1
|
Jurenka R. Fatty Acid Origin of Insect Pheromones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38874890 DOI: 10.1007/5584_2024_813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Pheromones are utilized to a great extent in insects. Many of these pheromones are biosynthesized through a pathway involving fatty acids. This chapter will provide examples where the biosynthetic pathways of fatty acid-derived pheromones have been studied in detail. These include pheromones from Lepidoptera, Coleoptera, and Hymenoptera. Many species of Lepidoptera utilize fatty acids as precursors to pheromones with a functional group that include aldehydes, alcohols, and acetate esters. In addition, the biosynthesis of hydrocarbons will be briefly examined because many insects utilize hydrocarbons or modified hydrocarbons as pheromones.
Collapse
|
2
|
Dam MI, Ding BJ, Svensson GP, Wang HL, Melo DJ, Lassance JM, Zarbin PH, Löfstedt C. Sex pheromone biosynthesis in the sugarcane borer Diatraea saccharalis: paving the way for biotechnological production. PEST MANAGEMENT SCIENCE 2024; 80:996-1007. [PMID: 37830147 DOI: 10.1002/ps.7830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/19/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND The sugarcane borer Diatraea saccharalis (Lepidoptera) is a key pest on sugarcane and other grasses in the Americas. Biological control as well as insecticide treatments are used for pest management, but economic losses are still significant. The use of female sex pheromones for mating disruption or mass trapping in pest management could be established for this species, provided that economical production of pheromone is available. RESULTS Combining in vivo labelling studies, differential expression analysis of transcriptome data and functional characterisation of insect genes in a yeast expression system, we reveal the biosynthetic pathway and identify the desaturase and reductase enzymes involved in the biosynthesis of the main pheromone component (9Z,11E)-hexadecadienal, and minor components hexadecanal, (9Z)-hexadecenal and (11Z)-hexadecenal. We next demonstrate heterologous production of the corresponding alcohols of the pheromone components, by expressing multiple steps of the biosynthetic pathway in yeast. CONCLUSION Elucidation of the genetic basis of sex pheromone biosynthesis in D. saccharalis, and heterologous expression in yeast, paves the way for biotechnological production of the pheromone compounds needed for pheromone-based pest management of this species. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Bao-Jian Ding
- Department of Biology, Lund University, Lund, Sweden
| | | | - Hong-Lei Wang
- Department of Biology, Lund University, Lund, Sweden
| | - Douglas J Melo
- Department of Biology, Lund University, Lund, Sweden
- Departamento de Química, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jean-Marc Lassance
- Département de gestion vétérinaire des Ressources Animales (DRA), University of Liege, Bât. B36 GIGA-Neurosciences, Quartier Hôpital, Liège 1, Belgium
| | - Paulo Hg Zarbin
- Departamento de Química, Universidade Federal do Paraná, Curitiba, Brazil
| | | |
Collapse
|
3
|
Zhang B, Li F, Qu C, Duan H, Fu Y, Luo C. A novel domain-duplicated SlitFAR3 gene involved in sex pheromone biosynthesis in Spodoptera litura. INSECT SCIENCE 2023; 30:611-624. [PMID: 36302113 DOI: 10.1111/1744-7917.13131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 06/15/2023]
Abstract
Fatty acyl reductases (FARs) are key enzymes that participate in sex pheromone biosynthesis by reducing fatty acids to fatty alcohols. Lepidoptera typically harbor numerous FAR gene family members. Although FAR genes are involved in the biosynthesis of sex pheromones in moths, the key FAR gene of Spodoptera litura remains unclear. In this work, we predicted 30 FAR genes from the S. litura genome and identified a domain duplication within gene SlitFAR3, which exhibited high and preferential expression in the sexually mature female pheromone glands (PGs) and a rhythmic expression pattern during the scotophase of sex pheromone production. The molecular docking of SlitFAR3, as predicted using a 3D model, revealed a co-factor NADPH binding cavity and 2 substrate binding cavities. Functional expression in yeast cells combined with comprehensive gas chromatography indicated that the SlitFAR3 gene could produce fatty alcohol products. This study is the first to focus on the special phenomenon of FAR domain duplication, which will advance our understanding of biosynthesis-related genes from the perspective of evolutionary biology.
Collapse
Affiliation(s)
- Biyun Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fengqi Li
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
4
|
Darragh K, Linden TA, Ramírez SR. Seasonal stability and species specificity of environmentally acquired chemical mating signals in orchid bees. J Evol Biol 2023; 36:675-686. [PMID: 36820763 DOI: 10.1111/jeb.14165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/13/2022] [Accepted: 01/22/2023] [Indexed: 02/24/2023]
Abstract
Traits that mediate reproductive isolation between species, such as those involved in mate choice and/or recognition, are predicted to experience stabilizing selection towards the species mean. Male orchid bees collect chemical compounds from many sources, such as plants and fungi, which they use as a perfume signal (pheromone) during courtship display, and are suggested to contribute to reproductive isolation between species. Environmentally acquired signals are more prone to variation as source availability can vary through space and time. If orchid bee perfumes are important for reproductive isolation between species, we expect them to exhibit stable species-specific differences in time and space. Here, we describe phenotypic patterns of inter- and intraspecific variation in the male perfumes of three sympatric species of Euglossa orchid bees across an entire year, investigating both their seasonality and species specificity. Our analysis revealed considerable within-species variation in perfumes. However, species specificity was maintained consistently throughout the year, supporting the idea that these perfumes could play an important role in reproductive isolation and are experiencing stabilizing selection towards a species mean. Our analysis also identified strong correlations in the abundance of some compounds, possibly due to shared collection sources between species. Our study suggests that orchid bee perfumes are robust in the face of environmental changes in resource availability and thus can maintain reproductive isolation between species.
Collapse
Affiliation(s)
- Kathy Darragh
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Tess A Linden
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Santiago R Ramírez
- Department of Evolution and Ecology, University of California, Davis, California, USA
| |
Collapse
|
5
|
Cama B, Ehlers S, Szczerbowski D, Thomas-Oates J, Jiggins CD, Schulz S, McMillan WO, Dasmahapatra KK. Exploitation of an ancestral pheromone biosynthetic pathway contributes to diversification in Heliconius butterflies. Proc Biol Sci 2022; 289:20220474. [PMID: 35892212 PMCID: PMC9326301 DOI: 10.1098/rspb.2022.0474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During courtship, male butterflies of many species produce androconial secretions containing male sex pheromones (MSPs) that communicate species identity and affect female choice. MSPs are thus likely candidates as reproductive barriers, yet their role in speciation remains poorly studied. Although Heliconius butterflies are a model system in speciation, their MSPs have not been investigated from a macroevolutionary perspective. We use GC/MS to characterize male androconial secretions in 33 of the 69 species in the Heliconiini tribe. We found these blends to be species-specific, consistent with a role in reproductive isolation. We detected a burst in blend diversification rate at the most speciose genus, Heliconius; a consequence of Heliconius and Eueides species using a fatty acid (FA) metabolic pathway to unlock more complex blends than basal Heliconiini species, whose secretions are dominated by plant-like metabolites. A comparison of 10 sister species pairs demonstrates a striking positive correlation between blend dissimilarity and range overlap, consistent with character displacement or reinforcement in sympatry. These results demonstrate for the first time that MSP diversification can promote reproductive isolation across this group of butterflies, showcasing how implementation of an ancestral trait, the co-option of the FA metabolic pathway for pheromone production, can facilitate rapid speciation.
