1
|
Caspari OD, Garrido C, Law CO, Choquet Y, Wollman FA, Lafontaine I. Converting antimicrobial into targeting peptides reveals key features governing protein import into mitochondria and chloroplasts. PLANT COMMUNICATIONS 2023:100555. [PMID: 36733255 PMCID: PMC10363480 DOI: 10.1016/j.xplc.2023.100555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
We asked what peptide features govern targeting to the mitochondria versus the chloroplast, using antimicrobial peptides as a starting point. This approach was inspired by the endosymbiotic hypothesis that organelle-targeting peptides derive from antimicrobial amphipathic peptides delivered by the host cell, to which organelle progenitors became resistant. To explore the molecular changes required to convert antimicrobial into targeting peptides, we expressed a set of 13 antimicrobial peptides in Chlamydomonas reinhardtii. Peptides were systematically modified to test distinctive features of mitochondrion- and chloroplast-targeting peptides, and we assessed their targeting potential by following the intracellular localization and maturation of a Venus fluorescent reporter used as a cargo protein. Mitochondrial targeting can be achieved by some unmodified antimicrobial peptide sequences. Targeting to both organelles is improved by replacing lysines with arginines. Chloroplast targeting is enabled by the presence of flanking unstructured sequences, additional constraints consistent with chloroplast endosymbiosis having occurred in a cell that already contained mitochondria. If indeed targeting peptides evolved from antimicrobial peptides, then required modifications imply a temporal evolutionary scenario with an early exchange of cationic residues and a late acquisition of chloroplast-specific motifs.
Collapse
Affiliation(s)
- Oliver D Caspari
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.
| | - Clotilde Garrido
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Chris O Law
- Centre for Microscopy and Cellular Imaging, Biology Department Loyola Campus of Concordia University, 7141 Sherbrooke W., Montréal, QC H4B 1R6, Canada
| | - Yves Choquet
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Francis-André Wollman
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Ingrid Lafontaine
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
2
|
Kleiner FH, Vesteg M, Steiner JM. An ancient glaucophyte c6-like cytochrome related to higher plant cytochrome c6A is imported into muroplasts. J Cell Sci 2021; 134:261815. [DOI: 10.1242/jcs.255901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Abstract
Cytochrome c6 is a redox carrier in the thylakoid lumen of cyanobacteria and some eukaryotic algae. Although the isofunctional plastocyanin is present in land plants and the green alga Chlamydomonas reinhardtii, these organisms also possess a cytochrome c6-like protein designated as cytochrome c6A. Two other cytochrome c6-like groups, c6B and c6C, have been identified in cyanobacteria. In this study, we have identified a novel c6-like cytochrome called PetJ2, which is encoded in the nuclear genome of Cyanophora paradoxa, a member of the glaucophytes – the basal branch of the Archaeplastida. We propose that glaucophyte PetJ2 protein is related to cyanobacterial c6B and c6C cytochromes, and that cryptic green algal and land plant cytochromes c6A evolved from an ancestral archaeplastidial PetJ2 protein. In vitro import experiments with isolated muroplasts revealed that PetJ2 is imported into plastids. Although it harbors a twin-arginine motif in its thylakoid-targeting peptide, which is generally indicative of thylakoid import via the Tat import pathway, our import experiments with isolated muroplasts and the heterologous pea thylakoid import system revealed that PetJ2 uses the Sec pathway instead of the Tat import pathway.
Collapse
Affiliation(s)
- Friedrich Hans Kleiner
- Institute of Biology – Plant Physiology, Martin Luther University Halle-Wittenberg, Halle/Saale 06099, Germany
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
- School of Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, UK
| | - Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| | - Jürgen Michael Steiner
- Institute of Biology – Plant Physiology, Martin Luther University Halle-Wittenberg, Halle/Saale 06099, Germany
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| |
Collapse
|
3
|
Evidence Supporting an Antimicrobial Origin of Targeting Peptides to Endosymbiotic Organelles. Cells 2020; 9:cells9081795. [PMID: 32731621 PMCID: PMC7463930 DOI: 10.3390/cells9081795] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria and chloroplasts emerged from primary endosymbiosis. Most proteins of the endosymbiont were subsequently expressed in the nucleo-cytosol of the host and organelle-targeted via the acquisition of N-terminal presequences, whose evolutionary origin remains enigmatic. Using a quantitative assessment of their physico-chemical properties, we show that organelle targeting peptides, which are distinct from signal peptides targeting other subcellular compartments, group with a subset of antimicrobial peptides. We demonstrate that extant antimicrobial peptides target a fluorescent reporter to either the mitochondria or the chloroplast in the green alga Chlamydomonas reinhardtii and, conversely, that extant targeting peptides still display antimicrobial activity. Thus, we provide strong computational and functional evidence for an evolutionary link between organelle-targeting and antimicrobial peptides. Our results support the view that resistance of bacterial progenitors of organelles to the attack of host antimicrobial peptides has been instrumental in eukaryogenesis and in the emergence of photosynthetic eukaryotes.
