1
|
Hybrid larval lethality of Drosophila is caused by parent-of-origin expression: an insight from imaginal discs morphogenesis of Lhr pausing rescue hybrids of D. melanogaster and D. simulans. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
2
|
Support for the Dominance Theory in Drosophila Transcriptomes. Genetics 2018; 210:703-718. [PMID: 30131345 PMCID: PMC6216581 DOI: 10.1534/genetics.118.301229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022] Open
Abstract
Interactions among divergent elements of transcriptional networks from different species can lead to misexpression in hybrids through regulatory incompatibilities, some with the potential to generate sterility. While the possible contribution of faster-male evolution to this misexpression has been explored, the role of the hemizygous X chromosome (i.e., the dominance theory for transcriptomes) remains yet to be determined. Here, we study genome-wide patterns of gene expression in females and males of Drosophila yakuba, Drosophila santomea and their hybrids. We used attached-X stocks to specifically test the dominance theory, and we uncovered a significant contribution of recessive alleles on the X chromosome to hybrid misexpression. Our analyses also suggest a contribution of weakly deleterious regulatory mutations to gene expression divergence in genes with sex-biased expression, but only in the sex toward which the expression is biased (e.g., genes with female-biased expression when analyzed in females). In the opposite sex, we found stronger selective constraints on gene expression divergence. Although genes with a high degree of male-biased expression show a clear signal of faster-X evolution of gene expression, we also detected slower-X evolution in other gene classes (e.g., female-biased genes). This slower-X effect is mediated by significant decreases in cis- and trans-regulatory divergence. The distinct behavior of X-linked genes with a high degree of male-biased expression is consistent with these genes experiencing a higher incidence of positively selected regulatory mutations than their autosomal counterparts.
Collapse
|
3
|
White SL, Sakhrani D, Danzmann RG, Devlin RH. Influence of developmental stage and genotype on liver mRNA levels among wild, domesticated, and hybrid rainbow trout (Oncorhynchus mykiss). BMC Genomics 2013; 14:673. [PMID: 24088438 PMCID: PMC3851433 DOI: 10.1186/1471-2164-14-673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Release of domesticated strains of fish into nature may pose a threat to wild populations with respect to their evolved genetic structure and fitness. Understanding alterations that have occurred in both physiology and genetics as a consequence of domestication can assist in evaluating the risks posed by introgression of domesticated genomes into wild genetic backgrounds, however the molecular causes of these consequences are currently poorly defined. The present study has examined levels of mRNA in fast-growing pure domesticated (D), slow-growing age-matched pure wild (Wa), slow-growing size-matched pure wild (Ws), and first generation hybrid cross (W/D) rainbow trout (Oncorhynchus mykiss) to investigate the influence of genotype (domesticated vs. wild, and their interactions in hybrids) and developmental stage (age- or size-matched animals) on genetic responses (i.e. dominant vs. recessive) and specific physiological pathways. RESULTS Highly significant differences in mRNA levels were found between domesticated and wild-type rainbow trout genotypes (321 mRNAs), with many mRNAs in the wild-domesticated hybrid progeny showing intermediate levels. Differences were also found between age-matched and size-matched wild-type trout groups (64 mRNAs), with unique mRNA differences for each of the wild-type groups when compared to domesticated trout (Wa: 114 mRNAs, Ws: 88 mRNAs), illustrating an influence of fish developmental stage affecting findings when used as comparator groups to other genotypes. Analysis of differentially expressed mRNAs (found for both wild-type trout to domesticated comparisons) among the genotypes indicates that 34.8% are regulated consistent with an additive genetic model, whereas 39.1% and 26.1% show a recessive or dominant mode of regulation, respectively. These molecular data are largely consistent with phenotypic data (growth and behavioural assessments) assessed in domesticated and wild trout strains. CONCLUSIONS The present molecular data are concordant with domestication having clearly altered rainbow trout genomes and consequent phenotype from that of native wild populations. Although mainly additive responses were noted in hybrid progeny, the prevalence of dominant and non-additive responses reveals that introgression of domesticated and wild genotypes alters the type of genetic control of mRNA levels from that of wild-type, which may lead to disruption of gene regulation systems important for developing phenotypes for optimal fitness in nature. A clear influence of both fish age and size (developmental stage) on mRNA levels was also noted in this study, which highlights the importance of examining multiple control samples to provide a comprehensive understanding of changes observed between strains possessing differences in growth rate.