Collapse
Affiliation(s)
- Bruna Cama
- Department of Biology, University of York, Heslington YO10 5DD, UK
| | - Stephanie Ehlers
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| | - Daiane Szczerbowski
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| | - Jane Thomas-Oates
- Department of Chemistry, University of York, Heslington YO10 5DD, UK
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| | | | | |
Collapse
|
6
|
Ding B, Wang H, Al‐Saleh MA, Löfstedt C, Antony B. Bioproduction of (Z,E)-9,12-tetradecadienyl acetate (ZETA), the major pheromone component of Plodia, Ephestia, and Spodoptera species in yeast. PEST MANAGEMENT SCIENCE 2022; 78:1048-1059. [PMID: 34773383 PMCID: PMC9300079 DOI: 10.1002/ps.6716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/04/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND (Z,E)-9,12-tetradecadienyl acetate (ZETA, Z9,E12-14:OAc) is a major sex pheromone component for many stored-product moth species. This pheromone is used worldwide for mating disruption, detection, monitoring, and mass trapping in raw and processed food storage facilities. In this study, we demonstrate the biological production of ZETA pheromone by engineered yeast Saccharomyces cerevisiae. RESULTS We mined the pheromone gland transcriptome data of the almond moth, Ephestia (Cadra) cautella (Walker), to trace a novel E12 fatty acyl desaturase and expressed candidates heterologously in yeast and Sf9 systems. Furthermore, we demonstrated a tailor-made ZETA pheromone bioproduction in yeast through metabolic engineering using this E12 desaturase, in combination with three genes from various sources coding for a Z9 desaturase, a fatty acyl reductase, and an acetyltransferase, respectively. Electrophysiological assays (gas chromatography coupled to an electroantennographic detector) proved that the transgenic yeast-produced ZETA pheromone component elicits distinct antennal responses. CONCLUSION The reconstructed biosynthetic pathway in yeast efficiently produces ZETA pheromone, leaves an undetectable level of biosynthetic intermediates, and paves the way for the economically competitive high-demand ZETA pheromone's bioproduction technology for high-value storage pest control.
Collapse
Affiliation(s)
| | | | - Mohammed Ali Al‐Saleh
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, Chemical Ecology and Functional Genomics LaboratoryCollege of Food and Agricultural SciencesRiyadhSaudi Arabia
| | | | - Binu Antony
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, Chemical Ecology and Functional Genomics LaboratoryCollege of Food and Agricultural SciencesRiyadhSaudi Arabia
| |
Collapse
|
7
|
Lassance JM, Ding BJ, Löfstedt C. Evolution of the codling moth pheromone via an ancient gene duplication. BMC Biol 2021; 19:83. [PMID: 33892710 PMCID: PMC8063362 DOI: 10.1186/s12915-021-01001-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/07/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Defining the origin of genetic novelty is central to our understanding of the evolution of novel traits. Diversification among fatty acid desaturase (FAD) genes has played a fundamental role in the introduction of structural variation in fatty acyl derivatives. Because of its central role in generating diversity in insect semiochemicals, the FAD gene family has become a model to study how gene family expansions can contribute to the evolution of lineage-specific innovations. Here we used the codling moth (Cydia pomonella) as a study system to decipher the proximate mechanism underlying the production of the ∆8∆10 signature structure of olethreutine moths. Biosynthesis of the codling moth sex pheromone, (E8,E10)-dodecadienol (codlemone), involves two consecutive desaturation steps, the first of which is unusual in that it generates an E9 unsaturation. The second step is also atypical: it generates a conjugated diene system from the E9 monoene C12 intermediate via 1,4-desaturation. RESULTS Here we describe the characterization of the FAD gene acting in codlemone biosynthesis. We identify 27 FAD genes corresponding to the various functional classes identified in insects and Lepidoptera. These genes are distributed across the C. pomonella genome in tandem arrays or isolated genes, indicating that the FAD repertoire consists of both ancient and recent duplications and expansions. Using transcriptomics, we show large divergence in expression domains: some genes appear ubiquitously expressed across tissue and developmental stages; others appear more restricted in their expression pattern. Functional assays using heterologous expression systems reveal that one gene, Cpo_CPRQ, which is prominently and exclusively expressed in the female pheromone gland, encodes an FAD that possesses both E9 and ∆8∆10 desaturation activities. Phylogenetically, Cpo_CPRQ clusters within the Lepidoptera-specific ∆10/∆11 clade of FADs, a classic reservoir of unusual desaturase activities in moths. CONCLUSIONS Our integrative approach shows that the evolution of the signature pheromone structure of olethreutine moths relied on a gene belonging to an ancient gene expansion. Members of other expanded FAD subfamilies do not appear to play a role in chemical communication. This advises for caution when postulating the consequences of lineage-specific expansions based on genomics alone.
Collapse
Affiliation(s)
- Jean-Marc Lassance
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Bao-Jian Ding
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| | - Christer Löfstedt
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden.
| |
Collapse
|
8
|
Opachaloemphan C, Mancini G, Konstantinides N, Parikh A, Mlejnek J, Yan H, Reinberg D, Desplan C. Early behavioral and molecular events leading to caste switching in the ant Harpegnathos. Genes Dev 2021; 35:410-424. [PMID: 33602869 PMCID: PMC7919410 DOI: 10.1101/gad.343699.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Ant societies show a division of labor in which a queen is in charge of reproduction while nonreproductive workers maintain the colony. In Harpegnathos saltator, workers retain reproductive ability, inhibited by the queen pheromones. Following the queen loss, the colony undergoes social unrest with an antennal dueling tournament. Most workers quickly abandon the tournament while a few workers continue the dueling for months and become gamergates (pseudoqueens). However, the temporal dynamics of the social behavior and molecular mechanisms underlining the caste transition and social dominance remain unclear. By tracking behaviors, we show that the gamergate fate is accurately determined 3 d after initiation of the tournament. To identify genetic factors responsible for this commitment, we compared transcriptomes of different tissues between dueling and nondueling workers. We found that juvenile hormone is globally repressed, whereas ecdysone biosynthesis in the ovary is increased in gamergates. We show that molecular changes in the brain serve as earliest caste predictors compared with other tissues. Thus, behavioral and molecular data indicate that despite the prolonged social upheaval, the gamergate fate is rapidly established, suggesting a robust re-establishment of social structure.
Collapse
Affiliation(s)
- Comzit Opachaloemphan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Giacomo Mancini
- Department of Biology, New York University, New York, New York 10003, USA
| | | | - Apurva Parikh
- Department of Biology, New York University, New York, New York 10003, USA
| | - Jakub Mlejnek
- Department of Biology, New York University, New York, New York 10003, USA
| | - Hua Yan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
9
|
Hu P, Wang D, Gao C, Lu P, Tao J, Luo Y. Pheromone biosynthetic pathway and chemoreception proteins in sex pheromone gland of Eogystia hippophaecolus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100702. [PMID: 32544860 DOI: 10.1016/j.cbd.2020.100702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 01/06/2023]
Abstract
The moth Eogystia hippophaecolus (Hua et al.) is a major threat to sea buckthorn plantations in China. Specific and highly efficient artificial sex pheromone traps have been developed and used to control this pest species. However, the biosynthesis of sex pheromones Z7-14: Ac and E3-14:Ac remains poorly understood. We investigated the female pheromone gland transcriptome of E. hippophaecolus and identified two pheromone biosynthesis-activating neuropeptides (PBANs), two pheromone biosynthesis-activating neuropeptide receptors (PBANrs), five acetyl-CoA carboxylases (ACCs), six fatty acid synthases (FASs), 16 Acyl-CoA desaturases (DESs), 26 reductases (REDs), 13 acetyltransferases (ACTs), one fatty acid transport protein (FATP), one acyl-CoA-binding protein (ACBP), and five elongation of very long-chain fatty acid proteins (ELOs) in pheromone biosynthesis pathways. Additionally, we identified 11 odorant-degrading enzymes (ODEs) and 16 odorant-binding proteins (OBPs), 14 chemosensory proteins (CSPs), two sensory neuron membrane proteins (SNMPs), three odorant receptors (ORs), seven ionotropic receptors (IRs), and six gustatory receptors (GRs). 77 unigenes involved in female pheromone biosynthesis, 31 chemoreception proteins and 11 odorant degradation enzymes were identified, which provided insight into the regulation of the pheromone components and pheromone recognition in the sex pheromone gland, and knowledge pertinent to new integrated pest management strategy of interference pheromone biosynthesis and recognition.
