1
|
Das SP, Krishnan R, Sunil M, Majhi A, Yakshita, Nan FH, Srivastava A. Low depth sequencing reveals the critically endangered Batagur kachuga (Red-crowned roofed turtle) mitochondrial genome and its evolutionary implications. Gene 2024; 927:148671. [PMID: 38866260 DOI: 10.1016/j.gene.2024.148671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The Batagur kachuga (B. kachuga), commonly known as the Red-crowned roofed turtle, is a critically endangered species native to India and its neighboring countries like Bangladesh, and Nepal. The present study is the first report of the complete mitochondrial genome of B. kachuga (16,517 bp) construed via the next-generation sequencing (NGS) approach from eggshell DNA. There are 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs), 13 protein-coding genes (PCGs), and one putative control region (CR/D-loop) in the mitogenome. The CR region from the current study reveals conserved TAS, CD, and CSB domains and two AT-rich tandem repeat regions. Most genes are encoded in the heavy strand except the NADH dehydrogenase subunit 6 (ND6) gene and seven tRNA genes. Most PCGs start with the initiation codon ATG, except the COI (Cytochrome Oxidase Subunit-I) gene, which starts with the GTG codon. The present investigation also predicts the distinctive cloverleaf structures of tRNAs except for tRNA-Ser1 and tRNA-Ser-2, which lack a DHU arm. The comparative analysis of Ka/Ks with other 33 species from Order Testudines, in relation to B. kachuga, revealed negative selection in most PCGs, indicating a process of preservation and purification that aids in eliminating undesirable or detrimental substitutes. Phylogenetic analysis of this species has been analysed using the complete mitogenome of 33 turtle species. The maximum likelihood phylogenetic tree strongly supports each family in different clades and also reveals a close relationship between the Pangashura and Batagur genera. Our study suggests the generation of genome-wide molecular data, in terms of mitogenomes, SNPs, and SSRs, is needed to improve the understanding of this species and their phylogenetics and evolutionary relationships, which will help to improve the conservation efforts of this species.
Collapse
Affiliation(s)
- Sofia Priyadarsani Das
- Department of Aquaculture, College of Life Science, National Taiwan Ocean University, Keelung, Taiwan; Amity Institute of Marine Science and Technology, Amity University Uttar Pradesh, Sector-125, Noida, India.
| | - Rama Krishnan
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | - Mohit Sunil
- Bharathidasan University, Trichy, Tamil Nadu, India
| | - Ashutosh Majhi
- Amity Institute of Marine Science and Technology, Amity University Uttar Pradesh, Sector-125, Noida, India
| | - Yakshita
- Amity Institute of Marine Science and Technology, Amity University Uttar Pradesh, Sector-125, Noida, India
| | - Fan-Hua Nan
- Department of Aquaculture, College of Life Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Ashutosh Srivastava
- Amity Institute of Marine Science and Technology, Amity University Uttar Pradesh, Sector-125, Noida, India; Siddhart University, Kapilvastu, Siddhart Nagar, Uttar Pradesh, India.
| |
Collapse
|
2
|
Gong S, Suwannapoom C, Le M, Nguyen TQ, Ge Y, Wei Y, Gao Y. Genomic analyses reveal three phylogenetic species and their evolutionary histories in the big-headed turtle. iScience 2023; 26:107343. [PMID: 37539035 PMCID: PMC10393795 DOI: 10.1016/j.isci.2023.107343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/21/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
The critically endangered big-headed turtle (Platysternon megacephalum) is currently classified into three subspecies. However, the classification is still controversial and their evolutionary histories are still unclear. Here, multiple genetic analyses consistently revealed three phylogenetic groups with substantial genetic divergences and distinct demographic histories, suggesting three phylogenetic species (P. megacephalum, P. peguense, and Baise clade). Phylogeographical analyses revealed that the Red River plains and Guangxi basins are largely coincident with the boundaries between the three phylogenetic species, highlighting the key role of lowland areas in driving speciation in the big-headed turtle. The Baise clade is characterized by high-linkage disequilibrium but the lowest effective population size, indicating that the cryptic phylogenetic species is more vulnerable to human activities and environmental disturbance, and urgently needs more protection. Our findings provide fundamental insights into the taxonomy and scientific conservation of the family Platysternidae.
Collapse
Affiliation(s)
- Shiping Gong
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, 105 Xingang Road West, Guangzhou 510260, China
| | | | - Minh Le
- Faculty of Environmental Sciences, University of Science & Central Institute for Natural Resources and Environmental Studies (CRES), Vietnam National University, Hanoi, Vietnam
- Department of Herpetology, American Museum of Natural History, New York, NY, USA
| | - Truong Quang Nguyen
- Institute of Ecology and Biological Resources, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 10072, Vietnam
| | - Yan Ge
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, 105 Xingang Road West, Guangzhou 510260, China
| | - Yufeng Wei
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, 105 Xingang Road West, Guangzhou 510260, China
| | - Yangchun Gao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, 105 Xingang Road West, Guangzhou 510260, China
| |
Collapse
|
3
|
Antonio Baeza J, Rajapakse D, Pearson L, Kreiser BR. Low coverage sequencing provides insights into the key features of the nuclear and mitochondrial genomes of the Alligator Snapping Turtle Macrochelys temminckii. Gene 2023; 873:147478. [PMID: 37182558 DOI: 10.1016/j.gene.2023.147478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
The alligator snapping turtle Macrochelys temminckii is a culturally, ecologically, and evolutionary relevant species of conservation concern. In this study, we conducted a genome survey of M. temminckii. Using a low-coverage short read sequencing strategy, this study estimated the genome size, repetitive genome content, annotated and quantified repetitive elements, assembled the 45S rRNA DNA operon, and characterized in detail the mitochondrial genome of M. temminckii. Using a k-mer strategy, the estimated haploid genome size varied between 3.77 and 3.19 Gbp, which is within the range previously reported for other representatives of the family Chelydridae. Repetitive genome content estimates using different k-mers (21 to 51) indicated that more than 75% of the genome of M. temminckii comprised repetitive elements. Taking into account only annotated repetitive elements, the most common repetitive elements were classified as Class I - Long Interspersed Nuclear Element (LINE) which were more abundant than Class I - Penelope and Class I - Long Terminal Repeat (LTR) Ty3-gypsy mobile elements. Less abundant repeat element families in the nuclear genome of M. temminckii included Class I - DIRS mobile elements and Satellite DNA. The nuclear ribosomal operon was partially assembled into two contigs, one encoding the complete ssrDNA and a second comprising the full lsrDNA. The AT-rich complete mitochondrial genome was 16,570 bp long. These new genomic resources are of utmost importance to aid in the development of conservation plans for this freshwater turtle.
Collapse
Affiliation(s)
- J Antonio Baeza
- Department of Biological Sciences, Clemson University, Clemson, SC, USA; Departamento de Biología Marina, Universidad Catolica del Norte, Coquimbo, Chile; Smithsonian Marine Station at Fort Pierce, Smithsonian Institution, Fort Pierce, FL, USA.
| | - Dilani Rajapakse
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Luke Pearson
- U.S. Fish and Wildlife Service, Mississippi Ecological Services Field Office, 6578 Dogwood View Parkway, Jackson, MS 39213
| | - Brian R Kreiser
- School of Biological, Environmental and Earth Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406 USA
| |
Collapse
|
4
|
Bhat MS, Chinsamy A, Parkington J. Bone histology of Neogene angulate tortoises (Testudines: Testudinidae) from South Africa: palaeobiological and skeletochronological implications. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230064. [PMID: 36908987 PMCID: PMC9993054 DOI: 10.1098/rsos.230064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Here we examine the tibial microstructure of modern and fossil angulate tortoises to assess the histology and growth from the late Miocene-early Pliocene, Pleistocene through to modern forms. The cross-sections of all the tibiae sampled revealed highly vascularized, uninterrupted, fibrolamellar bone tissue during early ontogeny, which suggests that early growth was fast. However, later in ontogeny, growth was slower, as indicated by the deposition of parallel-fibred bone tissue in the outer cortex, and even ceased periodically, as indicated by lines of arrested growth. Comparative analyses of the growth rates of the tortoises from different time periods showed that the tortoises from the late Miocene-early Pliocene Langebaanweg locality and from Diepkloof Rock Shelter had relatively slower growth rates under less optimal growth conditions. Additionally, these prehistoric specimens show extensive remodelling, and several generations of secondary osteons further suggest functional and/or metabolic stresses on the skeleton. Palaeoenvironmental reconstructions suggest that it was mostly cooler and drier with seasonal fluctuations in late Miocene-early Pliocene, and it is likely that Chersina responded to these conditions by having a lower rate of growth as compared with their modern counterparts, which thrive in the current prevailing more favourable Mediterranean type of climate.