Collapse
Affiliation(s)
- Samantha L White
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| | - Dionne Sakhrani
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| | - Roy G Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| |
Collapse
|
4
|
Llopart A. The Rapid Evolution of X-linked Male-Biased Gene Expression and the Large-X Effect in Drosophila yakuba, D. santomea, and Their Hybrids. Mol Biol Evol 2012; 29:3873-86. [DOI: 10.1093/molbev/mss190] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
5
|
Abstract
Ecological speciation is the process by which barriers to gene flow between populations evolve due to adaptive divergence via natural selection. A relatively unexplored area in ecological speciation is the role of gene expression. Gene expression may be associated with ecologically important phenotypes not evident from morphology and play a role during colonization of new environments. Here we review two potential roles of gene expression in ecological speciation: (1) its indirect role in facilitating population persistence and (2) its direct role in contributing to genetically based reproductive isolation. We find indirect evidence that gene expression facilitates population persistence, but direct tests are lacking. We also find clear examples of gene expression having effects on phenotypic traits and adaptive genetic divergence, but links to the evolution of reproductive isolation itself remain indirect. Gene expression during adaptive divergence seems to often involve complex genetic architectures controlled by gene networks, regulatory regions, and “eQTL hotspots.” Nonetheless, we review how approaches for isolating the functional mutations contributing to adaptive divergence are proving to be successful. The study of gene expression has promise for increasing our understanding ecological speciation, particularly when integrative approaches are applied.
Collapse
Affiliation(s)
- Scott A Pavey
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | |
Collapse
|
6
|
The transcriptional landscape of cross-specific hybrids and its possible link with growth in brook charr (Salvelinus fontinalis Mitchill). Genetics 2010; 186:97-107. [PMID: 20551437 DOI: 10.1534/genetics.110.118158] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The genetic mechanisms underlying hybridization are poorly understood despite their potentially important roles in speciation processes, adaptative evolution, and agronomical innovation. In this study, transcription profiles were compared among three populations of brook charr and their hybrids using microarrays to assess the influence of hybrid origin on modes of transcription regulation inheritance and on the mechanisms underlying growth. We found that twice as many transcripts were differently expressed between the domestic population and the two wild populations (Rupert and Laval) than between wild ones, despite their deeper genetic distance. This could reflect the consequence of artificial selection during domestication. We detected that hybrids exhibited strikingly different patterns of mode of transcription regulation, being mostly additive (94%) for domestic × Rupert, and nonadditive for Laval × domestic (45.7%) and Rupert × Laval hybrids (37.5%). Both heterosis and outbreeding depression for growth were observed among the crosses. Our results indicated that prevalence of dominance in transcription regulation seems related to growth heterosis, while prevalence of transgressive transcription regulation may be more related to outbreeding depression. Our study clearly shows, for the first time in vertebrates, that the consequences of hybridization on both the transcriptome level and the phenotype are highly dependent on the specific genetic architectures of crossed populations and therefore hardly predictable.