Collapse
Affiliation(s)
- Ping Hu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China; Guangxi University, Nanning 530004, China
| | - Dongbai Wang
- Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chenglong Gao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Pengfei Lu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China.
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
10
|
Brückner A, Parker J. Molecular evolution of gland cell types and chemical interactions in animals. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb211938. [PMID: 32034048 DOI: 10.1242/jeb.211938] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Across the Metazoa, the emergence of new ecological interactions has been enabled by the repeated evolution of exocrine glands. Specialized glands have arisen recurrently and with great frequency, even in single genera or species, transforming how animals interact with their environment through trophic resource exploitation, pheromonal communication, chemical defense and parental care. The widespread convergent evolution of animal glands implies that exocrine secretory cells are a hotspot of metazoan cell type innovation. Each evolutionary origin of a novel gland involves a process of 'gland cell type assembly': the stitching together of unique biosynthesis pathways; coordinated changes in secretory systems to enable efficient chemical release; and transcriptional deployment of these machineries into cells constituting the gland. This molecular evolutionary process influences what types of compound a given species is capable of secreting, and, consequently, the kinds of ecological interactions that species can display. Here, we discuss what is known about the evolutionary assembly of gland cell types and propose a framework for how it may happen. We posit the existence of 'terminal selector' transcription factors that program gland function via regulatory recruitment of biosynthetic enzymes and secretory proteins. We suggest ancestral enzymes are initially co-opted into the novel gland, fostering pleiotropic conflict that drives enzyme duplication. This process has yielded the observed pattern of modular, gland-specific biosynthesis pathways optimized for manufacturing specific secretions. We anticipate that single-cell technologies and gene editing methods applicable in diverse species will transform the study of animal chemical interactions, revealing how gland cell types are assembled and functionally configured at a molecular level.
Collapse
Affiliation(s)
- Adrian Brückner
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
11
|
Dou X, Zhang A, Jurenka R. Functional identification of fatty acyl reductases in female pheromone gland and tarsi of the corn earworm, Helicoverpa zea. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103260. [PMID: 31682920 DOI: 10.1016/j.ibmb.2019.103260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Most moths utilize sex pheromones released by the female to attract a mate. Females produce the sex pheromone in the pheromone gland in a biosynthetic pathway which consists of several key enzymes. Fatty acyl-CoA reductase is one of the key enzymes, which catalyzes the conversion of fatty acyl-CoA to the corresponding alcohol, playing an important role in producing the final proportion of each pheromone component. In Helicoverpa zea, (Z)-11-hexadecenal is the major sex pheromone component in female pheromone glands and previously a large amount of hexadecanal was also found in female and male tarsi. In our previous study, we compared the transcriptome between pheromone glands and tarsi and found 20 fatty acyl-CoA reductases in both tissues. In this study, we functionally characterized four FARs which were expressed at high levels according to the transcriptome of pheromone glands and tarsi. Fatty acyl-CoA reductase 1 was homologous to other moth pheromone gland specific fatty acyl-CoA reductases, and it was also present in male tarsi. Functional expression in yeast cells indicates that only fatty acyl-CoA reductase 1 was able to produce fatty alcohols. In addition, a decreased mRNA level of fatty acyl-CoA reductase 1 in female pheromone glands and male tarsi by RNAi knockdown caused a significant decrease in the production of (Z)-11-hexadecenal in pheromone glands and hexadecanal in male tarsi. This study is the first to demonstrate the direct function of a fatty acyl-CoA reductase in male tarsi and also confirms its role in sex pheromone biosynthesis in H. zea.
Collapse
Affiliation(s)
- Xiaoyi Dou
- Department of Entomology, Iowa State University, Ames, IA, 50010, USA
| | - Aijun Zhang
- Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Russell Jurenka
- Department of Entomology, Iowa State University, Ames, IA, 50010, USA.
| |
Collapse
|
12
|
Tupec M, Buček A, Valterová I, Pichová I. Biotechnological potential of insect fatty acid-modifying enzymes. ACTA ACUST UNITED AC 2018; 72:387-403. [PMID: 28742527 DOI: 10.1515/znc-2017-0031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/25/2017] [Indexed: 01/26/2023]
Abstract
There are more than one million described insect species. This species richness is reflected in the diversity of insect metabolic processes. In particular, biosynthesis of secondary metabolites, such as defensive compounds and chemical signals, encompasses an extraordinarily wide range of chemicals that are generally unparalleled among natural products from other organisms. Insect genomes, transcriptomes and proteomes thus offer a valuable resource for discovery of novel enzymes with potential for biotechnological applications. Here, we focus on fatty acid (FA) metabolism-related enzymes, notably the fatty acyl desaturases and fatty acyl reductases involved in the biosynthesis of FA-derived pheromones. Research on insect pheromone-biosynthetic enzymes, which exhibit diverse enzymatic properties, has the potential to broaden the understanding of enzyme specificity determinants and contribute to engineering of enzymes with desired properties for biotechnological production of FA derivatives. Additionally, the application of such pheromone-biosynthetic enzymes represents an environmentally friendly and economic alternative to the chemical synthesis of pheromones that are used in insect pest management strategies.
Collapse
|
13
|
Pou A, Abad JL, Ordóñez YF, Garrido M, Casas J, Fabriàs G, Delgado A. From the configurational preference of dihydroceramide desaturase-1 towards Δ 6-unsaturated substrates to the discovery of a new inhibitor. Chem Commun (Camb) 2018; 53:4394-4397. [PMID: 28379228 DOI: 10.1039/c6cc08268h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dihydroceramide desaturase 1 (Des1) catalyzes the last step of ceramide synthesis de novo, thus regulating the physiologically relevant balance between dihydrosphingolipids and sphingolipids. Here we report on the configurational preference of Des1 towards isomeric Δ6-unsaturated dihydroceramide analogs and the discovery of a potent Des1 inhibitor.