Collapse
Affiliation(s)
- Mohd Shafi Bhat
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, South Africa
| | - Anusuya Chinsamy
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, South Africa
| | - John Parkington
- Department of Archaeology, University of Cape Town, Private Bag X3, Rhodes Gift 7701, South Africa
| |
Collapse
|
5
|
Pedro Selvatti A, Romero Rebello Moreira F, Cardoso de Carvalho D, Prosdocimi F, Augusta de Moraes Russo C, Carolina Martins Junqueira A. Phylogenomics reconciles molecular data with the rich fossil record on the origin of living turtles. Mol Phylogenet Evol 2023; 183:107773. [PMID: 36977459 DOI: 10.1016/j.ympev.2023.107773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 02/07/2023] [Accepted: 03/21/2023] [Indexed: 03/28/2023]
Abstract
Although a consensus exists that all living turtles fall within either Pleurodira or Cryptodira clades, estimating when these lineages split is still under debate. Most molecular studies date the split in the Triassic Period, whereas a Jurassic age is unanimous among morphological studies. Each hypothesis implies different paleobiogeographical scenarios to explain early turtle evolution. Here we explored the rich turtle fossil record with the Fossilized Birth-Death (FBD) and the traditional node dating (ND) methods using complete mitochondrial genomes (147 taxa) and a set of nuclear orthologs with over 10 million bp (25 taxa) to date the major splits in Testudines. Our results support an Early Jurassic split (191-182 Ma) for the crown Testudines with great consistency across different dating methods and datasets, with a narrow confidence interval. This result is independently supported by the oldest fossils of Testudines that postdate the Middle Jurassic (174 Ma), which were not used for calibration in this study. This age coincides with the Pangaea fragmentation and the formation of saltwater barriers such as the Atlantic Ocean and the Turgai Strait, supporting that diversification in Testudines was triggered by vicariance. Our ages of the splits in Pleurodira coincide with the geologic events of the Late Jurassic and Early Cretaceous. Conversely, the early Cryptodira radiation remained in Laurasia, and its diversification ensued as all its major lineages expanded their distribution into every continent during the Cenozoic. We provide the first detailed hypothesis of the evolution of Cryptodira in the Southern Hemisphere, in which our time estimates are correlated with each contact between landmasses derived from Gondwana and Laurasia. Although most South American Cryptodira arrived through the Great American Biotic Interchange, our results indicate that the Chelonoidis ancestor probably arrived from Africa through the chain islands of the South Atlantic during the Paleogene. Together, the presence of ancient turtle diversity and the vital role that turtles occupy in marine and terrestrial ecosystems underline South America as a chief area for conservation.
Collapse
|
6
|
Xiaokaiti X, Hashiguchi Y, Ota H, Kumazawa Y. Evolution of the Noncoding Features of Sea Snake Mitochondrial Genomes within Elapidae. Genes (Basel) 2022; 13:genes13081470. [PMID: 36011381 PMCID: PMC9407768 DOI: 10.3390/genes13081470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial genomes of four elapid snakes (three marine species [Emydocephalus ijimae, Hydrophis ornatus, and Hydrophis melanocephalus], and one terrestrial species [Sinomicrurus japonicus]) were completely sequenced by a combination of Sanger sequencing, next-generation sequencing and Nanopore sequencing. Nanopore sequencing was especially effective in accurately reading through long tandem repeats in these genomes. This led us to show that major noncoding regions in the mitochondrial genomes of those three sea snakes contain considerably long tandem duplications, unlike the mitochondrial genomes previously reported for same and other sea snake species. We also found a transposition of the light-strand replication origin within a tRNA gene cluster for the three sea snakes. This change can be explained by the Tandem Duplication—Random Loss model, which was further supported by remnant intervening sequences between tRNA genes. Mitochondrial genomes of true snakes (Alethinophidia) have been shown to contain duplicate major noncoding regions, each of which includes the control region necessary for regulating the heavy-strand replication and transcription from both strands. However, the control region completely disappeared from one of the two major noncoding regions for two Hydrophis sea snakes, posing evolutionary questions on the roles of duplicate control regions in snake mitochondrial genomes. The timing and molecular mechanisms for these changes are discussed based on the elapid phylogeny.
Collapse
Affiliation(s)
- Xiakena Xiaokaiti
- Department of Information and Basic Science and Research Center for Biological Diversity, Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Yasuyuki Hashiguchi
- Department of Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-0801, Japan
| | - Hidetoshi Ota
- Institute of Natural and Environmental Sciences, University of Hyogo, and Museum of Nature and Human Activities, Sanda 669-1546, Japan
| | - Yoshinori Kumazawa
- Department of Information and Basic Science and Research Center for Biological Diversity, Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
- Correspondence: ; Tel.: +81-52-872-5844
| |
Collapse
|
7
|
Gable SM, Byars MI, Literman R, Tollis M. A Genomic Perspective on the Evolutionary Diversification of Turtles. Syst Biol 2022; 71:1331-1347. [DOI: 10.1093/sysbio/syac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
To examine phylogenetic heterogeneity in turtle evolution, we collected thousands of high-confidence single-copy orthologs from 19 genome assemblies representative of extant turtle diversity and estimated a phylogeny with multispecies coalescent and concatenated partitioned methods. We also collected next-generation sequences from 26 turtle species and assembled millions of biallelic markers to reconstruct phylogenies based on annotated regions from the western painted turtle (Chrysemys picta bellii) genome (coding regions, introns, untranslated regions, intergenic, and others). We then measured gene tree-species tree discordance, as well as gene and site heterogeneity at each node in the inferred trees, and tested for temporal patterns in phylogenomic conflict across turtle evolution. We found strong and consistent support for all bifurcations in the inferred turtle species phylogenies. However, a number of genes, sites, and genomic features supported alternate relationships between turtle taxa. Our results suggest that gene tree-species tree discordance in these datasets is likely driven by population-level processes such as incomplete lineage sorting. We found very little effect of substitutional saturation on species tree topologies, and no clear phylogenetic patterns in codon usage bias and compositional heterogeneity. There was no correlation between gene and site concordance, node age, and DNA substitution rate across most annotated genomic regions. Our study demonstrates that heterogeneity is to be expected even in well resolved clades such as turtles, and that future phylogenomic studies should aim to sample as much of the genome as possible in order to obtain accurate phylogenies for assessing conservation priorities in turtles.
Collapse
Affiliation(s)
- Simone M Gable
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, PO Box 5693, Flagstaff, AZ 8601, USA
| | - Michael I Byars
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, PO Box 5693, Flagstaff, AZ 8601, USA
| | - Robert Literman
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingstown, RI, 0288, USA
| | - Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, PO Box 5693, Flagstaff, AZ 8601, USA
| |
Collapse
|
8
|
Pragmatic Applications and Universality of DNA Barcoding for Substantial Organisms at Species Level: A Review to Explore a Way Forward. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1846485. [PMID: 35059459 PMCID: PMC8766189 DOI: 10.1155/2022/1846485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023]
Abstract
DNA barcodes are regarded as hereditary succession codes that serve as a recognition marker to address several queries relating to the identification, classification, community ecology, and evolution of certain functional traits in organisms. The mitochondrial cytochrome c oxidase 1 (CO1) gene as a DNA barcode is highly efficient for discriminating vertebrate and invertebrate animal species. Similarly, different specific markers are used for other organisms, including ribulose bisphosphate carboxylase (rbcL), maturase kinase (matK), transfer RNA-H and photosystem II D1-ApbsArabidopsis thaliana (trnH-psbA), and internal transcribed spacer (ITS) for plant species; 16S ribosomal RNA (16S rRNA), elongation factor Tu gene (Tuf gene), and chaperonin for bacterial strains; and nuclear ITS for fungal strains. Nevertheless, the taxon coverage of reference sequences is far from complete for genus or species-level identification. Applying the next-generation sequencing approach to the parallel acquisition of DNA barcode sequences could greatly expand the potential for library preparation or accurate identification in biodiversity research. Overall, this review articulates on the DNA barcoding technology as applied to different organisms, its universality, applicability, and innovative approach to handling DNA-based species identification.