Collapse
|
7
|
Masly JP, Presgraves DC. High-resolution genome-wide dissection of the two rules of speciation in Drosophila. PLoS Biol 2007; 5:e243. [PMID: 17850182 PMCID: PMC1971125 DOI: 10.1371/journal.pbio.0050243] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 07/12/2007] [Indexed: 11/30/2022] Open
Abstract
Postzygotic reproductive isolation is characterized by two striking empirical patterns. The first is Haldane's rule—the preferential inviability or sterility of species hybrids of the heterogametic (XY) sex. The second is the so-called large X effect—substitution of one species's X chromosome for another's has a disproportionately large effect on hybrid fitness compared to similar substitution of an autosome. Although the first rule has been well-established, the second rule remains controversial. Here, we dissect the genetic causes of these two rules using a genome-wide introgression analysis of Drosophila mauritiana chromosome segments in an otherwise D. sechellia genetic background. We find that recessive hybrid incompatibilities outnumber dominant ones and that hybrid male steriles outnumber all other types of incompatibility, consistent with the dominance and faster-male theories of Haldane's rule, respectively. We also find that, although X-linked and autosomal introgressions are of similar size, most X-linked introgressions cause hybrid male sterility (60%) whereas few autosomal introgressions do (18%). Our results thus confirm the large X effect and identify its proximate cause: incompatibilities causing hybrid male sterility have a higher density on the X chromosome than on the autosomes. We evaluate several hypotheses for the evolutionary cause of this excess of X-linked hybrid male sterility. The evolution of reproductive isolation is a fundamental step in the origin of species. One kind of reproductive isolation, the sterility and inviability of species hybrids, is characterized by two of the strongest rules in evolutionary biology. The first is Haldane's rule: for species crosses in which just one hybrid sex is sterile or inviable, it tends to be the sex defined by having a pair of dissimilar sex chromosomes (e.g., the “XY” of males in humans). The second rule is the large X effect: the X chromosome has a disproportionately large effect on hybrid fitness. We dissected the genetic causes of these two rules of speciation by replacing many small chromosomal segments of the fruit fly Drosophila sechellia with those of a closely related species, D. mauritiana. Together, these segments cover 70% of the genome. We found that virtually all segments causing hybrid sterility or inviability act recessively and that hybrid male sterility is by far the most common type of hybrid incompatibility, confirming two leading theories about the causes of Haldane's rule. We also found that X-linked segments are more likely to cause hybrid male sterility than similarly sized autosomal segments. These results show that the large X effect is caused by a higher density of hybrid incompatibilities on the X chromosome. A genome-wide introgression analysis of Drosophila mauritiana chromosome segments in an otherwise D. sechellia genetic background confirms the large X effect, a cornerstone of speciation theory, and reveals its cause.
Collapse
Affiliation(s)
- John P Masly
- Department of Biology, University of Rochester, Rochester, New York, United States of America.
| | | |
Collapse
|
8
|
Abstract
We have studied different subspecies of the house mouse and their reciprocal F(1) hybrids to estimate the within-locus mode of inheritance for subspecies differences in gene expression in three tissues (brain, liver, and testis) of male mice. This study investigates the mode of inheritance in crosses at a larger taxonomic distance than has been previously systematically investigated. We found the vast majority of transcripts to be additively expressed with only a few transcripts showing dominance or overdominance in expression, except for one direction of one cross, which showed large mis-expression in the testis. We suggest that, as time passes, more genes come to influence expression, and if there is no directional dominance, additivity becomes increasingly more likely, up to a threshold beyond which there is F(1) hybrid breakdown. Some previous studies on different organisms have found a large degree of dominance, commonly at shorter taxonomic differences. We surveyed these findings and show that the most consistent association exists between the amount of additivity detected in a study and the expression analysis method (in particular microarray platform), suggesting that at least some of the differences among studies might be methodological. Most studies agree with ours in that within-locus additivity seems to be general mode of inheritance for transcript expression. Differentially expressed transcripts identified in our screen among subspecies of house mice are candidate genes that could be involved in reproductive isolation between these subspecies.