Collapse
Affiliation(s)
- Ana Pou
- Spanish National Research Council (CSIC), Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Research Unit on Bioactive Molecules (RUBAM), Department of Biomedicinal Chemistry, Jordi Girona 18-26, 08034-Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
14
|
Grapputo A, Thrimawithana AH, Steinwender B, Newcomb RD. Differential gene expression in the evolution of sex pheromone communication in New Zealand's endemic leafroller moths of the genera Ctenopseustis and Planotortrix. BMC Genomics 2018; 19:94. [PMID: 29373972 PMCID: PMC5787247 DOI: 10.1186/s12864-018-4451-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/14/2018] [Indexed: 01/09/2023] Open
Abstract
Background Sex pheromone communication in moths has attracted the attention of evolutionary biologists due to the vast array of pheromone compounds used, addressing questions of how this diversity arose and how male reception has evolved in step with the female signal. Here we examine the role of changing gene expression in the evolution of mate recognition systems in leafroller moths, particularly focusing on genes involved in the biosynthetic pathways of sex pheromones in female pheromone glands and the peripheral reception repertoire in the antennae of males. From tissue-specific transcriptomes we mined and compared a database of genes expressed in the pheromone glands and antennae of males and females of four closely related species of leafroller moths endemic to New Zealand, Ctenopseutis herana and C. obliquana, and Planotortrix excessana and P. octo. The peculiarity of this group, compared to other Lepidoptera, is the use of (Z)-5-tetradecenyl acetate, (Z)-7-tetradecenyl acetate, and (Z)-8-tetradecenyl acetate as sex pheromone components. Results We identify orthologues of candidate genes from the pheromone biosynthesis pathway, degradation and transport, as well as genes of the periphery olfactory repertoire, including large families of binding proteins, receptors and odorant degrading enzymes. The production of distinct pheromone blends in the sibling species is associated with the differential expression of two desaturase genes, deast5 and desat7, in the pheromone glands. In male antennae, three odorant receptors, OR74, OR76a and OR30 are over-expressed, but their expression could not be clearly associated with the detection of species-specific pheromones components. In addition these species contain duplications of all three pheromone binding proteins (PBPs) that are also differentially expressed among species. Conclusions While in females differences in the expression of desaturases may be sufficient to explain pheromone blend differences among these New Zealand leafroller species, in males differential expression of several genes, including pheromone binding proteins, may underpin differences in the response by males to changing pheromone components among the species. Electronic supplementary material The online version of this article (10.1186/s12864-018-4451-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Bernd Steinwender
- The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard D Newcomb
- The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Li RT, Ning C, Huang LQ, Dong JF, Li X, Wang CZ. Expressional divergences of two desaturase genes determine the opposite ratios of two sex pheromone components in Helicoverpa armigera and Helicoverpa assulta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 90:90-100. [PMID: 28986331 DOI: 10.1016/j.ibmb.2017.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 05/28/2023]
Abstract
The sympatric closely related species Helicoverpa armigera and Helicoverpa assulta use 97:3 and 7:93 of (Z)-11-hexadecenal and (Z)-9-hexadecenal, respectively, as their sex pheromone to find/locate correct sex mates. Moreover, (Z)-11-hexadecenyl alcohol and (Z)-9-hexadecenyl alcohol are more abundant in the pheromone gland of H. assulta than in that of H. armigera. To clarify the molecular basis of these differences, we sequenced the pheromone gland transcriptomes of the two species and compared the expression patterns of the candidate enzyme genes involved in the pheromone biosynthetic pathways by FPKM values and quantitative RT-PCR analysis. We found that the desaturase gene LPAQ expressed about 70 times higher in H. armigera than in H. assulta, whereas another desaturase gene NPVE expressed about 60 times higher in H. assulta than in H. armigera. We also observed significantly higher expression of the fatty acyl reductase (FAR) gene FAR1 and the aldehyde reductase (AR) gene AR3 in H. assulta than in H. armigera. Examination of the pheromone glands of the backcross offspring of their hybrids to H. assulta showed a positive linear correlation between the expression level of LPAQ and the amount of Z11-16:Ald and between the expression level of NPVE and the amount of Z9-16:Ald in the pheromone glands. Taken together, these data demonstrate that the expressional divergences of LPAQ and NPVE determine the opposite sex pheromone component ratios in the two species and the divergent expression of FAR1 and AR3 may account for the greater accumulation of alcohols in the pheromone gland of H. assulta.
Collapse
Affiliation(s)
- Rui-Ting Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Ning
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun-Feng Dong
- College of Forestry, Henan University of Science and Technology, Luoyang, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Zhang YN, Zhang LW, Chen DS, Sun L, Li ZQ, Ye ZF, Zheng MY, Li JB, Zhu XY. Molecular identification of differential expression genes associated with sex pheromone biosynthesis in Spodoptera exigua. Mol Genet Genomics 2017; 292:795-809. [PMID: 28349297 DOI: 10.1007/s00438-017-1307-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/02/2017] [Indexed: 10/19/2022]
Abstract
Species-specific sex pheromone is biosynthesized and released in most female moths as a chemical cue in mating communication. However, information on genes involved in this pathway is limited. The beet armyworm, Spodoptera exigua, is a cosmopolitan agricultural pest that causes severe economic losses to many crops. In China, the female sex pheromones in sex pheromone glands (PGs) of S. exigua have been measured which comprises (Z,E)-9,12-tetradecadienyl acetate, (Z)-9-tetradecen-l-ol, (Z)-9-tetradecenyl acetate, and (Z,E)-9,12-tetradecadien-1-ol in a ratio of 47:18:18:17. Fifty-nine putative genes related to sex pheromone biosynthesis were identified in the present study by sequencing and analyzing the sex pheromone gland (PG) transcriptome of S. exigua. Expression profiles revealed that two desaturase (SexiDes5 and SexiDes11) and three fatty acyl reductase (SexiFAR2, 3, and 9) genes had PG-specific expression, and phylogenetic analysis demonstrated that they clustered with genes known to be involved in pheromone synthesis in other moth species. Our results provide crucial background information that could facilitate the elucidation of sex pheromone biosynthesis pathway of S. exigua as well as other Spodoptera species and help identify potential targets for disrupting sexual communication in S. exigua for developing novel environment-friendly pesticides.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, No. 100, Dongshan Road, Huaibei, 235000, People's Republic of China
| | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, People's Republic of China.
| | - Da-Song Chen
- Guangdong Entomological Institute, Guangzhou, 510260, People's Republic of China
| | - Liang Sun
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, People's Republic of China
| | - Zhao-Qun Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, People's Republic of China
| | - Zhan-Feng Ye
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mei-Yan Zheng
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jin-Bu Li
- College of Life Sciences, Huaibei Normal University, No. 100, Dongshan Road, Huaibei, 235000, People's Republic of China
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, No. 100, Dongshan Road, Huaibei, 235000, People's Republic of China.
| |
Collapse
|
17
|
He P, Zhang YF, Hong DY, Wang J, Wang XL, Zuo LH, Tang XF, Xu WM, He M. A reference gene set for sex pheromone biosynthesis and degradation genes from the diamondback moth, Plutella xylostella, based on genome and transcriptome digital gene expression analyses. BMC Genomics 2017; 18:219. [PMID: 28249567 PMCID: PMC5333385 DOI: 10.1186/s12864-017-3592-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/14/2017] [Indexed: 11/25/2022] Open
Abstract
Background Female moths synthesize species-specific sex pheromone components and release them to attract male moths, which depend on precise sex pheromone chemosensory system to locate females. Two types of genes involved in the sex pheromone biosynthesis and degradation pathways play essential roles in this important moth behavior. To understand the function of genes in the sex pheromone pathway, this study investigated the genome-wide and digital gene expression of sex pheromone biosynthesis and degradation genes in various adult tissues in the diamondback moth (DBM), Plutella xylostella, which is a notorious vegetable pest worldwide. Results A massive transcriptome data (at least 39.04 Gb) was generated by sequencing 6 adult tissues including male antennae, female antennae, heads, legs, abdomen and female pheromone glands from DBM by using Illumina 4000 next-generation sequencing and mapping to a published DBM genome. Bioinformatics analysis yielded a total of 89,332 unigenes among which 87 transcripts were putatively related to seven gene families in the sex pheromone biosynthesis pathway. Among these, seven [two desaturases (DES), three fatty acyl-CoA reductases (FAR) one acetyltransferase (ACT) and one alcohol dehydrogenase (AD)] were mainly expressed in the pheromone glands with likely function in the three essential sex pheromone biosynthesis steps: desaturation, reduction, and esterification. We also identified 210 odorant-degradation related genes (including sex pheromone-degradation related genes) from seven major enzyme groups. Among these genes, 100 genes are new identified and two aldehyde oxidases (AOXs), one aldehyde dehydrogenase (ALDH), five carboxyl/cholinesterases (CCEs), five UDP-glycosyltransferases (UGTs), eight cytochrome P450 (CYP) and three glutathione S-transferases (GSTs) displayed more robust expression in the antennae, and thus are proposed to participate in the degradation of sex pheromone components and plant volatiles. Conclusions To date, this is the most comprehensive gene data set of sex pheromone biosynthesis and degradation enzyme related genes in DBM created by genome- and transcriptome-wide identification, characterization and expression profiling. Our findings provide a basis to better understand the function of genes with tissue enriched expression. The results also provide information on the genes involved in sex pheromone biosynthesis and degradation, and may be useful to identify potential gene targets for pest control strategies by disrupting the insect-insect communication using pheromone-based behavioral antagonists. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3592-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China.