Collapse
|
9
|
Concerted and Independent Evolution of Control Regions 1 and 2 of Water Monitor Lizards (Varanus salvator macromaculatus) and Different Phylogenetic Informative Markers. Animals (Basel) 2022; 12:ani12020148. [PMID: 35049770 PMCID: PMC8772547 DOI: 10.3390/ani12020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The evolutionary patterns and phylogenetic utility of duplicate control regions (CRs) in 72 individuals of Varanus salvator macromaculatus and other varanids have been observed. Divergence of the two CRs from each individual revealed a pattern of independent evolution in CRs of varanid lineage. This study is a first step towards developing new phylogenetic evolutionary models of the varanid lineage, with accurate evolutionary inferences to provide basic insights into the biology of mitogenomes. Abstract Duplicate control regions (CRs) have been observed in the mitochondrial genomes (mitogenomes) of most varanids. Duplicate CRs have evolved in either concerted or independent evolution in vertebrates, but whether an evolutionary pattern exists in varanids remains unknown. Therefore, we conducted this study to analyze the evolutionary patterns and phylogenetic utilities of duplicate CRs in 72 individuals of Varanus salvator macromaculatus and other varanids. Sequence analyses and phylogenetic relationships revealed that divergence between orthologous copies from different individuals was lower than in paralogous copies from the same individual, suggesting an independent evolution of the two CRs. Distinct trees and recombination testing derived from CR1 and CR2 suggested that recombination events occurred between CRs during the evolutionary process. A comparison of substitution saturation showed the potential of CR2 as a phylogenetic marker. By contrast, duplicate CRs of the four examined varanids had similar sequences within species, suggesting typical characteristics of concerted evolution. The results provide a better understanding of the molecular evolutionary processes related to the mitogenomes of the varanid lineage.
Collapse
|
10
|
Tokita M, Watanabe T, Sato H, Kondo S, Kitayama C. A comparative study of cranial osteogenesis in turtles: implications for the diversification of skull morphology. ZOOMORPHOLOGY 2021. [DOI: 10.1007/s00435-021-00544-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Ascarrunz E, Claude J, Joyce WG. The phylogenetic relationships of geoemydid turtles from the Eocene Messel Pit Quarry: a first assessment using methods for continuous and discrete characters. PeerJ 2021; 9:e11805. [PMID: 34430073 PMCID: PMC8349520 DOI: 10.7717/peerj.11805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/27/2021] [Indexed: 11/30/2022] Open
Abstract
The geoemydid turtles of the Eocoene Messel Pit Quarry of Hesse, Germany, are part of a rich Western European fossil record of testudinoids. Originally referred to as "Ocadia" kehreri and "Ocadia" messeliana, their systematic relationships remain unclear. A previous study proposed that a majority of the Western European geoemydids, including the Messel geoemydids, are closely related to the Recent European representatives of the clade Mauremys. Another study hypothesised that the Western European geoemydid fauna is more phylogenetically diverse, and that the Messel geoemydids are closely related to the East Asian turtles Orlitia and Malayemys. Here we present the first quantitative analyses to date that investigate this question. We use continuous characters in the form of ratios to estimate the placement of the Messel geoemydids in a reference tree that was estimated from molecular data. We explore the placement error obtained from that data with maximum likelihood and Bayesian methods, as well as linear parsimony in combination with discrete characters. We find good overall performance with Bayesian and parsimony analyses. Parsimony performs even better when we also incorporated discrete characters. Yet, we cannot pin down the position of the Messel geoemydids with high confidence. Depending on how intraspecific variation of the ratio characters is treated, parsimony favours a placement of the Messel fossils sister to Orlitia borneensis or sister to Geoemyda spengleri, with weak bootstrap support. The latter placement is suspect because G. spengleri is a phylogenetically problematic species with molecular and morphological data. There is even less support for placements within the Mauremys clade.
Collapse
Affiliation(s)
- Eduardo Ascarrunz
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Julien Claude
- Institut des Sciences de l’Évolution de Montpellier, UMR UM/CNRS/IRD/EPHE, Montpellier, France
| | - Walter G. Joyce
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
12
|
Poulakakis N, Miller JM, Jensen EL, Beheregaray LB, Russello MA, Glaberman S, Boore J, Caccone A. Colonization history of Galapagos giant tortoises: Insights from mitogenomes support the progression rule. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nikos Poulakakis
- Department of Biology School of Sciences and Engineering University of Crete Heraklio Greece
- Natural History Museum of Crete School of Sciences and Engineering University of Crete Heraklio Greece
| | - Joshua M. Miller
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | - Evelyn L. Jensen
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | | | | | - Scott Glaberman
- Department of Environmental Science and Policy George Mason University Fairfax VA USA
| | - Jeffrey Boore
- Providence St. Joseph Health and Institute for Systems Biology Seattle WA USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| |
Collapse
|
13
|
Bernacki LE, Kilpatrick CW. Structural Variation of the Turtle Mitochondrial Control Region. J Mol Evol 2020; 88:618-640. [PMID: 32808073 DOI: 10.1007/s00239-020-09962-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/05/2020] [Indexed: 11/25/2022]
Abstract
The present study describes the most comprehensive comparison of turtle mtD-loop regions to date. The primary structure was compared from DNA sequences accessed from GenBank from 48 species in 13 families of extant turtles, and secondary structures of the mtD-loop region were inferred from thermal stabilities, using the program Mfold, for each superfamiliy of turtles. Both primary and secondary structures were found to be highly variable across the order. The Cryptodira showed conservation in the primary structure at conserved sequence blocks (CSBs), but the Pleurodira displayed limited conservation of primary structural characters, other than the coreTAS, a binding site for the helicase TWINKLE, which was highly conserved in the Central and Right Domains across the order. No secondary structure was associated with a TAS, but an AT-rich fold (secondary structure) near the 3' terminus of the mtD-loop region was detected in all turtle superfamilies. Mapping of character states of structural features of the mtD-loop region revealed that most character states were autapomorphies and inferred a number of homoplasies. The Left Domain of turtles, containing no highly conserved structural elements, likely does not serve a functional role; therefore, the Central Domain in turtles is likely equivalent to the Left Domain of mammals. The AT-rich secondary structural element near the 3' terminus of the mtD-loop region may be conserved across turtles because of a functional role, perhaps containing the Light Strand Promotor, or perhaps interacting with the TWINKLE-coreTAS complex in the Central and Right Domains to regulate mtDNA replication and transcription.
Collapse
Affiliation(s)
- Lucas E Bernacki
- Department of Sciences, Saint Joseph's College, Mercy Hall, Rm 122, 278 Whites Bridge Road, Standish, ME, 04084, USA.
- Department of Biology, University of Vermont, Burlington, VT, USA.
| | | |
Collapse
|
14
|
Kundu S, Kumar V, Tyagi K, Chandra K. The complete mitochondrial genome of the endangered Assam Roofed Turtle, Pangshura sylhetensis (Testudines: Geoemydidae): Genomic features and phylogeny. PLoS One 2020; 15:e0225233. [PMID: 32324729 PMCID: PMC7179895 DOI: 10.1371/journal.pone.0225233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/08/2020] [Indexed: 12/02/2022] Open
Abstract
The Assam Roofed Turtle, Pangshura sylhetensis is an endangered and least studied species endemic to India and Bangladesh. The present study decodes the first complete mitochondrial genome of P. sylhetensis (16,568 bp) by using next-generation sequencing. The assembly encodes 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and one control region (CR). Most of the genes were encoded on the majority strand, except NADH dehydrogenase subunit 6 (nad6) and eight tRNAs. All PCGs start with an ATG initiation codon, except for Cytochrome oxidase subunit 1 (cox1) and NADH dehydrogenase subunit 5 (nad5), which both start with GTG codon. The study also found the typical cloverleaf secondary structures in most of the predicted tRNA structures, except for serine (trnS1) which lacks of conventional DHU arm and loop. Both Bayesian and maximum-likelihood phylogenetic inference using 13 concatenated PCGs demonstrated strong support for the monophyly of all 52 Testudines species within their respective families and revealed Batagur trivittata as the nearest neighbor of P. sylhetensis. The mitogenomic phylogeny with other amniotes is congruent with previous research, supporting the sister relationship of Testudines and Archosaurians (birds and crocodilians). Additionally, the mitochondrial Gene Order (GO) analysis indicated plesiomorphy with the typical vertebrate GO in most of the Testudines species.