Collapse
|
4
|
Knopp M, Garg SG, Handrich M, Gould SB. Major Changes in Plastid Protein Import and the Origin of the Chloroplastida. iScience 2020; 23:100896. [PMID: 32088393 PMCID: PMC7038456 DOI: 10.1016/j.isci.2020.100896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022] Open
Abstract
Core components of plastid protein import and the principle of using N-terminal targeting sequences are conserved across the Archaeplastida, but lineage-specific differences exist. Here we compare, in light of plastid protein import, the response to high-light stress from representatives of the three archaeplastidal groups. Similar to land plants, Chlamydomonas reinhardtii displays a broad response to high-light stress, not observed to the same degree in the glaucophyte Cyanophora paradoxa or the rhodophyte Porphyridium purpureum. We find that only the Chloroplastida encode both Toc75 and Oep80 in parallel and suggest that elaborate high-light stress response is supported by changes in plastid protein import. We propose the origin of a phenylalanine-independent import pathway via Toc75 allowed higher import rates to rapidly service high-light stress, but with the cost of reduced specificity. Changes in plastid protein import define the origin of the green lineage, whose greatest evolutionary success was arguably the colonization of land. Chloroplastida evolved a dual system, Toc75/Oep80, for high throughput protein import Loss of F-based targeting led to dual organelle targeting using a single ambiguous NTS Relaxation of functional constraints allowed a wider Toc/Tic modification A broad response to high-light stress appears unique to Chloroplastida
Collapse
Affiliation(s)
- Michael Knopp
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Maria Handrich
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
5
|
Nowack ECM, Weber APM. Genomics-Informed Insights into Endosymbiotic Organelle Evolution in Photosynthetic Eukaryotes. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:51-84. [PMID: 29489396 DOI: 10.1146/annurev-arplant-042817-040209] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The conversion of free-living cyanobacteria to photosynthetic organelles of eukaryotic cells through endosymbiosis transformed the biosphere and eventually provided the basis for life on land. Despite the presumable advantage conferred by the acquisition of photoautotrophy through endosymbiosis, only two independent cases of primary endosymbiosis have been documented: one that gave rise to the Archaeplastida, and the other to photosynthetic species of the thecate, filose amoeba Paulinella. Here, we review recent genomics-informed insights into the primary endosymbiotic origins of cyanobacteria-derived organelles. Furthermore, we discuss the preconditions for the evolution of nitrogen-fixing organelles. Recent genomic data on previously undersampled cyanobacterial and protist taxa provide new clues to the origins of the host cell and endosymbiont, and proteomic approaches allow insights into the rearrangement of the endosymbiont proteome during organellogenesis. We conclude that in addition to endosymbiotic gene transfers, horizontal gene acquisitions from a broad variety of prokaryotic taxa were crucial to organelle evolution.
Collapse
Affiliation(s)
- Eva C M Nowack
- Microbial Symbiosis and Organelle Evolution Group, Biology Department, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany;
| |
Collapse
|
6
|
Gentil J, Hempel F, Moog D, Zauner S, Maier UG. Review: origin of complex algae by secondary endosymbiosis: a journey through time. PROTOPLASMA 2017; 254:1835-1843. [PMID: 28290059 DOI: 10.1007/s00709-017-1098-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/03/2017] [Indexed: 05/19/2023]
Abstract
Secondary endosymbiosis-the merging of two eukaryotic cells into one photosynthetic cellular unit-led to the evolution of ecologically and medically very important organisms. We review the biology of these organisms, starting from the first proposal of secondary endosymbiosis up to recent phylogenetic models on the origin of secondarily evolved protists. In addition, we discuss the organelle character of the symbionts based on morphological features, gene transfers from the symbiont into the host and re-import of nucleus-encoded plastid proteins. Finally, we hypothesize that secondary endosymbiosis is more than enslaving a eukaryotic, phototrophic cell, but reflects a complex interplay between host and symbiont, leading to the inseparability of the two symbiotic partners generating a cellular entity.