| | - Yun-Fei Zhang
- Biogas Institute of Ministry of Agriculture, Chengdu, 610041, People's Republic of China
| | - Duan-Yang Hong
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, Guizhou Medical University, Huaxi university town, Guian new district, 550025, Guizhou, People's Republic of China
| | - Jun Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China
| | - Xing-Liang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ling-Hua Zuo
- Agriculture Economic and Rural Development, RENMIN University of China, Beijing, 100872, People's Republic of China
| | - Xian-Fu Tang
- Guizhou Grass Jelly Biotechnology Company Limited, Chishui, Zhunyi, 564700, People's Republic of China
| | - Wei-Ming Xu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
18
|
Meyer JM, Markov GV, Baskaran P, Herrmann M, Sommer RJ, Rödelsperger C. Draft Genome of the Scarab Beetle Oryctes borbonicus on La Réunion Island. Genome Biol Evol 2016; 8:2093-105. [PMID: 27289092 PMCID: PMC4987105 DOI: 10.1093/gbe/evw133] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Beetles represent the largest insect order and they display extreme morphological, ecological and behavioral diversity, which makes them ideal models for evolutionary studies. Here, we present the draft genome of the scarab beetle Oryctes borbonicus, which has a more basal phylogenetic position than the two previously sequenced pest species Tribolium castaneum and Dendroctonus ponderosae providing the potential for sequence polarization. Oryctes borbonicus is endemic to La Réunion, an island located in the Indian Ocean, and is the host of the nematode Pristionchus pacificus, a well-established model organism for integrative evolutionary biology. At 518 Mb, the O. borbonicus genome is substantially larger and encodes more genes than T. castaneum and D. ponderosae. We found that only 25% of the predicted genes of O. borbonicus are conserved as single copy genes across the nine investigated insect genomes, suggesting substantial gene turnover within insects. Even within beetles, up to 21% of genes are restricted to only one species, whereas most other genes have undergone lineage-specific duplications and losses. We illustrate lineage-specific duplications using detailed phylogenetic analysis of two gene families. This study serves as a reference point for insect/coleopteran genomics, although its original motivation was to find evidence for potential horizontal gene transfer (HGT) between O. borbonicus and P. pacificus. The latter was previously shown to be the recipient of multiple horizontally transferred genes including some genes from insect donors. However, our study failed to provide any clear evidence for additional HGTs between the two species.
Collapse
Affiliation(s)
- Jan M Meyer
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| | - Gabriel V Markov
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Tübingen, Germany Present address: Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227 Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff Cedex, France
| | - Praveen Baskaran
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| | - Matthias Herrmann
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| | - Ralf J Sommer
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| | - Christian Rödelsperger
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
19
|
Ding BJ, Carraher C, Löfstedt C. Sequence variation determining stereochemistry of a Δ11 desaturase active in moth sex pheromone biosynthesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 74:68-75. [PMID: 27163509 DOI: 10.1016/j.ibmb.2016.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/17/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
A Δ11 desaturase from the oblique banded leaf roller moth Choristoneura rosaceana takes the saturated myristic acid and produces a mixture of (E)-11-tetradecenoate and (Z)-11-tetradecenoate with an excess of the Z isomer (35:65). A desaturase from the spotted fireworm moth Choristoneura parallela also operates on myristic acid substrate but produces almost pure (E)-11-tetradecenoate. The two desaturases share 92% amino acid identity and 97% amino acid similarity. There are 24 amino acids differing between these two desaturases. We constructed mutations at all of these positions to pinpoint the sites that determine the product stereochemistry. We demonstrated with a yeast functional assay that one amino acid at the cytosolic carboxyl terminus of the protein (258E) is critical for the Z activity of the C. rosaceana desaturase. Mutating the glutamic acid (E) into aspartic acid (D) transforms the C. rosaceana enzyme into a desaturase with C. parallela-like activity, whereas the reciprocal mutation of the C. parallela desaturase transformed it into an enzyme producing an intermediate 64:36 E/Z product ratio. We discuss the causal link between this amino acid change and the stereochemical properties of the desaturase and the role of desaturase mutations in pheromone evolution.
Collapse
Affiliation(s)
- Bao-Jian Ding
- Pheromone Group, Department of Biology, Lund University, Sölvegatan 37, SE-22362, Lund, Sweden.
| | - Colm Carraher
- Pheromone Group, Department of Biology, Lund University, Sölvegatan 37, SE-22362, Lund, Sweden
| | - Christer Löfstedt
- Pheromone Group, Department of Biology, Lund University, Sölvegatan 37, SE-22362, Lund, Sweden
| |
Collapse
|
20
|
Ding BJ, Lager I, Bansal S, Durrett TP, Stymne S, Löfstedt C. The Yeast ATF1 Acetyltransferase Efficiently Acetylates Insect Pheromone Alcohols: Implications for the Biological Production of Moth Pheromones. Lipids 2016; 51:469-75. [PMID: 26801935 PMCID: PMC4819908 DOI: 10.1007/s11745-016-4122-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/02/2016] [Indexed: 11/25/2022]
Abstract
Many moth pheromones are composed of mixtures of acetates of long-chain (≥10 carbon) fatty alcohols. Moth pheromone precursors such as fatty acids and fatty alcohols can be produced in yeast by the heterologous expression of genes involved in insect pheromone production. Acetyltransferases that subsequently catalyze the formation of acetates by transfer of the acetate unit from acetyl-CoA to a fatty alcohol have been postulated in pheromone biosynthesis. However, so far no fatty alcohol acetyltransferases responsible for the production of straight chain alkyl acetate pheromone components in insects have been identified. In search for a non-insect acetyltransferase alternative, we expressed a plant-derived diacylglycerol acetyltransferase (EaDAcT) (EC 2.3.1.20) cloned from the seed of the burning bush (Euonymus alatus) in a yeast system. EaDAcT transformed various fatty alcohol insect pheromone precursors into acetates but we also found high background acetylation activities. Only one enzyme in yeast was shown to be responsible for the majority of that background activity, the acetyltransferase ATF1 (EC 2.3.1.84). We further investigated the usefulness of ATF1 for the conversion of moth pheromone alcohols into acetates in comparison with EaDAcT. Overexpression of ATF1 revealed that it was capable of acetylating these fatty alcohols with chain lengths from 10 to 18 carbons with up to 27- and 10-fold higher in vivo and in vitro efficiency, respectively, compared to EaDAcT. The ATF1 enzyme thus has the potential to serve as the missing enzyme in the reconstruction of the biosynthetic pathway of insect acetate pheromones from precursor fatty acids in yeast.
Collapse
Affiliation(s)
- Bao-Jian Ding
- Department of Biology, Lund University, Lund, Sweden.
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sunil Bansal
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, USA
| | - Sten Stymne
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | |
Collapse
|
21
|
Receptor for detection of a Type II sex pheromone in the winter moth Operophtera brumata. Sci Rep 2016; 6:18576. [PMID: 26729427 PMCID: PMC4700456 DOI: 10.1038/srep18576] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/23/2015] [Indexed: 11/30/2022] Open
Abstract
How signal diversity evolves under stabilizing selection in a pheromone-based mate recognition system is a conundrum. Female moths produce two major types of sex pheromones, i.e., long-chain acetates, alcohols and aldehydes (Type I) and polyenic hydrocarbons and epoxides (Type II), along different biosynthetic pathways. Little is known on how male pheromone receptor (PR) genes evolved to perceive the different pheromones. We report the identification of the first PR tuned to Type II pheromones, namely ObruOR1 from the winter moth, Operophtera brumata (Geometridae). ObruOR1 clusters together with previously ligand-unknown orthologues in the PR subfamily for the ancestral Type I pheromones, suggesting that O. brumata did not evolve a new type of PR to match the novel Type II signal but recruited receptors within an existing PR subfamily. AsegOR3, the ObruOR1 orthologue previously cloned from the noctuid Agrotis segetum that has Type I acetate pheromone components, responded significantly to another Type II hydrocarbon, suggesting that a common ancestor with Type I pheromones had receptors for both types of pheromones, a preadaptation for detection of Type II sex pheromone.