Collapse
Affiliation(s)
- Shantanu Kundu
- Molecular Systematics Division, Centre for DNA Taxonomy, Zoological Survey of India, Kolkata, India
| | - Vikas Kumar
- Molecular Systematics Division, Centre for DNA Taxonomy, Zoological Survey of India, Kolkata, India
| | - Kaomud Tyagi
- Molecular Systematics Division, Centre for DNA Taxonomy, Zoological Survey of India, Kolkata, India
| | - Kailash Chandra
- Molecular Systematics Division, Centre for DNA Taxonomy, Zoological Survey of India, Kolkata, India
| |
Collapse
|
15
|
Kundu S, Kumar V, Tyagi K, Chakraborty R, Chandra K. The first complete mitochondrial genome of the Indian Tent Turtle, Pangshura tentoria (Testudines: Geoemydidae): Characterization and comparative analysis. Ecol Evol 2019; 9:10854-10868. [PMID: 31624586 PMCID: PMC6787814 DOI: 10.1002/ece3.5606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/24/2019] [Accepted: 08/07/2019] [Indexed: 11/09/2022] Open
Abstract
The characterization of a complete mitogenome is widely used in genomics studies for systematics and evolutionary research. However, the sequences and structural motifs contained within the mitogenome of Testudines taxa have rarely been examined. The present study decodes the first complete mitochondrial genome of the Indian Tent Turtle, Pangshura tentoria (16,657 bp) by using next-generation sequencing. This denovo assembly encodes 37 genes: 13 protein-coding genes (PCGs), 22 transfer RNA (tRNAs), two ribosomal RNA, and one control region (CR). Most of the genes were encoded on majority strand, except for one PCG (NADH dehydrogenase subunit 6) and eight tRNAs. Most of the PCGs were started with an ATG initiation codon, except for Cytochrome oxidase subunit 1 with "GTG" and NADH dehydrogenase subunit 5 with "ATA." The termination codons, "TAA" and "AGA" were observed in two subunits of NADH dehydrogenase gene. The relative synonymous codon usage analysis revealed the maximum abundance of alanine, isoleucine, leucine, and threonine. The nonsynonymous/synonymous ratios were <1 in all PCGs, which indicates strong negative selection among all Geoemydid species. The study also found the typical cloverleaf secondary structure in most of the tRNA genes, except for serine with the lack of the conventional DHU arm. The comparative study of Geoemydid mitogenomes revealed the occurrence of tandem repeats was frequent in the 3' end of CR. Further, two copies of a unique tandem repeat "TTCTCTTT" were identified in P. tentoria. The Bayesian and maximum-likelihood phylogenetic trees using concatenation of 13 PCGs revealed the close relationships of P. tentoria with Batagur trivittata in the studied dataset. All the Geoemydid species showed distinct clustering with high bootstrap support congruent with previous evolutionary hypotheses. We suggest that the generations of more mitogenomes of Geoemydid species are required, to improve our understanding of their in-depth phylogenetic and evolutionary relationships.
Collapse
Affiliation(s)
- Shantanu Kundu
- Centre for DNA TaxonomyMolecular Systematics DivisionZoological Survey of IndiaKolkataIndia
| | - Vikas Kumar
- Centre for DNA TaxonomyMolecular Systematics DivisionZoological Survey of IndiaKolkataIndia
| | - Kaomud Tyagi
- Centre for DNA TaxonomyMolecular Systematics DivisionZoological Survey of IndiaKolkataIndia
| | - Rajasree Chakraborty
- Centre for DNA TaxonomyMolecular Systematics DivisionZoological Survey of IndiaKolkataIndia
| | - Kailash Chandra
- Centre for DNA TaxonomyMolecular Systematics DivisionZoological Survey of IndiaKolkataIndia
| |
Collapse
|
16
|
Two new mitogenomes of Picidae (Aves, Piciformes): Sequence, structure and phylogenetic analyses. Int J Biol Macromol 2019; 133:683-692. [DOI: 10.1016/j.ijbiomac.2019.04.157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
|
17
|
Luo H, Li H, Huang A, Ni Q, Yao Y, Xu H, Zeng B, Li Y, Wei Z, Yu G, Zhang M. The Complete Mitochondrial Genome of Platysternon megacephalum peguense and Molecular Phylogenetic Analysis. Genes (Basel) 2019; 10:E487. [PMID: 31252631 PMCID: PMC6678547 DOI: 10.3390/genes10070487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 11/16/2022] Open
Abstract
Platysternon megacephalum is the only living representative species of Platysternidae and only three subspecies remain: P. m. megalorcephalum, P. m. shiui, and P. m. peguense. However, previous reports implied that P. m. peguense has distinct morphological and molecular features. The characterization of the mitogenome has been accepted as an efficient means of phylogenetic and evolutionary analysis. Hence, this study first determined the complete mitogenome of P. m. peguense with the aim to identify the structure and variability of the P. m. peguense mitogenome through comparative analysis. Furthermore, the phylogenetic relationship of the three subspecies was tested. Based on different tRNA gene loss and degeneration of these three subspecies, their rearrangement pathways have been inferred. Phylogenetic analysis showed that P. m. peguense is a sister group to (P. m. megalorcephalum and P. m. shiui). Furthermore, the divergence time estimation of these three subspecies coincided with the uplift of the Tibetan Plateau. This study shows that the genetic distances between P. m. peguense and the other two subspecies are comparable to interspecific genetic distances, for example within Mauremys. In general, this study provides new and meaningful insights into the evolution of the three Platysternidae subspecies.
Collapse
Affiliation(s)
- Hongdi Luo
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Haijun Li
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - An Huang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qingyong Ni
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Bo Zeng
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ying Li
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zhimin Wei
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, Hebei, China
| | - Guohua Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, Guangxi, China.
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, College of Life Science, Guangxi Normal University, Guilin 541004, Guangxi, China.
| | - Mingwang Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
18
|
Cao D, Wang M, Ge Y, Gong S. Draft genome of the big-headed turtle Platysternon megacephalum. Sci Data 2019; 6:60. [PMID: 31097710 PMCID: PMC6522511 DOI: 10.1038/s41597-019-0067-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/05/2019] [Indexed: 11/29/2022] Open
Abstract
The big-headed turtle, Platysternon megacephalum, as the sole member of the monotypic family Platysternidae, has a number of distinct characteristics including an extra-large head, long tail, flat carapace, and a preference for low water temperature environments. We performed whole genome sequencing, assembly, and gene annotation of an adult male big-headed turtle based on the Illumina HiSeq X genomic sequencing platform. We generated ~497.1 Gb of raw sequencing data (×208.9 depth) and produced a draft genome with a total length of 2.32 Gb and contig and scaffold N50 sizes of 41.8 kb and 7.22 Mb, respectively. We also identified 924 Mb (39.84%) of repetitive sequences, 25,995 protein-coding genes, and 19,177 non-coding RNAs. We generated the first de novo genome of the big-headed turtle; these data will be essential to the further understanding and exploration of the genomic innovations and molecular mechanisms contributing to its unique morphology and physiological features.
Collapse
Affiliation(s)
- Dainan Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, China
| | - Meng Wang
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Yan Ge
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, China
| | - Shiping Gong
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, China.
| |
Collapse
|
19
|
Kundu S, Kumar V, Tyagi K, Chakraborty R, Singha D, Rahaman I, Pakrashi A, Chandra K. Complete mitochondrial genome of Black Soft-shell Turtle (Nilssonia nigricans) and comparative analysis with other Trionychidae. Sci Rep 2018; 8:17378. [PMID: 30478342 PMCID: PMC6255766 DOI: 10.1038/s41598-018-35822-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/09/2018] [Indexed: 11/08/2022] Open
Abstract
The characterization of mitochondrial genome has been evidenced as an efficient field of study for phylogenetic and evolutionary analysis in vertebrates including turtles. The aim of this study was to distinguish the structure and variability of the Trionychidae species mitogenomes through comparative analysis. The complete mitogenome (16796 bp) of an endangered freshwater turtle, Nilssonia nigricans was sequenced and annotated. The mitogenome encoded for 37 genes and a major non-coding control region (CR). The mitogenome was A + T biased (62.16%) and included six overlapping and 19 intergenic spacer regions. The Relative synonymous codon usage (RSCU) value was consistent among all the Trionychidae species; with the exception of significant reduction of Serine (TCG) frequency in N. nigricans, N. formosa, and R. swinhoei. In N. nigricans, most of the transfer RNAs (tRNAs) were folded into classic clover-leaf secondary structures with Watson-Crick base pairing except for trnS1 (GCT). The comparative analysis revealed that most of the tRNAs were structurally different, except for trnE (TTC), trnQ (TTG), and trnM (CAT). The structural features of tRNAs resulted ≥ 10 mismatched or wobble base pairings in 12 tRNAs, which reflects the nucleotide composition in both H- and L-strands. The mitogenome of N. nigricans also revealed two unique tandem repeats (ATTAT)8, and (TATTA)20 in the CR. Further, the conserved motif 5'-GACATA-3' and stable stem-loop structure was detected in the CRs of all Trionychidae species, which play an significant role in regulating transcription and replication in the mitochondrial genome. Further, the comparative analysis of Ka/Ks indicated negative selection in most of the protein coding genes (PCGs). The constructed Maximum Likelihood (ML) phylogeny using all PCGs showed clustering of N. nigricans with N. formosa. The resulting phylogeny illustrated the similar topology as described previously and consistent with the taxonomic classification. However, more sampling from different taxonomic groups of Testudines and studies on their mitogenomics are desirable for better understanding of the phylogenetic and evolutionary relationships.