Collapse
Affiliation(s)
- J Gentil
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - F Hempel
- LOEWE Center for Synthetic Microbiology (Synmikro), Hans-Meerwein-Str. 6, 35032, Marburg, Germany
| | - D Moog
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - S Zauner
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - U G Maier
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany.
- LOEWE Center for Synthetic Microbiology (Synmikro), Hans-Meerwein-Str. 6, 35032, Marburg, Germany.
| |
Collapse
|
7
|
Garg SG, Gould SB. The Role of Charge in Protein Targeting Evolution. Trends Cell Biol 2016; 26:894-905. [PMID: 27524662 DOI: 10.1016/j.tcb.2016.07.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022]
Abstract
Two eukaryotic compartments are of endosymbiotic origin, the mitochondrion and plastid. These organelles need to import hundreds of proteins from the cytosol. The import machineries of both are of independent origin, but function in a similar fashion and recognize N-terminal targeting sequences that also share similarities. Targeting, however, is generally specific, even though plastid targeting evolved in the presence of established mitochondrial targeting. Here we review current advances on protein import into mitochondria and plastids from diverse eukaryotic lineages and highlight the impact of charged amino acids in targeting. Their presence or absence alone can determine localization, and comparisons across diverse eukaryotes, and their different types of mitochondria and plastids, uncover unexplored avenues of protein import research.
Collapse
Affiliation(s)
- Sriram G Garg
- Institute for Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
8
|
Flori S, Jouneau PH, Finazzi G, Maréchal E, Falconet D. Ultrastructure of the Periplastidial Compartment of the Diatom Phaeodactylum tricornutum. Protist 2016; 167:254-67. [DOI: 10.1016/j.protis.2016.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/04/2016] [Accepted: 04/16/2016] [Indexed: 11/16/2022]
|
9
|
Sheiner L, Fellows JD, Ovciarikova J, Brooks CF, Agrawal S, Holmes ZC, Bietz I, Flinner N, Heiny S, Mirus O, Przyborski JM, Striepen B. Toxoplasma gondii Toc75 Functions in Import of Stromal but not Peripheral Apicoplast Proteins. Traffic 2015; 16:1254-69. [PMID: 26381927 DOI: 10.1111/tra.12333] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 01/09/2023]
Abstract
Apicomplexa are unicellular parasites causing important human and animal diseases, including malaria and toxoplasmosis. Most of these pathogens possess a relict but essential plastid, the apicoplast. The apicoplast was acquired by secondary endosymbiosis between a red alga and a flagellated eukaryotic protist. As a result the apicoplast is surrounded by four membranes. This complex structure necessitates a system of transport signals and translocons allowing nuclear encoded proteins to find their way to specific apicoplast sub-compartments. Previous studies identified translocons traversing two of the four apicoplast membranes. Here we provide functional support for the role of an apicomplexan Toc75 homolog in apicoplast protein transport. We identify two apicomplexan genes encoding Toc75 and Sam50, both members of the Omp85 protein family. We localize the respective proteins to the apicoplast and the mitochondrion of Toxoplasma and Plasmodium. We show that the Toxoplasma Toc75 is essential for parasite growth and that its depletion results in a rapid defect in the import of apicoplast stromal proteins while the import of proteins of the outer compartments is affected only as the secondary consequence of organelle loss. These observations along with the homology to Toc75 suggest a potential role in transport through the second innermost membrane.
Collapse
Affiliation(s)
- Lilach Sheiner
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA, 30602, USA.,Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Justin D Fellows
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Jana Ovciarikova
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Carrie F Brooks
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Swati Agrawal
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Zachary C Holmes
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Irine Bietz
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Nadine Flinner
- Molecular Cell Biology of Plants, Biocenter N200, 3. OG, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Sabrina Heiny
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Oliver Mirus
- Molecular Cell Biology of Plants, Biocenter N200, 3. OG, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Jude M Przyborski
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA, 30602, USA
| |
Collapse
|
10
|
Abstract
Many protists with high ecological and medical relevance harbor plastids surrounded by four membranes. Thus, nucleus-encoded proteins of these complex plastids have to traverse these barriers. Here we report on the identification of the protein translocators located in two of the plastid surrounding membranes and present recent findings on the mechanisms of protein import into the plastids of diatoms.