Collapse
|
22
|
Abstract
Moth sexual pheromones are widely studied as a fine-tuned system of intraspecific sexual communication that reinforces interspecific reproductive isolation. However, their evolution poses a dilemma: How can the female pheromone and male preference simultaneously change to create a new pattern of species-specific attraction? Solving this puzzle requires us to identify the genes underlying intraspecific variation in signals and responses and to understand the evolutionary mechanisms responsible for their interspecific divergence. Candidate gene approaches and functional analyses have yielded insights into large families of biosynthetic enzymes and pheromone receptors, although the factors controlling their expression remain largely unexplored. Intra- and interspecific crosses have provided tantalizing evidence of regulatory genes, although, to date, mapping resolution has been insufficient to identify them. Recent advances in high-throughput genome and transcriptome sequencing, together with established techniques, have great potential to help scientists identify the specific genetic changes underlying divergence and resolve the mystery of how moth sexual communication systems evolve.
Collapse
Affiliation(s)
- Astrid T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands;
- Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| | - Teun Dekker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden;
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| |
Collapse
|
23
|
Ding BJ, Löfstedt C. Analysis of the Agrotis segetum pheromone gland transcriptome in the light of sex pheromone biosynthesis. BMC Genomics 2015; 16:711. [PMID: 26385554 PMCID: PMC4575462 DOI: 10.1186/s12864-015-1909-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Moths rely heavily on pheromone communication for mate finding. The pheromone components of most moths are modified from the products of normal fatty acid metabolism by a set of tissue-specific enzymes. The turnip moth, Agrotis segetum uses a series of homologous fatty-alcohol acetate esters ((Z)-5-decenyl, (Z)-7-dodecenyl, and (Z)-9 tetradecenyl acetate) as its sex pheromone components. The ratio of the components differs between populations, making this species an interesting subject for studies of the enzymes involved in the biosynthetic pathway and their influence on sex pheromone variation. RESULTS Illumina sequencing and comparative analysis of the transcriptomes of the pheromone gland and abdominal epidermal tissue, enabled us to identify genes coding for putative key enzymes involved in the pheromone biosynthetic pathway, such as fatty acid synthase, β-oxidation enzymes, fatty-acyl desaturases (FAD), fatty-acyl reductases (FAR), and acetyltransferases. We functionally assayed the previously identified ∆11-desaturase [GenBank: ES583599, JX679209] and FAR [GenBank: JX679210] and candidate acetyltransferases (34 genes) by heterologous expression in yeast. The functional assay confirmed that the ∆11-desaturase interacts with palmitate and produces (Z)-11-hexadecenoate, which is the common unsaturated precursor of three homologous pheromone component acetates produced by subsequent chain-shortening, reduction and acetylation. Much lower, but still visible, activity on 14C and 12C saturated acids may account for minor pheromone compounds previously observed in the pheromone gland. The FAR characterized can operate on various unsaturated fatty acids that are the immediate acyl precursors of the different A. segetum pheromone components. None of the putative acetyltransferases that we expressed heterologously did acetylate any of the fatty alcohols tested as substrates. CONCLUSIONS The massive sequencing technology generates enormous amounts of candidate genes potentially involved in pheromone biosynthesis but testing their function by heterologous expression or gene silencing is a bottleneck. We confirmed the function of a previously identified desaturase gene and a fatty-acyl reductase gene by heterologous expression, but the acetyltransferase postulated to be involved in pheromone biosynthesis remains illusive, in spite of 34 candidates being assayed. We also generated lists of gene candidates that may be useful for characterizing the acetyl-CoA carboxylase, fatty acid synthetase and β-oxidation enzymes.
Collapse
Affiliation(s)
- Bao-Jian Ding
- Pheromone Group, Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden.
| | - Christer Löfstedt
- Pheromone Group, Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden.
| |
Collapse
|
24
|
Köblös G, Dankó T, Sipos K, Geiger Á, Szlanka T, Fodor J, Fónagy A. The regulation of Δ11-desaturase gene expression in the pheromone gland of Mamestra brassicae (Lepidoptera; Noctuidae) during pheromonogenesis. Gen Comp Endocrinol 2015; 221:217-27. [PMID: 25796477 DOI: 10.1016/j.ygcen.2015.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/27/2015] [Accepted: 03/06/2015] [Indexed: 11/20/2022]
Abstract
Cabbage moth (Mamestra brassicae) females produce sex pheromones to attract conspecific males. In our M. brassicae colony, the pheromone blend is composed of Z11-hexadecenyl acetate (Z11-16Ac) and hexadecyl acetate (16Ac) in a 93:7 ratio. A fatty acyl Δ11-desaturase is involved in the production of the main pheromone component. The release of Pheromone Biosynthesis Activating Neuropeptide (PBAN) regulates the pheromone production in the pheromone gland (PG). We cloned a cDNA encoding the MambrΔ11-desaturase and analyzed its expression profile over time in M. brassicae tissues. Transcript levels of the Δ11-desaturase in larvae, pupal PGs, fat body, brain and muscle tissues were <0.1% of that in female PGs, whereas expression in male genitalia was 2%. In the PGs of virgin females the expression level increased continuously from eclosion to the end of the 1st day when it reached a plateau without further significant fluctuation up to the 8th day. In contrast, we recorded a characteristic daily rhythmicity in pheromone production with a maximum around 200 ng Z11-16Ac/PG. In some experiments, females were decapitated to prevent PBAN release and thereby inhibit pheromone production, which remarkably increased after treatment with Mambr-Pheromonotropin. Further experiments revealed that mating resulted in a significant suppression of pheromone production. However, expression of the Δ11-desaturase was not affected by any of these interventions, suggesting that it's not regulated by PBAN. Fluorescent microscopy was used to study the potential role of lipid droplets during pheromone production, however, no lipid droplets were identified indicating that pheromonogenesis is regulated via de novo fatty acid synthesis.
Collapse
Affiliation(s)
- Gabriella Köblös
- Department of Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, H-1022 Budapest, Hungary
| | - Tamás Dankó
- Ecotoxicology and Environmental Analysis Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, H-1022 Budapest, Hungary
| | - Kitti Sipos
- Ecotoxicology and Environmental Analysis Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, H-1022 Budapest, Hungary
| | - Ágnes Geiger
- Department of Entomology, Faculty of Horticultural Science, Corvinus University of Budapest, H-1118 Ménesi út, 44, H-1118 Budapest, Hungary
| | - Tamás Szlanka
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - József Fodor
- Department of Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, H-1022 Budapest, Hungary
| | - Adrien Fónagy
- Ecotoxicology and Environmental Analysis Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, H-1022 Budapest, Hungary.
| |
Collapse
|
25
|
Wang HL, Geertsema H, van Nieukerken EJ, Löfstedt C. Identification of the Female-Produced Sex Pheromone of the Leafminer Holocacista capensis Infesting Grapevine in South Africa. J Chem Ecol 2015; 41:724-31. [PMID: 26271672 PMCID: PMC4568023 DOI: 10.1007/s10886-015-0611-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/25/2015] [Accepted: 07/10/2015] [Indexed: 11/18/2022]
Abstract
We report the first identification of a sex pheromone in a heliozelid moth, Holocacista capensis van Nieukerken & Geertsema. This leafminer recently infested grapevine in South Africa. Compared to solvent extraction of pheromone glands, solid phase microextraction (SPME) proved to be highly effective for collection of the pheromone from calling females. The volatiles collected by SPME were analyzed by gas chromatography with electroantennographic detection (GC/EAD). Three compounds eliciting electrophysiological activity from the male antenna were identified as (Z)-5-tetradecenal, (Z)-7-tetradecenal, and (Z)-9-hexadecenal by coupled gas chromatography-mass spectrometry (GC/MS). GC/MS analysis of dimethyldisulphide (DMDS) derivatives of fatty acyl moieties in pheromone gland extracts confirmed the presence of the corresponding putative pheromone precursors with double bonds in the same position and with Z geometry. Field trapping experiments in a South African vineyard confirmed that both (Z)-5-tetradecenal and (Z)-7-tetradecenal are essential for the attraction of male H. capensis, whereas addition of (Z)-9-hexadecenal to the blend did not affect the attractiveness. The composition of the pheromone is discussed in relation to the phylogeny of this family of moths.