Collapse
Affiliation(s)
- Shantanu Kundu
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, New Alipore, Kolkata, 700 053, West Bengal, India.
| | - Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Rajasree Chakraborty
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Devkant Singha
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Iftikar Rahaman
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Avas Pakrashi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Kailash Chandra
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, New Alipore, Kolkata, 700 053, West Bengal, India
| |
Collapse
|
20
|
Vlachos E. A Review of the Fossil Record of North American Turtles of the Clade Pan-Testudinoidea. BULLETIN OF THE PEABODY MUSEUM OF NATURAL HISTORY 2018. [DOI: 10.3374/014.059.0101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Evangelos Vlachos
- CONICET and Museo Paleontológico Egidio Feruglio, 9100 Trelew, Chubut, Argentina —
| |
Collapse
|
21
|
Vlachos E. A Review of the Fossil Record of North American Turtles of the CladePan-Testudinoidea. BULLETIN OF THE PEABODY MUSEUM OF NATURAL HISTORY 2018. [DOI: 10.3374/014.058.0201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Evangelos Vlachos
- CONICET and Museo Paleontológico Egidio Feruglio, 9100 Trelew, Chubut, Argentina —
| |
Collapse
|
22
|
Sun Z, Pan T, Hu C, Sun L, Ding H, Wang H, Zhang C, Jin H, Chang Q, Kan X, Zhang B. Rapid and recent diversification patterns in Anseriformes birds: Inferred from molecular phylogeny and diversification analyses. PLoS One 2017; 12:e0184529. [PMID: 28892502 PMCID: PMC5593203 DOI: 10.1371/journal.pone.0184529] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/25/2017] [Indexed: 11/29/2022] Open
Abstract
The Anseriformes is a well-known and widely distributed bird order, with more than 150 species in the world. This paper aims to revise the classification, determine the phylogenetic relationships and diversification patterns in Anseriformes by exploring the Cyt b, ND2, COI genes and the complete mitochondrial genomes (mito-genomes). Molecular phylogeny and genetic distance analyses suggest that the Dendrocygna species should be considered as an independent family, Dendrocygnidae, rather than a member of Anatidae. Molecular timescale analyses suggests that the ancestral diversification occurred during the Early Eocene Climatic Optimum (58 ~ 50 Ma). Furthermore, diversification analyses showed that, after a long period of constant diversification, the median initial speciation rate was accelerated three times, and finally increased to approximately 0.3 sp/My. In the present study, both molecular phylogeny and diversification analyses results support that Anseriformes birds underwent rapid and recent diversification in their evolutionary history, especially in modern ducks, which show extreme diversification during the Plio-Pleistocene (~ 5.3 Ma). Therefore, our study support that the Plio-Pleistocene climate fluctuations are likely to have played a significant role in promoting the recent diversification for Anseriformes.
Collapse
Affiliation(s)
- Zhonglou Sun
- School of Life Sciences, Anhui Key Laboratory of Eco-engineering and Bio-technique, Anhui University, Hefei, Anhui, China
| | - Tao Pan
- School of Life Sciences, Anhui Key Laboratory of Eco-engineering and Bio-technique, Anhui University, Hefei, Anhui, China
| | - Chaochao Hu
- School of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Lu Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hengwu Ding
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Hui Wang
- School of Life Sciences, Anhui Key Laboratory of Eco-engineering and Bio-technique, Anhui University, Hefei, Anhui, China
| | - Chenling Zhang
- Faculty of Life Science and Chemical Engineering, Jiangsu Second Normal University, Nanjing, Jiangsu, China
| | - Hong Jin
- School of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Qing Chang
- School of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xianzhao Kan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Baowei Zhang
- School of Life Sciences, Anhui Key Laboratory of Eco-engineering and Bio-technique, Anhui University, Hefei, Anhui, China
| |
Collapse
|
23
|
Hofmeyr MD, Vamberger M, Branch W, Schleicher A, Daniels SR. Tortoise (Reptilia, Testudinidae) radiations in Southern Africa from the Eocene to the present. ZOOL SCR 2016. [DOI: 10.1111/zsc.12223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Margaretha D. Hofmeyr
- Chelonian Biodiversity and Conservation; Department of Biodiversity and Conservation Biology; University of the Western Cape; Private Bag X17 Bellville 7535 South Africa
| | - Melita Vamberger
- Museum of Zoology; Senckenberg Dresden; A. B. Meyer Building 01109 Dresden Germany
| | - William Branch
- Department of Herpetology; Port Elizabeth Museum; P.O. Box 13147 Humewood 6013 South Africa
- Department of Zoology; Nelson Mandela Metropolitan University; P.O. Box 77000 Port Elizabeth 6031 South Africa
| | | | - Savel R. Daniels
- Department of Botany and Zoology; University of Stellenbosch; Private Bag X1 Matieland 7602 South Africa
| |
Collapse
|
24
|
Spinks PQ, Thomson RC, McCartney-Melstad E, Shaffer HB. Phylogeny and temporal diversification of the New World pond turtles (Emydidae). Mol Phylogenet Evol 2016; 103:85-97. [DOI: 10.1016/j.ympev.2016.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 06/03/2016] [Accepted: 07/07/2016] [Indexed: 11/16/2022]
|
25
|
Al Arab M, Höner Zu Siederdissen C, Tout K, Sahyoun AH, Stadler PF, Bernt M. Accurate annotation of protein-coding genes in mitochondrial genomes. Mol Phylogenet Evol 2016; 106:209-216. [PMID: 27693569 DOI: 10.1016/j.ympev.2016.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/29/2016] [Accepted: 09/25/2016] [Indexed: 10/20/2022]
Abstract
Mitochondrial genome sequences are available in large number and new sequences become published nowadays with increasing pace. Fast, automatic, consistent, and high quality annotations are a prerequisite for downstream analyses. Therefore, we present an automated pipeline for fast de novo annotation of mitochondrial protein-coding genes. The annotation is based on enhanced phylogeny-aware hidden Markov models (HMMs). The pipeline builds taxon-specific enhanced multiple sequence alignments (MSA) of already annotated sequences and corresponding HMMs using an approximation of the phylogeny. The MSAs are enhanced by fixing unannotated frameshifts, purging of wrong sequences, and removal of non-conserved columns from both ends. A comparison with reference annotations highlights the high quality of the results. The frameshift correction method predicts a large number of frameshifts, many of which are unknown. A detailed analysis of the frameshifts in nad3 of the Archosauria-Testudines group has been conducted.
Collapse
Affiliation(s)
- Marwa Al Arab
- Bioinformatics Group, Department of Computer Science University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Doctoral School of Science and Technology, AZM Center for Biotechnology Research, Lebanese University, Tripoli, Lebanon.
| | - Christian Höner Zu Siederdissen
- Bioinformatics Group, Department of Computer Science University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria.
| | - Kifah Tout
- Doctoral School of Science and Technology, AZM Center for Biotechnology Research, Lebanese University, Tripoli, Lebanon.
| | - Abdullah H Sahyoun
- Bioinformatics Group, Department of Computer Science University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Doctoral School of Science and Technology, AZM Center for Biotechnology Research, Lebanese University, Tripoli, Lebanon; TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany.