Collapse
|
11
|
Köhler D, Dobritzsch D, Hoehenwarter W, Helm S, Steiner JM, Baginsky S. Identification of protein N-termini in Cyanophora paradoxa cyanelles: transit peptide composition and sequence determinants for precursor maturation. FRONTIERS IN PLANT SCIENCE 2015; 6:559. [PMID: 26257763 PMCID: PMC4510345 DOI: 10.3389/fpls.2015.00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/07/2015] [Indexed: 05/06/2023]
Abstract
Glaucophyta, rhodophyta, and chloroplastida represent the three main evolutionary lineages that diverged from a common ancestor after primary endosymbiosis. Comparative analyses between members of these three lineages are a rich source of information on ancestral plastid features. We analyzed the composition and the cleavage site of cyanelle transit peptides from the glaucophyte Cyanophora paradoxa by terminal amine labeling of substrates (TAILS), and compared their characteristics to those of representatives of the chloroplastida. Our data show that transit peptide architecture is similar between members of these two lineages. This entails a comparable modular structure, an overrepresentation of serine or alanine and similarities in the amino acid composition around the processing peptidase cleavage site. The most distinctive difference is the overrepresentation of phenylalanine in the N-terminal 1-10 amino acids of cyanelle transit peptides. A quantitative proteome analysis with periplasm-free cyanelles identified 42 out of 262 proteins without the N-terminal phenylalanine, suggesting that the requirement for phenylalanine in the N-terminal region is not absolute. Proteins in this set are on average of low abundance, suggesting that either alternative import pathways are operating specifically for low abundance proteins or that the gene model annotation is incorrect for proteins with fewer EST sequences. We discuss these two possibilities and provide examples for both interpretations.
Collapse
Affiliation(s)
- Daniel Köhler
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, BiozentrumHalle (Saale), Germany
| | - Dirk Dobritzsch
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, BiozentrumHalle (Saale), Germany
| | | | - Stefan Helm
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, BiozentrumHalle (Saale), Germany
| | - Jürgen M. Steiner
- Plant Physiology, Institute of Biology, Martin-Luther-University Halle-WittenbergHalle (Saale), Germany
| | - Sacha Baginsky
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, BiozentrumHalle (Saale), Germany
- *Correspondence: Sacha Baginsky, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| |
Collapse
|
12
|
Stork S, Lau J, Moog D, Maier UG. Three old and one new: protein import into red algal-derived plastids surrounded by four membranes. PROTOPLASMA 2013; 250:1013-1023. [PMID: 23612938 DOI: 10.1007/s00709-013-0498-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
Engulfment of a red or green alga by another eukaryote and subsequent reduction of the symbiont to an organelle, termed a complex plastid, is a process known as secondary endosymbiosis and is shown in a diverse group of eukaryotic organisms. Important members are heterokontophytes, haptophytes, cryptophytes, and apicomplexan parasites, all of them with complex plastids of red algal origin surrounded by four membranes. Although the evolutionary relationship between these organisms is still debated, they share common mechanisms for plastid protein import. In this review, we describe recent findings and current models on preprotein import into complex plastids with a special focus on the second outermost plastid membrane. Derived from the plasma membrane of the former endosymbiont, the evolution of protein transport across this so-called periplastidal membrane most likely represented the challenge in the transition from an endosymbiont to a host-dependent organelle. Here, remodeling and relocation of the symbiont endoplasmic reticulum-associated degradation (ERAD) machinery gave rise to a translocon complex termed symbiont-specific ERAD-like machinery and provides a fascinating insight into complex cellular evolution.