Collapse
Affiliation(s)
- Hong-Lei Wang
- Department of Biology, Lund University, SE-223 62, Lund, Sweden.
| | - Henk Geertsema
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | | | | |
Collapse
|
26
|
Antony B, Soffan A, Jakše J, Alfaifi S, Sutanto KD, Aldosari SA, Aldawood AS, Pain A. Genes involved in sex pheromone biosynthesis of Ephestia cautella, an important food storage pest, are determined by transcriptome sequencing. BMC Genomics 2015; 16:532. [PMID: 26187652 PMCID: PMC4506583 DOI: 10.1186/s12864-015-1710-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 06/22/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Insects use pheromones, chemical signals that underlie all animal behaviors, for communication and for attracting mates. Synthetic pheromones are widely used in pest control strategies because they are environmentally safe. The production of insect pheromones in transgenic plants, which could be more economical and effective in producing isomerically pure compounds, has recently been successfully demonstrated. This research requires information regarding the pheromone biosynthetic pathways and the characterization of pheromone biosynthetic enzymes (PBEs). We used Illumina sequencing to characterize the pheromone gland (PG) transcriptome of the Pyralid moth, Ephestia cautella, a destructive storage pest, to reveal putative candidate genes involved in pheromone biosynthesis, release, transport and degradation. RESULTS We isolated the E. cautella pheromone compound as (Z,E)-9,12-tetradecadienyl acetate, and the major pheromone precursors 16:acyl, 14:acyl, E14-16:acyl, E12-14:acyl and Z9,E12-14:acyl. Based on the abundance of precursors, two possible pheromone biosynthetic pathways are proposed. Both pathways initiate from C16:acyl-CoA, with one involving ∆14 and ∆9 desaturation to generate Z9,E12-14:acyl, and the other involving the chain shortening of C16:acyl-CoA to C14:acyl-CoA, followed by ∆12 and ∆9 desaturation to generate Z9,E12-14:acyl-CoA. Then, a final reduction and acetylation generates Z9,E12-14:OAc. Illumina sequencing yielded 83,792 transcripts, and we obtained a PG transcriptome of ~49.5 Mb. A total of 191 PBE transcripts, which included pheromone biosynthesis activating neuropeptides, fatty acid transport proteins, acetyl-CoA carboxylases, fatty acid synthases, desaturases, β-oxidation enzymes, fatty acyl-CoA reductases (FARs) and fatty acetyltransferases (FATs), were selected from the dataset. A comparison of the E. cautella transcriptome data with three other Lepidoptera PG datasets revealed that 45% of the sequences were shared. Phylogenetic trees were constructed for desaturases, FARs and FATs, and transcripts that clustered with the ∆14, ∆12 and ∆9 desaturases, PG-specific FARs and potential candidate FATs, respectively, were identified. Transcripts encoding putative pheromone degrading enzymes, and candidate pheromone carrier and receptor proteins expressed in the E. cautella PG, were also identified. CONCLUSIONS Our study provides important background information on the enzymes involved in pheromone biosynthesis. This information will be useful for the in vitro production of E. cautella sex pheromones and may provide potential targets for disrupting the pheromone-based communication system of E. cautella to prevent infestations.
Collapse
Affiliation(s)
- Binu Antony
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Alan Soffan
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
- Department of Plant Protection, King Saud University, EERU, Riyadh, Saudi Arabia.
| | - Jernej Jakše
- Agronomy Department, University of Ljubljana, Biotechnical Faculty, SI-1000, Ljubljana, Slovenia.
| | - Sulieman Alfaifi
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Koko D Sutanto
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Saleh A Aldosari
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | | | - Arnab Pain
- BASE Division, KAUST, Thuwal, Jeddah, 23955-6900, Saudi Arabia.
| |
Collapse
|
27
|
Yew JY, Chung H. Insect pheromones: An overview of function, form, and discovery. Prog Lipid Res 2015; 59:88-105. [DOI: 10.1016/j.plipres.2015.06.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 05/01/2015] [Accepted: 06/12/2015] [Indexed: 12/17/2022]
|
28
|
Pheromone receptor evolution in the cryptic leafroller species, Ctenopseustis obliquana and C. herana. J Mol Evol 2014; 80:42-56. [PMID: 25252791 DOI: 10.1007/s00239-014-9650-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
How new mate recognition systems evolve when changes are required in both the male and female components remains a conundrum. Here, we investigated the molecular basis of pheromone reception in two species of tortricid (leafroller) moth, Ctenopseustis obliquana and C. herana. Male C. obliquana are attracted to a 90:10 blend of (Z)-8-tetradecenyl acetate (Z8-14:OAc) and (Z)-5-tetradecenyl acetate (Z5-14:OAc), whereas C. herana males are attracted to Z5-14:OAc alone. We used a transcriptome sequencing approach from adult male and female antennae to identify 47 olfactory receptors (ORs) from each species and assessed their expression levels in male and female antennae using RNA-Seq counting and quantitative RT-PCR. Three male-biased and one female-biased OR were identified in C. obliquana by quantitative RT-PCR, and four male-biased and one female-biased receptor in C. herana. The male-biased receptors, CoblOR7, CoblOR30, CherOR7, CherOR30, CherOR1a and CherOR1b were tested for their ability to respond to sex pheromone components in a HEK293 cell calcium assay. CoblOR7 and CherOR7 responded to Z8-14:OAc, however, no receptor for Z5-14:OAc was identified. In addition to Z8-14:OAc, CherOR7 also responded to Z7-14:OAc, indicating that this receptor may be under relaxed constraint. Of the 29 amino acid differences between CoblOR7 and CherOR7, significantly more are located in the third and the sixth transmembrane domain regions. Overall, these findings are consistent with studies revealing the presence of neurons tuned to both Z8-14:OAc and Z5-14:OAc in both species, but that for C. herana males, the ability to detect Z8-14:OAc is currently not required.
Collapse
|
29
|
Falcón T, Ferreira-Caliman MJ, Franco Nunes FM, Tanaka ED, do Nascimento FS, Gentile Bitondi MM. Exoskeleton formation in Apis mellifera: cuticular hydrocarbons profiles and expression of desaturase and elongase genes during pupal and adult development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 50:68-81. [PMID: 24813723 DOI: 10.1016/j.ibmb.2014.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 05/27/2023]
Abstract
Cuticular hydrocarbons (CHCs) are abundant in the superficial cuticular layer (envelope) of insects where they play roles as structural, anti-desiccation and semiochemical compounds. Many studies have investigated the CHC composition in the adult insects. However, studies on the profiles of these compounds during cuticle formation and differentiation are scarce and restrict to specific stages of a few insect species. We characterized the CHCs developmental profiles in the honeybee workers during an entire molting cycle (from pupal-to-adult ecdyses) and in mature adults (forager bees). Gas chromatography/mass spectrometry (GC/MS) analysis revealed remarkable differences in the relative quantities of CHCs, thus discriminating pupae, developing and newly-ecdysed adults, and foragers from each other. In parallel, the honeybee genome database was searched for predicted gene models using known amino acid sequences of insect enzymes catalyzing lipid desaturation (desaturases) or elongation (elongases) as queries in BLASTP analysis. The expression levels of six desaturase genes and ten elongase genes potentially involved in CHC biosynthesis were determined by reverse transcription and real time polymerase chain reaction (RT-qPCR) in the developing integument (cuticle and subjacent epidermis). Aiming to predict roles for these genes in CHC biosynthesis, the developmental profiles of CHCs and desaturase/elongase transcript levels were evaluated using Spearman correlation coefficient. This analysis pointed to differential roles for these gene products in the biosynthesis of certain CHC classes. Based on the assumption that homologous proteins may share a similar function, phylogenetic trees were reconstructed as an additional strategy to predict functions and evolutionary relationships of the honeybee desaturases and elongases. Together, these approaches highlighted the molecular complexity underlying the formation of the lesser known layer of the cuticular exoskeleton, the envelope.
