sahu
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Joby Varghese
- The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Nicola Wood
- The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Melanie Wightman
- The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Georgina Osborne
- Department of Medical and Molecular Genetics, King's College London, 8th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Gillian P Bates
- Department of Medical and Molecular Genetics, King's College London, 8th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Michael H Glickman
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Matthias Trost
- The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Axel Knebel
- The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Francesco Marchesi
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Thimo Kurz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Davidson Building, Henry Wellcome Lab of Cell Biology, University of Glasgow, G12 8QQ Glasgow, UK; The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland.
| |
Collapse
|
48
|
Feng H, Wang T, Feng C, Zhang Q, Zhang X, Huang L, Wang X, Kang Z. Identification of microRNAs and their corresponding targets involved in the susceptibility interaction of wheat response to Puccinia striiformis f. sp. tritici. PHYSIOLOGIA PLANTARUM 2016; 157:95-107. [PMID: 26563616 DOI: 10.1111/ppl.12407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 05/06/2023]
Abstract
MicroRNAs (miRNAs) play very important roles in plant defense responses. However, little is known about their roles in the susceptibility interaction between wheat and Puccinia striiformis f. sp. tritici (Pst). In this study, two miRNA libraries were constructed from the leaves of the cultivar Xingzi 9104 inoculated with the virulent Pst race CYR32 and sterile water, respectively. A total of 1316 miRNA candidates, including 173 known miRNAs that were generated from 98 pre-miRNAs, were obtained. The remaining 1143 miRNA candidates included 145 conserved and 998 wheat-specific miRNAs that were generated from 87 and 1088 pre-miRNAs, respectively. The 173 known and 145 conserved miRNAs were sub-classified into 63 miRNA families. The target genes of wheat miRNAs were also confirmed using degradome sequencing technology. Most of the annotated target genes were related to signal transduction or energy metabolism. Additionally, we found that miRNAs and their target genes form complicated regulation networks. The expression profiles of miRNAs and their corresponding target genes were further analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), and the results indicate that some miRNAs are involved in the compatible wheat-Pst susceptibility interaction. Importantly, tae-miR1432 was highly expressed when wheat was challenged with CYR32, and the corresponding target gene, predicted to be a calcium ion-binding protein, also exhibited upregulated expression but a divergent expression trend. PC-3P-7484, a specific wheat miRNA, was highly expressed in the wheat response to Pst infection, while the expression of the corresponding target gene ubiquillin was dramatically downregulated. These data provide the foundation for evaluating the important regulatory roles of miRNAs in wheat-Pst susceptibility interaction.
Collapse
Affiliation(s)
- Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Ting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Chuanxin Feng
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Qiong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Xinmei Zhang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
49
|
Yu C, Yang Y, Wang X, Guan S, Fang L, Liu F, Walters KJ, Kaiser P, Huang L. Characterization of Dynamic UbR-Proteasome Subcomplexes by In vivo Cross-linking (X) Assisted Bimolecular Tandem Affinity Purification (XBAP) and Label-free Quantitation. Mol Cell Proteomics 2016; 15:2279-92. [PMID: 27114451 DOI: 10.1074/mcp.m116.058271] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 12/14/2022] Open
Abstract
Proteasomes are protein degradation machines that exist in cells as heterogeneous and dynamic populations. A group of proteins function as ubiquitin receptors (UbRs) that can recognize and deliver ubiquitinated substrates to proteasome complexes for degradation. Defining composition of proteasome complexes engaged with UbRs is critical to understand proteasome function. However, because of the dynamic nature of UbR interactions with the proteasome, it remains technically challenging to capture and isolate UbR-proteasome subcomplexes using conventional purification strategies. As a result, distinguishing the molecular differences among these subcomplexes remains elusive. We have developed a novel affinity purification strategy, in vivo cross-linking (X) assisted bimolecular tandem affinity purification strategy (XBAP), to effectively isolate dynamic UbR-proteasome subcomplexes and define their subunit compositions using label-free quantitative mass spectrometry. In this work, we have analyzed seven distinctive UbR-proteasome complexes and found that all of them contain the same type of the 26S holocomplex. However, selected UbRs interact with a group of proteasome interacting proteins that may link each UbR to specific cellular pathways. The compositional similarities and differences among the seven UbR-proteasome subcomplexes have provided new insights on functional entities of proteasomal degradation machineries. The strategy described here represents a general and useful proteomic tool for isolating and studying dynamic and heterogeneous protein subcomplexes in cells that have not been fully characterized.
Collapse
Affiliation(s)
- Clinton Yu
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697
| | - Yingying Yang
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697
| | - Xiaorong Wang
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697
| | - Shenheng Guan
- §Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Lei Fang
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697
| | - Fen Liu
- ¶Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702
| | - Kylie J Walters
- ¶Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702
| | - Peter Kaiser
- ‖Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Lan Huang
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697;
| |
Collapse
|
50
|
Sweadner KJ, Toro C, Whitlow CT, Snively BM, Cook JF, Ozelius LJ, Markello TC, Brashear A. ATP1A3 Mutation in Adult Rapid-Onset Ataxia. PLoS One 2016; 11:e0151429. [PMID: 26990090 PMCID: PMC4798776 DOI: 10.1371/journal.pone.0151429] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/28/2016] [Indexed: 11/18/2022] Open
Abstract
A 21-year old male presented with ataxia and dysarthria that had appeared over a period of months. Exome sequencing identified a de novo missense variant in ATP1A3, the gene encoding the α3 subunit of Na,K-ATPase. Several lines of evidence suggest that the variant is causative. ATP1A3 mutations can cause rapid-onset dystonia-parkinsonism (RDP) with a similar age and speed of onset, as well as severe diseases of infancy. The patient's ATP1A3 p.Gly316Ser mutation was validated in the laboratory by the impaired ability of the expressed protein to support the growth of cultured cells. In a crystal structure of Na,K-ATPase, the mutated amino acid was directly apposed to a different amino acid mutated in RDP. Clinical evaluation showed that the patient had many characteristics of RDP, however he had minimal fixed dystonia, a defining symptom of RDP. Successive magnetic resonance imaging (MRI) revealed progressive cerebellar atrophy, explaining the ataxia. The absence of dystonia in the presence of other RDP symptoms corroborates other evidence that the cerebellum contributes importantly to dystonia pathophysiology. We discuss the possibility that a second de novo variant, in ubiquilin 4 (UBQLN4), a ubiquitin pathway component, contributed to the cerebellar neurodegenerative phenotype and differentiated the disease from other manifestations of ATP1A3 mutations. We also show that a homozygous variant in GPRIN1 (G protein-regulated inducer of neurite outgrowth 1) deletes a motif with multiple copies and is unlikely to be causative.
Collapse
Affiliation(s)
- Kathleen J. Sweadner
- Departments of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, and Office of the Clinical Director, NHGRI, Bethesda, Maryland, United States of America
| | - Christopher T. Whitlow
- Departments of Radiology and Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Beverly M. Snively
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jared F. Cook
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Laurie J. Ozelius
- Department of Neurology, Massachusetts General Hospital, Boston Massachusetts, United States of America
| | - Thomas C. Markello
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, and Human Biochemical Genetics Section, Medical Genetics Branch, NHGRI, Bethesda, Maryland, United States of America
| | - Allison Brashear
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| |
Collapse
|