Collapse
Affiliation(s)
- Simone Stork
- Laboratory for Cell Biology, Philipps-Universität Marburg, Karl-von-Frisch Str.8, 35032, Marburg, Germany
| | | | | | | |
Collapse
|
13
|
Abstract
Diatoms are microalgae that possess so-called "complex plastids," which evolved by secondary endosymbiosis and are surrounded by four membranes. Thus, in contrast to primary plastids, which are surrounded by only two membranes, nucleus-encoded proteins of complex plastids face additional barriers, i.e., during evolution, mechanisms had to evolve to transport preproteins across all four membranes. This study reveals that there exist glycoproteins not only in primary but also in complex plastids, making transport issues even more complicated, as most translocation machineries are not believed to be able to transport bulky proteins. We show that plastidal reporter proteins with artificial N-glycosylation sites are indeed glycosylated during transport into the complex plastid of the diatom Phaeodactylum tricornutum. Additionally, we identified five endogenous glycoproteins, which are transported into different compartments of the complex plastid. These proteins get N-glycosylated during transport across the outermost plastid membrane and thereafter are transported across the second, third, and fourth plastid membranes in the case of stromal proteins. The results of this study provide insights into the evolutionary pressure on translocation mechanisms and pose unique questions on the operating mode of well-known transport machineries like the translocons of the outer/inner chloroplast membranes (Toc/Tic).
Collapse
|
14
|
Facchinelli F, Pribil M, Oster U, Ebert NJ, Bhattacharya D, Leister D, Weber APM. Proteomic analysis of the Cyanophora paradoxa muroplast provides clues on early events in plastid endosymbiosis. PLANTA 2013; 237:637-51. [PMID: 23212214 DOI: 10.1007/s00425-012-1819-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/08/2012] [Indexed: 05/06/2023]
Abstract
Glaucophytes represent the first lineage of photosynthetic eukaryotes of primary endosymbiotic origin that diverged after plastid establishment. The muroplast of Cyanophora paradoxa represents a primitive plastid that resembles its cyanobacterial ancestor in pigment composition and the presence of a peptidoglycan wall. To attain insights into the evolutionary history of cyanobiont integration and plastid development, it would thus be highly desirable to obtain knowledge on the composition of the glaucophyte plastid proteome. Here, we provide the first proteomic analysis of the muroplast of C. paradoxa. Mass spectrometric analysis of the muroplast proteome identified 510 proteins with high confidence. The protein repertoire of the muroplast revealed novel paths for reduced carbon flow and export to the cytosol through a sugar phosphate transporter of chlamydial origin. We propose that C. paradoxa possesses a primordial plastid mirroring the situation in the early protoalga.
Collapse
Affiliation(s)
- Fabio Facchinelli
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, Universitätsstraße 1, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Steiner JM, Bhattacharya D, Löffelhardt W. Conservative sorting in the muroplasts of Cyanophora paradoxa: a reevaluation based on the completed genome sequence. Symbiosis 2012. [DOI: 10.1007/s13199-012-0203-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Elkehal R, Becker T, Sommer MS, Königer M, Schleiff E. Specific lipids influence the import capacity of the chloroplast outer envelope precursor protein translocon. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1033-40. [PMID: 22425965 DOI: 10.1016/j.bbamcr.2012.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 01/30/2012] [Accepted: 02/29/2012] [Indexed: 11/29/2022]
Abstract
Recent studies demonstrated that lipids influence the assembly and efficiency of membrane-embedded macromolecular complexes. Similarly, lipids have been found to influence chloroplast precursor protein binding to the membrane surface and to be associated with the Translocon of the Outer membrane of Chloroplasts (TOC). We used a system based on chloroplast outer envelope vesicles from Pisum sativum to obtain an initial understanding of the influence of lipids on precursor protein translocation across the outer envelope. The ability of the model precursor proteins p(OE33)titin and pSSU to be recognized and translocated in this simplified system was investigated. We demonstrate that transport across the outer membrane can be observed in the absence of the inner envelope translocon. The translocation, however, was significantly slower than that observed for chloroplasts. Enrichment of outer envelope vesicles with different lipids natively found in chloroplast membranes altered the binding and transport behavior. Further, the results obtained using outer envelope vesicles were consistent with the results observed for the reconstituted isolated TOC complex. Based on both approaches we concluded that the lipids sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylinositol (PI) increased TOC-mediated binding and import for both precursor proteins. In contrast, enrichment in digalactosyldiacylglycerol (DGDG) improved TOC-mediated binding for pSSU, but decreased import for both precursor proteins. Optimal import occurred only in a narrow concentration range of DGDG.