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria; Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany; Fraunhofer Institut für Zelltherapie und Immunologie, Perlickstraße 1, D-04103 Leipzig, Germany; Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark; Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, United States.
| | - Matthias Bernt
- Bioinformatics Group, Department of Computer Science University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Parallel Computing and Complex Systems Group, Department of Computer Science, University of Leipzig, Augustusplatz 10, D-04103 Leipzig, Germany.
| |
Collapse
|
26
|
Joyce WG. A Review of the Fossil Record of Turtles of the CladePan-Chelydridae. BULLETIN OF THE PEABODY MUSEUM OF NATURAL HISTORY 2016. [DOI: 10.3374/014.057.0103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Natchev N, Tzankov N, Werneburg I, Heiss E. Feeding behaviour in a 'basal' tortoise provides insights on the transitional feeding mode at the dawn of modern land turtle evolution. PeerJ 2015; 3:e1172. [PMID: 26339550 PMCID: PMC4558077 DOI: 10.7717/peerj.1172] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/20/2015] [Indexed: 11/20/2022] Open
Abstract
Almost all extant testudinids are highly associated with terrestrial habitats and the few tortoises with high affinity to aquatic environments are found within the genus Manouria. Manouria belongs to a clade which forms a sister taxon to all remaining tortoises and is suitable as a model for studying evolutionary transitions within modern turtles. We analysed the feeding behaviour of Manouria emys and due to its phylogenetic position, we hypothesise that the species might have retained some ancestral features associated with an aquatic lifestyle. We tested whether M. emys is able to feed both in aquatic and terrestrial environments. In fact, M. emys repetitively tried to reach submerged food items in water, but always failed to grasp them—no suction feeding mechanism was applied. When feeding on land, M. emys showed another peculiar behaviour; it grasped food items by its jaws—a behaviour typical for aquatic or semiaquatic turtles—and not by the tongue as generally accepted as the typical feeding mode in all tortoises studied so far. In M. emys, the hyolingual complex remained retracted during all food uptake sequences, but the food transport was entirely lingual based. The kinematical profiles significantly differed from those described for other tortoises and from those proposed from the general models on the function of the feeding systems in lower tetrapods. We conclude that the feeding behaviour of M. emys might reflect a remnant of the primordial condition expected in the aquatic ancestor of the tortoises.
Collapse
Affiliation(s)
- Nikolay Natchev
- Department of Integrative Zoology, Vienna University , Vienna , Austria ; Faculty of Natural Science, Shumen University , Shumen , Bulgaria
| | - Nikolay Tzankov
- Section Vertebrates, National Museum of Natural History, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | - Ingmar Werneburg
- Museum für Naturkunde, Leibniz-Institut für Evolutions- & Biodiversitätsforschung an der Humboldt-Universität zu Berlin , Berlin , Germany ; Institut für Biologie, Humboldt-Universität zu Berlin , Berlin , Germany
| | - Egon Heiss
- Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-University Jena , Jena , Germany
| |
Collapse
|
28
|
Pan T, Wang H, Hu C, Sun Z, Zhu X, Meng T, Meng X, Zhang B. Species Delimitation in the Genus Moschus (Ruminantia: Moschidae) and Its High-Plateau Origin. PLoS One 2015; 10:e0134183. [PMID: 26280166 PMCID: PMC4539215 DOI: 10.1371/journal.pone.0134183] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/06/2015] [Indexed: 11/29/2022] Open
Abstract
The authenticity of controversial species is a significant challenge for systematic biologists. Moschidae is a small family of musk deer in the Artiodactyla, composing only one genus, Moschus. Historically, the number of species in the Moschidae family has been debated. Presently, most musk deer species were restricted in the Tibetan Plateau and surrounding/adjacent areas, which implied that the evolution of Moschus might have been punctuated by the uplift of the Tibetan Plateau. In this study, we aimed to determine the evolutionary history and delimit the species in Moschus by exploring the complete mitochondrial genome (mtDNA) and other mitochondrial gene. Our study demonstrated that six species, M. leucogaster, M. fuscus, M. moschiferus, M. berezovskii, M. chrysogaster and M. anhuiensis, were authentic species in the genus Moschus. Phylogenetic analysis and molecular dating showed that the ancestor of the present Moschidae originates from Tibetan Plateau which suggested that the evolution of Moschus was prompted by the most intense orogenic movement of the Tibetan Plateau during the Pliocene age, and alternating glacial-interglacial geological eras.
Collapse
Affiliation(s)
- Tao Pan
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Hui Wang
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Chaochao Hu
- School of Life Science, Nanjing Normal University, Nanjing, 230039, Jiangsu, China
| | - Zhonglou Sun
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Xiaoxue Zhu
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Tao Meng
- Guangxi Forest Inventory and Planning Institute, Nanning, 530011, Guangxi, China
| | - Xiuxiang Meng
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Baowei Zhang
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| |
Collapse
|
29
|
Li DH, Shi W, Munroe TA, Gong L, Kong XY. Concerted Evolution of Duplicate Control Regions in the Mitochondria of Species of the Flatfish Family Bothidae (Teleostei: Pleuronectiformes). PLoS One 2015; 10:e0134580. [PMID: 26237419 PMCID: PMC4523187 DOI: 10.1371/journal.pone.0134580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 07/12/2015] [Indexed: 12/20/2022] Open
Abstract
Mitogenomes of flatfishes (Pleuronectiformes) exhibit the greatest diversity of gene rear-rangements in teleostean fishes. Duplicate control regions (CRs) have been found in the mito-genomes of two flatfishes, Samariscus latus (Samaridae) and Laeops lanceolata (Bothidae), which is rare in teleosts. It has been reported that duplicate CRs have evolved in a concerted fashion in fishes and other animals, however, whether concerted evo-lution exists in flatfishes remains unknown. In this study, based on five newly sequenced and six previously reported mitogenomes of lefteye flounders in the Bothidae, we explored whether duplicate CRs and concerted evolution exist in these species. Results based on the present study and previous reports show that four out of eleven bothid species examined have duplicate CRs of their mitogenomes. The core regions of the duplicate CRs of mitogenomes in the same species have identical, or nearly identical, sequences when compared to each other. This pattern fits the typical characteristics of concerted evolution. Additionally, phylogenetic and ancestral state reconstruction analysis also provided evidence to support the hypothesis that duplicate CRs evolved concertedly. The core region of concerted evolution is situated at the conserved domains of the CR of the mitogenome from the termination associated sequences (TASs) to the conserved sequence blocks (CSBs). Commonly, this region is con-sidered to regulate mitochondrial replication and transcription. Thus, we hypothesize that the cause of concerted evolution of the duplicate CRs in the mtDNAs of these four bothids may be related to some function of the conserved sequences of the CRs during mitochondrial rep-lication and transcription. We hope our results will provide fresh insight into the molecular mechanisms related to replication and evolution of mitogenomes.
Collapse
Affiliation(s)
- Dong-He Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Shi
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510301, China
- * E-mail: (WS); (XYK)
| | - Thomas A. Munroe
- National Systematics Laboratory NMFS/NOAA, Post Office Box 37012, Smithsonian Institution NHB, WC 60, MRC-153, Washington, D.C., 20013–7012, United States of America
| | - Li Gong
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Yu Kong
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- * E-mail: (WS); (XYK)
| |
Collapse
|
30
|
Anquetin J, Püntener C, Billon-Bruyat JP. Portlandemys gracilis n. sp., a New Coastal Marine Turtle from the Late Jurassic of Porrentruy (Switzerland) and a Reconsideration of Plesiochelyid Cranial Anatomy. PLoS One 2015; 10:e0129193. [PMID: 26106888 PMCID: PMC4480851 DOI: 10.1371/journal.pone.0129193] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/05/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Several groups of stem cryptodires became adapted to coastal marine environments as early as the Late Jurassic, 40 million years before the Pan-Chelonioidea. The Plesiochelyidae are a major component of this first radiation of crown-group turtles into marine habitats. They are abundant in many European localities, but their systematics is still greatly confused. Only three species are represented by cranial material: Plesiochelys etalloni, Plesiochelys planiceps, and Portlandemys mcdowelli. METHODOLOGY/PRINCIPAL FINDINGS In the present study, we describe a cranium and a mandible from the Kimmeridgian of Porrentruy (Switzerland), which we refer to a new species, Portlandemys gracilis n. sp. This new taxon differs from Portlandemys mcdowelli in several aspects of the cranium and mandible, notably in being generally more gracile, but the two species share a narrow skull, a more acute angle between the labial ridges on the mandible, and a unique configuration of the anterodorsal part of the basicranium. The cranial anatomy of plesiochelyid turtles is discussed in details based primarily on these new specimens and new cranial material of Plesiochelys etalloni from Solothurn, Switzerland. CONCLUSIONS/SIGNIFICANCE Several characters (e.g., the contribution of the parietal to the foramen nervi trigemini, the configuration of the dorsum sellae and sella turcica, the presence of an infolding ridge on the posterior surface of the quadrate) appear as potential candidates to help elucidate plesiochelyid relationships. Some of these characters are included in a previously published phylogenetic dataset and help to stabilize the relationships of plesiochelyid turtles and closely related taxa. For the first time, our results suggest that plesiochelyids, 'Thalassemys' moseri, and Solnhofia parsonsi (representing the Eurysternidae) form a clade at the base of Eucryptodira.