Collapse
|
9
|
Malone JH, Chrzanowski TH, Michalak P. Sterility and gene expression in hybrid males of Xenopus laevis and X. muelleri. PLoS One 2007; 2:e781. [PMID: 17712429 PMCID: PMC1940320 DOI: 10.1371/journal.pone.0000781] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 07/18/2007] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Reproductive isolation is a defining characteristic of populations that represent unique biological species, yet we know very little about the gene expression basis for reproductive isolation. The advent of powerful molecular biology tools provides the ability to identify genes involved in reproductive isolation and focuses attention on the molecular mechanisms that separate biological species. Herein we quantify the sterility pattern of hybrid males in African Clawed Frogs (Xenopus) and apply microarray analysis of the expression pattern found in testes to identify genes that are misexpressed in hybrid males relative to their two parental species (Xenopus laevis and X. muelleri). METHODOLOGY/PRINCIPAL FINDINGS Phenotypic characteristics of spermatogenesis in sterile male hybrids (X. laevis x X. muelleri) were examined using a novel sperm assay that allowed quantification of live, dead, and undifferentiated sperm cells, the number of motile vs. immotile sperm, and sperm morphology. Hybrids exhibited a dramatically lower abundance of mature sperm relative to the parental species. Hybrid spermatozoa were larger in size and accompanied by numerous undifferentiated sperm cells. Microarray analysis of gene expression in testes was combined with a correction for sequence divergence derived from genomic hybridizations to identify candidate genes involved in the sterility phenotype. Analysis of the transcriptome revealed a striking asymmetric pattern of misexpression. There were only about 140 genes misexpressed in hybrids compared to X. laevis but nearly 4,000 genes misexpressed in hybrids compared to X. muelleri. CONCLUSIONS/SIGNIFICANCE Our results provide an important correlation between phenotypic characteristics of sperm and gene expression in sterile hybrid males. The broad pattern of gene misexpression suggests intriguing mechanisms creating the dominance pattern of the X. laevis genome in hybrids. These findings significantly contribute to growing evidence for allelic dominance in hybrids and have implications for the mechanism of species differentiation at the transcriptome level.
Collapse
Affiliation(s)
- John H. Malone
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Thomas H. Chrzanowski
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Pawel Michalak
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| |
Collapse
|
10
|
Ortíz-Barrientos D, Counterman BA, Noor MAF. Gene expression divergence and the origin of hybrid dysfunctions. Genetica 2006; 129:71-81. [PMID: 17043744 DOI: 10.1007/s10709-006-0034-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 06/20/2005] [Indexed: 10/24/2022]
Abstract
Hybrids between closely related species are often sterile or inviable as a consequence of failed interactions between alleles from the different species. Most genetic studies have focused on localizing the alleles associated with these failed interactions, but the mechanistic/biochemical nature of the failed interactions is poorly understood. This review discusses recent studies that may contribute to our understanding of these failed interactions. We focus on the possible contribution of failures in gene expression as an important contributor to hybrid dysfunctions. Although regulatory pathways that share elements in highly divergent taxa may contribute to hybrid dysfunction, various studies suggest that misexpression may be disproportionately great in regulatory pathways containing rapidly evolving, particularly male-biased, genes. We describe three systems that have been analyzed recently with respect to global patterns of gene expression in hybrids versus pure species, each in Drosophila. These studies reveal that quantitative misexpression of genes is associated with hybrid dysfunction. Misexpression of genes has been documented in sterile hybrids relative to pure species, and variation in upstream factors may sometimes cause the over- or under-expression of genes resulting in hybrid sterility or inviability. Studying patterns of evolution between species in regulatory pathways, such as spermatogenesis, should help in identifying which genes are more likely to be contributors to hybrid dysfunction. Ultimately, we hope more functional genetic studies will complement our understanding of the genetic disruptions leading to hybrid dysfunctions and their role in the origin of species.