Collapse
Affiliation(s)
- Rajae Elkehal
- Center of Membrane Proteomic, Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
17
|
Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber APM, Schwacke R, Gross J, Blouin NA, Lane C, Reyes-Prieto A, Durnford DG, Neilson JAD, Lang BF, Burger G, Steiner JM, Loffelhardt W, Meuser JE, Posewitz MC, Ball S, Arias MC, Henrissat B, Coutinho PM, Rensing SA, Symeonidi A, Doddapaneni H, Green BR, Rajah VD, Boore J, Bhattacharya D. Cyanophora paradoxa Genome Elucidates Origin of Photosynthesis in Algae and Plants. Science 2012; 335:843-7. [DOI: 10.1126/science.1213561] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Abstract
The majority of outer membrane proteins (OMPs) from gram-negative bacteria and many of mitochondria and chloroplasts are β-barrels. Insertion and assembly of these proteins are catalyzed by the Omp85 protein family in a seemingly conserved process. All members of this family exhibit a characteristic N-terminal polypeptide-transport-associated (POTRA) and a C-terminal 16-stranded β-barrel domain. In plants, two phylogenetically distinct and essential Omp85's exist in the chloroplast outer membrane, namely Toc75-III and Toc75-V. Whereas Toc75-V, similar to the mitochondrial Sam50, is thought to possess the original bacterial function, its homolog, Toc75-III, evolved to the pore-forming unit of the TOC translocon for preprotein import. In all current models of OMP biogenesis and preprotein translocation, a topology of Omp85 with the POTRA domain in the periplasm or intermembrane space is assumed. Using self-assembly GFP-based in vivo experiments and in situ topology studies by electron cryotomography, we show that the POTRA domains of both Toc75-III and Toc75-V are exposed to the cytoplasm. This unexpected finding explains many experimental observations and requires a reevaluation of current models of OMP biogenesis and TOC complex function.
Collapse
|
19
|
Bullmann L, Haarmann R, Mirus O, Bredemeier R, Hempel F, Maier UG, Schleiff E. Filling the gap, evolutionarily conserved Omp85 in plastids of chromalveolates. J Biol Chem 2009; 285:6848-56. [PMID: 20042599 DOI: 10.1074/jbc.m109.074807] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromalveolates are a diverse group of protists that include many ecologically and medically relevant organisms such as diatoms and apicomplexan parasites. They possess plastids generally surrounded by four membranes, which evolved by engulfment of a red alga. Today, most plastid proteins must be imported, but many aspects of protein import into complex plastids are still cryptic. In particular, how proteins cross the third outermost membrane has remained unexplained. We identified a protein in the third outermost membrane of the diatom Phaeodactylum tricornutum with properties comparable to those of the Omp85 family. We demonstrate that the targeting route of P. tricornutum Omp85 parallels that of the translocation channel of the outer envelope membrane of chloroplasts, Toc75. In addition, the electrophysiological properties are similar to those of the Omp85 proteins involved in protein translocation. This supports the hypothesis that P. tricornutum Omp85 is involved in precursor protein translocation, which would close a gap in the fundamental understanding of the evolutionary origin and function of protein import in secondary plastids.
Collapse
Affiliation(s)
- Lars Bullmann
- Cell Biology, Philipps-University Marburg, D-35032 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Ma Y, Jakowitsch J, Deusch O, Henze K, Martin W, Löffelhardt W. Transketolase from Cyanophora paradoxa: in vitro import into cyanelles and pea chloroplasts and a complex history of a gene often, but not always, transferred in the context of secondary endosymbiosis. J Eukaryot Microbiol 2009; 56:568-76. [PMID: 19883445 DOI: 10.1111/j.1550-7408.2009.00437.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The glaucocystophyte Cyanophora paradoxa is an obligatorily photoautotrophic biflagellated protist containing cyanelles, peculiar plastids surrounded by a peptidoglycan layer between their inner and outer envelope membranes. Although the 136-kb cyanelle genome surpasses higher plant chloroplast genomes in coding capacity by about 50 protein genes, these primitive plastids still have to import >2,000 polypeptides across their unique organelle wall. One such protein is transketolase, an essential enzyme of the Calvin cycle. We report the sequence of the pre-transketolase cDNA from C. paradoxa and in vitro import experiments of precursor polypeptides into cyanelles and into pea chloroplasts. The transit sequence clearly indicates the localization of the gene product to cyanelles and is more similar to the transit sequences of the plant homologues than to transit sequences of other cyanelle precursor polypeptides with the exception of a cyanelle consensus sequence at the N-terminus. The mature sequence reveals conservation of the thiamine pyrophosphate binding site. A neighbor-net planar graph suggests that Cyanophora, higher plants, and the photosynthetic protist Euglena gracilis acquired their nuclear-encoded transketolase genes via endosymbiotic gene transfer from the cyanobacterial ancestor of plastids; in the case of Euglena probably entailing two transfers, once from the plastid in the green algal lineage and once again in the secondary endosymbiosis underlying the origin of Euglena's plastids. By contrast, transketolase genes in some eukaryotes with secondary plastids of red algal origin, such as Thalassiosira pseudonana, have retained the pre-existing transketolase gene germane to their secondary host.