Collapse
Affiliation(s)
- Jérémy Anquetin
- Section d'archéologie et paléontologie, Office de la culture, République et Canton du Jura, 2900 Porrentruy, Switzerland
| | - Christian Püntener
- Section d'archéologie et paléontologie, Office de la culture, République et Canton du Jura, 2900 Porrentruy, Switzerland
| | - Jean-Paul Billon-Bruyat
- Section d'archéologie et paléontologie, Office de la culture, République et Canton du Jura, 2900 Porrentruy, Switzerland
| |
Collapse
|
31
|
|
32
|
Growth Rate and an Evaluation of Age Estimation for the Endangered Big-Headed Turtle ( Platysternon megacephalum) in China. J HERPETOL 2015. [DOI: 10.1670/12-166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Angielczyk KD, Burroughs RW, Feldman CR. Do turtles follow the rules? Latitudinal gradients in species richness, body size, and geographic range area of the world's turtles. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:270-94. [DOI: 10.1002/jez.b.22602] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/10/2014] [Accepted: 09/29/2014] [Indexed: 11/11/2022]
Affiliation(s)
| | - Robert W. Burroughs
- Jackson School of Geosciences; The University of Texas at Austin; Austin Texas
| | | |
Collapse
|
34
|
Isolation and characterization of 14 polymorphic microsatellite loci in the big-headed turtle (Platysternon megacephalum). Biochem Genet 2014; 52:203-8. [PMID: 24449181 DOI: 10.1007/s10528-014-9640-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
The big-headed turtle (Platysternon megacephalum) is critically endangered because of overharvesting, illegal trade, and habitat destruction. Assessment of genetic variability in existing populations becomes very important to the taxonomy and conservation of this species. Here we describe 14 microsatellite loci isolated from an enriched genomic library of the big-headed turtle, and the polymorphisms of these loci were assessed in 28 individuals from Huizhou, Heyuan, Zhaoqing, and Shaoguan of Guangdong, China. The range of polymorphism information content is 0.305-0.738, and no evidence of significant linkage disequilibrium was found among any pairs of loci. These 14 new polymorphic microsatellite loci can be used in population genetics, taxonomy, phylogeography, behavior ecology, and conservation efforts of Platysternon megacephalum.
Collapse
|
35
|
Zheng C, Nie L, Wang J, Zhou H, Hou H, Wang H, Liu J. Recombination and evolution of duplicate control regions in the mitochondrial genome of the Asian big-headed turtle, Platysternon megacephalum. PLoS One 2013; 8:e82854. [PMID: 24367563 PMCID: PMC3867392 DOI: 10.1371/journal.pone.0082854] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 10/29/2013] [Indexed: 01/24/2023] Open
Abstract
Complete mitochondrial (mt) genome sequences with duplicate control regions (CRs) have been detected in various animal species. In Testudines, duplicate mtCRs have been reported in the mtDNA of the Asian big-headed turtle, Platysternon megacephalum, which has three living subspecies. However, the evolutionary pattern of these CRs remains unclear. In this study, we report the completed sequences of duplicate CRs from 20 individuals belonging to three subspecies of this turtle and discuss the micro-evolutionary analysis of the evolution of duplicate CRs. Genetic distances calculated with MEGA 4.1 using the complete duplicate CR sequences revealed that within turtle subspecies, genetic distances between orthologous copies from different individuals were 0.63% for CR1 and 1.2% for CR2app:addword:respectively, and the average distance between paralogous copies of CR1 and CR2 was 4.8%. Phylogenetic relationships were reconstructed from the CR sequences, excluding the variable number of tandem repeats (VNTRs) at the 3' end using three methods: neighbor-joining, maximum likelihood algorithm, and Bayesian inference. These data show that any two CRs within individuals were more genetically distant from orthologous genes in different individuals within the same subspecies. This suggests independent evolution of the two mtCRs within each P. megacephalum subspecies. Reconstruction of separate phylogenetic trees using different CR components (TAS, CD, CSB, and VNTRs) suggested the role of recombination in the evolution of duplicate CRs. Consequently, recombination events were detected using RDP software with break points at ≈290 bp and ≈1,080 bp. Based on these results, we hypothesize that duplicate CRs in P. megacephalum originated from heterological ancestral recombination of mtDNA. Subsequent recombination could have resulted in homogenization during independent evolutionary events, thus maintaining the functions of duplicate CRs in the mtDNA of P. megacephalum.
Collapse
Affiliation(s)
- Chenfei Zheng
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, Anhui, P.R. China
| | - Liuwang Nie
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, Anhui, P.R. China
| | - Jue Wang
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, Anhui, P.R. China
| | - Huaxing Zhou
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, Anhui, P.R. China
| | - Huazhen Hou
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, Anhui, P.R. China
| | - Hao Wang
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, Anhui, P.R. China
| | - Juanjuan Liu
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, Anhui, P.R. China
| |
Collapse
|
36
|
Sequence-based molecular phylogenetics and phylogeography of the American box turtles (Terrapene spp.) with support from DNA barcoding. Mol Phylogenet Evol 2013; 68:119-34. [DOI: 10.1016/j.ympev.2013.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/08/2013] [Indexed: 11/17/2022]
|
37
|
Angielczyk KD, Feldman CR. Are diminutive turtles miniaturized? The ontogeny of plastron shape in emydine turtles. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kenneth D. Angielczyk
- Department of Geology; Field Museum of Natural History; 1400 South Lake Shore Drive; Chicago; IL; 60605; USA
| | - Chris R. Feldman
- Department of Biology; University of Nevada, Reno; 1664 North Virginia Street; Reno; NV; 89557; USA
| |
Collapse
|
38
|
Weisrock DW. Concordance analysis in mitogenomic phylogenetics. Mol Phylogenet Evol 2012; 65:194-202. [DOI: 10.1016/j.ympev.2012.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/22/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
|
39
|
|
40
|
Shen XX, Liang D, Zhang P. The development of three long universal nuclear protein-coding locus markers and their application to osteichthyan phylogenetics with nested PCR. PLoS One 2012; 7:e39256. [PMID: 22720083 PMCID: PMC3375249 DOI: 10.1371/journal.pone.0039256] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/22/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Universal nuclear protein-coding locus (NPCL) markers that are applicable across diverse taxa and show good phylogenetic discrimination have broad applications in molecular phylogenetic studies. For example, RAG1, a representative NPCL marker, has been successfully used to make phylogenetic inferences within all major osteichthyan groups. However, such markers with broad working range and high phylogenetic performance are still scarce. It is necessary to develop more universal NPCL markers comparable to RAG1 for osteichthyan phylogenetics. METHODOLOGY/PRINCIPAL FINDINGS We developed three long universal NPCL markers (>1.6 kb each) based on single-copy nuclear genes (KIAA1239, SACS and TTN) that possess large exons and exhibit the appropriate evolutionary rates. We then compared their phylogenetic utilities with that of the reference marker RAG1 in 47 jawed vertebrate species. In comparison with RAG1, each of the three long universal markers yielded similar topologies and branch supports, all in congruence with the currently accepted osteichthyan phylogeny. To compare their phylogenetic performance visually, we also estimated the phylogenetic informativeness (PI) profile for each of the four long universal NPCL markers. The PI curves indicated that SACS performed best over the whole timescale, while RAG1, KIAA1239 and TTN exhibited similar phylogenetic performances. In addition, we compared the success of nested PCR and standard PCR when amplifying NPCL marker fragments. The amplification success rate and efficiency of the nested PCR were overwhelmingly higher than those of standard PCR. CONCLUSIONS/SIGNIFICANCE Our work clearly demonstrates the superiority of nested PCR over the conventional PCR in phylogenetic studies and develops three long universal NPCL markers (KIAA1239, SACS and TTN) with the nested PCR strategy. The three markers exhibit high phylogenetic utilities in osteichthyan phylogenetics and can be widely used as pilot genes for phylogenetic questions of osteichthyans at different taxonomic levels.