Collapse
|
11
|
Johnson NA, Porter AH. Evolution of branched regulatory genetic pathways: directional selection on pleiotropic loci accelerates developmental system drift. Genetica 2006; 129:57-70. [PMID: 16912839 DOI: 10.1007/s10709-006-0033-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 01/01/2006] [Indexed: 10/24/2022]
Abstract
Developmental systems are regulated by a web of interacting loci. One common and useful approach in studying the evolution of development is to focus on classes of interacting elements within these systems. Here, we use individual-based simulations to study the evolution of traits controlled by branched developmental pathways involving three loci, where one locus regulates two different traits. We examined the system under a variety of selective regimes. In the case where one branch was under stabilizing selection and the other under directional selection, we observed "developmental system drift": the trait under stabilizing selection showed little phenotypic change even though the loci underlying that trait showed considerable evolutionary divergence. This occurs because the pleiotropic locus responds to directional selection and compensatory mutants are then favored in the pathway under stabilizing selection. Though developmental system drift may be caused by other mechanisms, it seems likely that it is accelerated by the same underlying genetic mechanism as that producing the Dobzhansky-Muller incompatibilities that lead to speciation in both linear and branched pathways. We also discuss predictions of our model for developmental system drift and how different selective regimes affect probabilities of speciation in the branched pathway system.
Collapse
Affiliation(s)
- Norman A Johnson
- Department of Plant, Soil & Insect Sciences, & Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
12
|
Abstract
Until recently, the genes that cause reproductive isolation remained black boxes. Consequently, evolutionary biologists were unable to answer several questions about the identities and characteristics of "speciation genes". Over the past few years, however, evolutionary geneticists have finally succeeded in isolating several such genes, providing our first glimpse at factors that are thought to be representative of those underlying the origin of species. Evolutionary analysis of these genes suggests that speciation results from positive Darwinian selection within species. Molecular evolutionary study of the genes causing reproductive isolation may represent an important new phase in the study of speciation.
Collapse
Affiliation(s)
- H Allen Orr
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
13
|
Ranz JM, Namgyal K, Gibson G, Hartl DL. Anomalies in the expression profile of interspecific hybrids of Drosophila melanogaster and Drosophila simulans. Genome Res 2004; 14:373-9. [PMID: 14962989 PMCID: PMC353219 DOI: 10.1101/gr.2019804] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
When females of Drosophila melanogaster and males of Drosophila simulans are mated, the male progeny are inviable, whereas the female progeny display manifold malformations and are sterile. These abnormalities result from genetic incompatibilities accumulated since the time the lineages of the species diverged, and may have their origin in aberrant gene transcription. Because compensatory changes within species may obscure differences at the regulatory level in conventional comparisons of the expression profile between species, we have compared the gene-expression profile of hybrid females with those of females of the parental species in order to identify regulatory incompatibilities. In the hybrid females, we find abnormal levels of messenger RNA for a large fraction of the Drosophila transcriptome. These include a gross underexpression of genes preferentially expressed in females, accompanying gonadal atrophy. The hybrid females also show significant overexpression of male-biased genes, which we attribute to incompatibilities in the regulatory mechanisms that normally act to control the expression of these genes in females. The net result of the multiple incompatibilities is that the gene-expression profiles of the parental females are more similar to each other than either is to that of the hybrid.
Collapse
MESH Headings
- Animals
- Breeding/methods
- Crosses, Genetic
- DNA, Complementary/classification
- DNA, Complementary/genetics
- Drosophila/embryology
- Drosophila/genetics
- Drosophila melanogaster/embryology
- Drosophila melanogaster/genetics
- Embryo, Nonmammalian/abnormalities
- Embryo, Nonmammalian/chemistry
- Embryo, Nonmammalian/metabolism
- Female
- Gene Expression Profiling/methods
- Gene Expression Regulation, Developmental/genetics
- Genes, Insect/genetics
- Genes, Lethal/genetics
- Hybridization, Genetic/genetics
- Male
- Molecular Sequence Data
- Oligonucleotide Array Sequence Analysis/methods
- Sex Factors
Collapse
Affiliation(s)
- José M Ranz
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | |
Collapse
|