Collapse
Affiliation(s)
- Yan Ma
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
21
|
Gross J, Bhattacharya D. Mitochondrial and plastid evolution in eukaryotes: an outsiders' perspective. Nat Rev Genet 2009; 10:495-505. [PMID: 19506574 DOI: 10.1038/nrg2610] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The eukaryotic organelles mitochondrion and plastid originated from eubacterial endosymbionts. Here we propose that, in both cases, prokaryote-to-organelle conversion was driven by the internalization of host-encoded factors progressing from the outer membrane of the endosymbionts towards the intermembrane space, inner membrane and finally the organelle interior. This was made possible by an outside-to-inside establishment in the endosymbionts of host-controlled protein-sorting components, which enabled the gradual integration of organelle functions into the nuclear genome. Such a convergent trajectory for mitochondrion and plastid establishment suggests a novel paradigm for organelle evolution that affects theories of eukaryogenesis.
Collapse
Affiliation(s)
- Jeferson Gross
- Department of Biology, Roy J. Carver Center for Comparative Genomics, University of Iowa, 446 Biology Building, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
22
|
Nicolaisen K, Hahn A, Schleiff E. The cell wall in heterocyst formation byAnabaenasp. PCC 7120. J Basic Microbiol 2009; 49:5-24. [DOI: 10.1002/jobm.200800300] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Gile GH, Keeling PJ. Nucleus-encoded periplastid-targeted EFL in chlorarachniophytes. Mol Biol Evol 2008; 25:1967-77. [PMID: 18599495 DOI: 10.1093/molbev/msn147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chlorarachniophytes are cercozoan amoeboflagellates that acquired photosynthesis by enslaving a green alga, which has retained a highly reduced nucleus called a nucleomorph. The nucleomorph lacks many genes necessary for its own maintenance and expression, suggesting that some genes have been moved to the host nucleus and their products are now targeted back to the periplastid compartment (PPC), the reduced eukaryotic cytoplasm of the endosymbiont. Protein trafficking in chlorarachniophytes is therefore complex, including nucleus-encoded plastid-targeted proteins, nucleomorph-encoded plastid-targeted proteins, and nucleus-encoded periplastid-targeted proteins. A major gap in our understanding of this system is the PPC-targeted proteins because none have been described in any chlorarachniophytes. Here we describe the first such protein, the GTPase EFL. EFL was characterized from 7 chlorarachniophytes, and 2 distinct types were found. One is related to foraminiferan EFL and lacks an amino-terminal extension. The second, distantly related, type encodes an amino-terminal extension consisting of a signal peptide followed by sequence sharing many characteristics with transit peptides from nucleus-encoded plastid-targeted proteins and which we conclude is most likely PPC targeted. Western blotting with antibodies specific to putative host and PPC-targeted EFL from the chlorarachniophytes Bigelowiella natans and Gymnochlora stellata is consistent with posttranslational cleavage of the leaders from PPC-targeted proteins. Immunolocalization of both proteins in B. natans confirmed the cytosolic location of the leaderless EFL and a distinct localization pattern for the PPC-targeted protein but could not rule out a plastid location (albeit very unlikely). We sought other proteins with a similar leader and identified a eukaryotic translation initiation factor 1 encoding a bipartite extension with the same properties. Transit peptide sequences were characterized from all 3 classes of targeted protein by comparing all examples of each class from expressed sequence tag surveys of B. natans and G. stellata. No recognizable difference between plastid- and PPC-targeted proteins was observed, but nucleomorph-encoded transit peptides differ, likely reflecting high AT content of nucleomorph genomes. Taken together, the data suggest that the system that directs proteins to the PPC in chlorarachniophytes uses a bipartite targeting sequence, as does the PPC-targeting system that evolved independently in cryptomonads.
Collapse
Affiliation(s)
- Gillian H Gile
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|