Collapse
Affiliation(s)
- Xing-Xing Shen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Dan Liang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Peng Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
41
|
Drosopoulou E, Tsiamis G, Mavropoulou M, Vittas S, Katselidis KA, Schofield G, Palaiologou D, Sartsidis T, Bourtzis K, Pantis J, Scouras ZG. The complete mitochondrial genome of the loggerhead turtle Caretta caretta (Testudines: Cheloniidae): genome description and phylogenetic considerations. ACTA ACUST UNITED AC 2012; 23:1-12. [PMID: 22295859 DOI: 10.3109/19401736.2011.637109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The marine turtle Caretta caretta is a widely distributed species that is facing critical population decline, especially in the Mediterranean rookeries. Molecular markers, such as mitochondrial DNA (mtDNA) sequences, are of great importance for the description and monitoring of turtle migratory populations. The complete sequence of the C. caretta mitochondrial genome is presented here. The genome comprises 16,440 base pairs, containing 37 genes (13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes), and a control region, all organized similar to the majority of vertebrate mitogenomes. MtDNA length polymorphism and heteroplasmy were observed among, and within, individuals due to the variable size of a microsatellite repeat residing at the 3' end of the control region. The use of the above repeat as a marker for individual fingerprinting is discussed. Furthermore, phylogenetic analyses among Testudines based on complete mitogenomes, as well as among marine turtles based on partial mtDNA sequences, are considered.
Collapse
Affiliation(s)
- Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Dubey B, Meganathan PR, Haque I. Complete mitochondrial genome sequence from an endangered Indian snake, Python molurus molurus (Serpentes, Pythonidae). Mol Biol Rep 2012; 39:7403-12. [PMID: 22331485 DOI: 10.1007/s11033-012-1572-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 01/25/2012] [Indexed: 12/18/2022]
Abstract
This paper reports the complete mitochondrial genome sequence of an endangered Indian snake, Python molurus molurus (Indian Rock Python). A typical snake mitochondrial (mt) genome of 17258 bp length comprising of 37 genes including the 13 protein coding genes, 22 tRNA genes, and 2 ribosomal RNA genes along with duplicate control regions is described herein. The P. molurus molurus mt. genome is relatively similar to other snake mt. genomes with respect to gene arrangement, composition, tRNA structures and skews of AT/GC bases. The nucleotide composition of the genome shows that there are more A-C % than T-G% on the positive strand as revealed by positive AT and CG skews. Comparison of individual protein coding genes, with other snake genomes suggests that ATP8 and NADH3 genes have high divergence rates. Codon usage analysis reveals a preference of NNC codons over NNG codons in the mt. genome of P. molurus. Also, the synonymous and non-synonymous substitution rates (ka/ks) suggest that most of the protein coding genes are under purifying selection pressure. The phylogenetic analyses involving the concatenated 13 protein coding genes of P. molurus molurus conformed to the previously established snake phylogeny.
Collapse
Affiliation(s)
- Bhawna Dubey
- National DNA Analysis Centre, Central Forensic Science Laboratory, 30-Gorachand Road, Kolkata, 700 014 West Bengal, India
| | | | | |
Collapse
|
43
|
Abstract
Only a few major research programs are currently targeting COI barcoding of amphibians and reptiles (including chelonians and crocodiles), two major groups of tetrapods. Amphibian and reptile species are typically old, strongly divergent, and contain deep conspecific lineages which might lead to problems in species assignment with incomplete reference databases. As far as known, there is no single pair of COI primers that will guarantee a sufficient rate of success across all amphibian and reptile taxa, or within major subclades of amphibians and reptiles, which means that the PCR amplification strategy needs to be adjusted depending on the specific research question. In general, many more amphibian and reptile taxa have been sequenced for 16S rDNA, which for some purposes may be a suitable complementary marker, at least until a more comprehensive COI reference database becomes available. DNA barcoding has successfully been used to identify amphibian larval stages (tadpoles) in species-rich tropical assemblages. Tissue sampling, DNA extraction, and amplification of COI is straightforward in amphibians and reptiles. Single primer pairs are likely to have a failure rate between 5 and 50% if taxa of a wide taxonomic range are targeted; in such cases the use of primer cocktails or subsequent hierarchical usage of different primer pairs is necessary. If the target group is taxonomically limited, many studies have followed a strategy of designing specific primers which then allow an easy and reliable amplification of all samples.
Collapse
Affiliation(s)
- Miguel Vences
- Division of Evolutionary Biology Zoological Institute, Technical University of Braunschweig, Braunschweig, Germany.
| | | | | | | |
Collapse
|
44
|
Dating cryptodiran nodes: origin and diversification of the turtle superfamily Testudinoidea. Mol Phylogenet Evol 2011; 62:496-507. [PMID: 22100825 DOI: 10.1016/j.ympev.2011.10.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 10/19/2011] [Accepted: 10/25/2011] [Indexed: 11/20/2022]
Abstract
The superfamily Testudinoidea is the most diverse and widely distributed clade of extant turtles. Surprisingly, despite an extensive fossil record, and increasing amount of molecular data available, the temporal origin of this group is still largely unknown. To address this issue, we used a comprehensive molecular dataset to perform phylogenetic and molecular dating analyses, as well as seven fossil constraints to calibrate the ages of the nodes in the phylogeny. The molecular dataset includes the complete mitochondrial genomes of 37 turtle species, including newly sequenced mitochondrial genomes of Phrynops hilarii, Emys orbicularis, Rhinoclemmys punctularia, and Chelonoidis nigra, and four nuclear markers. Our results revealed that the earliest divergences within crown testudinoids occurred around 95.0 Mya, in the early Late Cretaceous, earlier than previously reported, raising new questions about the historical biogeography of this group.
Collapse
|
45
|
The complete mitochondrial genome sequences of Chelodina rugosa and Chelus fimbriata (Pleurodira: Chelidae): implications of a common absence of initiation sites (OL) in pleurodiran turtles. Mol Biol Rep 2011; 39:2097-107. [DOI: 10.1007/s11033-011-0957-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
|
46
|
Reid BN, LE M, McCord WP, Iverson JB, Georges A, Bergmann T, Amato G, Desalle R, Naro-Maciel E. Comparing and combining distance-based and character-based approaches for barcoding turtles. Mol Ecol Resour 2011; 11:956-67. [PMID: 21635698 DOI: 10.1111/j.1755-0998.2011.03032.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Molecular barcoding can serve as a powerful tool in wildlife forensics and may prove to be a vital aid in conserving organisms that are threatened by illegal wildlife trade, such as turtles (Order Testudines). We produced cytochrome oxidase subunit one (COI) sequences (650 bp) for 174 turtle species and combined these with publicly available sequences for 50 species to produce a data set representative of the breadth of the order. Variability within the barcode region was assessed, and the utility of both distance-based and character-based methods for species identification was evaluated. For species in which genetic material from more than one individual was available (n = 69), intraspecific divergences were 1.3% on average, although divergences greater than the customary 2% barcode threshold occurred within 15 species. High intraspecific divergences could indicate species with a high degree of internal genetic structure or possibly even cryptic species, although introgression is also probable in some of these taxa. Divergences between species of the same genus were 6.4% on average; however, 49 species were <2% divergent from congeners. Low levels of interspecific divergence could be caused by recent evolutionary radiations coupled with the low rates of mtDNA evolution previously observed in turtles. Complementing distance-based barcoding with character-based methods for identifying diagnostic sets of nucleotides provided better resolution in several cases where distance-based methods failed to distinguish species. An online identification engine was created to provide character-based identifications. This study constitutes the first comprehensive barcoding effort for this seriously threatened order.
Collapse
Affiliation(s)
- B N Reid
- Department of Forest and Wildlife Ecology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yu D, Peng J, Hu S, Wang L, Xin C, Zhang Y, Hu H. Development of 19 dinucleotide microsatellite markers from the enriched library of Platysternon megacephalum. Biochem Genet 2011; 49:443-8. [PMID: 21267645 DOI: 10.1007/s10528-011-9420-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 10/19/2010] [Indexed: 11/25/2022]
Affiliation(s)
- Dongmei Yu
- Guangdong Provincial Public Laboratory of Wild Animal Conservation and Management, South China Institute of Endangered Animals, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Shen JW, Pike DA, Du WG. Movements and Microhabitat Use of Translocated Big-Headed Turtles (Platysternon megacephalum) in Southern China. CHELONIAN CONSERVATION AND BIOLOGY 2010. [DOI: 10.2744/ccb-0833.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Angielczyk KD, Feldman CR, Miller GR. ADAPTIVE EVOLUTION OF PLASTRON SHAPE IN EMYDINE TURTLES. Evolution 2010; 65:377-94. [DOI: 10.1111/j.1558-5646.2010.01118.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|