Collapse
Affiliation(s)
- Tiago Falcón
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Maria Juliana Ferreira-Caliman
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Francis Morais Franco Nunes
- Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil
| | - Erica Donato Tanaka
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Fábio Santos do Nascimento
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Márcia Maria Gentile Bitondi
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
30
|
Sex pheromone biosynthetic pathways are conserved between moths and the butterfly Bicyclus anynana. Nat Commun 2014; 5:3957. [PMID: 24862548 PMCID: PMC4050330 DOI: 10.1038/ncomms4957] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/24/2014] [Indexed: 11/23/2022] Open
Abstract
Although phylogenetically nested within the moths, butterflies have diverged extensively in a number of life history traits. Whereas moths rely greatly on chemical signals, visual advertisement is the hallmark of mate finding in butterflies. In the context of courtship, however, male chemical signals are widespread in both groups although they likely have multiple evolutionary origins. Here, we report that in males of the butterfly Bicyclus anynana, courtship scents are produced de novo via biosynthetic pathways shared with females of many moth species. We show that two of the pheromone components that play a major role in mate choice, namely the (Z)-9-tetradecenol and hexadecanal, are produced through the activity of a fatty acyl Δ11-desaturase and two specialized alcohol-forming fatty acyl reductases. Our study provides the first evidence of conservation and sharing of ancestral genetic modules for the production of FA-derived pheromones over a long evolutionary timeframe thereby reconciling mate communication in moths and butterflies. Little is known about the evolutionary origins of the genes involved in butterfly pheromone synthesis. Here, Liénard et al. show that the biosynthetic pathways involved in the production of male courtship scents of the butterfly, Bicyclus anynana, are shared with females of many moth species.
Collapse
|
31
|
Ding BJ, Hofvander P, Wang HL, Durrett TP, Stymne S, Löfstedt C. A plant factory for moth pheromone production. Nat Commun 2014; 5:3353. [PMID: 24569486 PMCID: PMC3948062 DOI: 10.1038/ncomms4353] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/30/2014] [Indexed: 11/12/2022] Open
Abstract
Moths depend on pheromone communication for mate finding and synthetic pheromones are used for monitoring or disruption of pheromone communication in pest insects. Here we produce moth sex pheromone, using Nicotiana benthamiana as a plant factory, by transient expression of up to four genes coding for consecutive biosynthetic steps. We specifically produce multicomponent sex pheromones for two species. The fatty alcohol fractions from the genetically modified plants are acetylated to mimic the respective sex pheromones of the small ermine moths Yponomeuta evonymella and Y. padella. These mixtures are very efficient and specific for trapping of male moths, matching the activity of conventionally produced pheromones. Our long-term vision is to design tailor-made production of any moth pheromone component in genetically modified plants. Such semisynthetic preparation of sex pheromones is a novel and cost-effective way of producing moderate to large quantities of pheromones with high purity and a minimum of hazardous waste.
Collapse
Affiliation(s)
- Bao-Jian Ding
- Department of Biology, Lund University, Sölvegatan 37, SE-22362 Lund, Sweden
| | - Per Hofvander
- Department of Plant Breeding and Biotechnology, Swedish University of Agricultural Sciences, SE-23053 Alnarp, Sweden
| | - Hong-Lei Wang
- Department of Biology, Lund University, Sölvegatan 37, SE-22362 Lund, Sweden
| | - Timothy P. Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Sten Stymne
- Department of Plant Breeding and Biotechnology, Swedish University of Agricultural Sciences, SE-23053 Alnarp, Sweden
| | - Christer Löfstedt
- Department of Biology, Lund University, Sölvegatan 37, SE-22362 Lund, Sweden
| |
Collapse
|
32
|
A novel fatty acyl desaturase from the pheromone glands of Ctenopseustis obliquana and C. herana with specific Z5-desaturase activity on myristic acid. J Chem Ecol 2014; 40:63-70. [PMID: 24408442 PMCID: PMC3909261 DOI: 10.1007/s10886-013-0373-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/15/2013] [Accepted: 12/11/2013] [Indexed: 11/10/2022]
Abstract
Sexual communication in the Lepidoptera typically involves a female-produced sex pheromone that attracts males of the same species. The most common type of moth sex pheromone comprises individual or blends of fatty acyl derivatives that are synthesized by a specific enzymatic pathway in the female’s pheromone gland, often including a desaturation step. This reaction is catalyzed by fatty acyl desaturases that introduce double bonds at specific locations in the fatty acid precursor backbone. The two tortricid moths, Ctenopseustis obliquana and C. herana (brown-headed leafrollers), which are endemic in New Zealand, both use (Z)-5-tetradecenyl acetate as part of their sex pheromone. In C. herana, (Z)-5-tetradecenyl acetate is the sole component of the pheromone. Labeling experiments have revealed that this compound is produced via an unusual Δ5-desaturation of myristic acid. Previously six desaturases were identified from the pheromone glands of Ctenopseustis and its sibling genus Planotortrix, with one differentially regulated to produce the distinct blends used by individual species. However, none were able to conduct the Δ5-desaturation observed in C. herana, and presumably C. obliquana. We have now identified an additional desaturase gene, desat7, expressed in the pheromone glands of both Ctenopseustis species, which is not closely related to any previously described moth pheromone desaturase. The encoded enzyme displays Δ5-desaturase activity on myristic acid when heterologously expressed in yeast, but is not able to desaturate any other fatty acid (C8–C16). We conclude that desat7 represents a new group of desaturases that has evolved a role in the biosynthesis of sex pheromones in moths.
Collapse
|
33
|
Hagström ÅK, Wang HL, Liénard MA, Lassance JM, Johansson T, Löfstedt C. A moth pheromone brewery: production of (Z)-11-hexadecenol by heterologous co-expression of two biosynthetic genes from a noctuid moth in a yeast cell factory. Microb Cell Fact 2013; 12:125. [PMID: 24330839 PMCID: PMC4126085 DOI: 10.1186/1475-2859-12-125] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Moths (Lepidoptera) are highly dependent on chemical communication to find a mate. Compared to conventional unselective insecticides, synthetic pheromones have successfully served to lure male moths as a specific and environmentally friendly way to control important pest species. However, the chemical synthesis and purification of the sex pheromone components in large amounts is a difficult and costly task. The repertoire of enzymes involved in moth pheromone biosynthesis in insecta can be seen as a library of specific catalysts that can be used to facilitate the synthesis of a particular chemical component. In this study, we present a novel approach to effectively aid in the preparation of semi-synthetic pheromone components using an engineered vector co-expressing two key biosynthetic enzymes in a simple yeast cell factory. RESULTS We first identified and functionally characterized a ∆11 Fatty-Acyl Desaturase and a Fatty-Acyl Reductase from the Turnip moth, Agrotis segetum. The ∆11-desaturase produced predominantly Z11-16:acyl, a common pheromone component precursor, from the abundant yeast palmitic acid and the FAR transformed a series of saturated and unsaturated fatty acids into their corresponding alcohols which may serve as pheromone components in many moth species. Secondly, when we co-expressed the genes in the Brewer's yeast Saccharomyces cerevisiae, a set of long-chain fatty acids and alcohols that are not naturally occurring in yeast were produced from inherent yeast fatty acids, and the presence of (Z)-11-hexadecenol (Z11-16:OH), demonstrated that both heterologous enzymes were active in concert. A 100 ml batch yeast culture produced on average 19.5 μg Z11-16:OH. Finally, we demonstrated that oxidized extracts from the yeast cells containing (Z)-11-hexadecenal and other aldehyde pheromone compounds elicited specific electrophysiological activity from male antennae of the Tobacco budworm, Heliothis virescens, supporting the idea that genes from different species can be used as a molecular toolbox to produce pheromone components or pheromone component precursors of potential use for control of a variety of moths. CONCLUSIONS This study is a first proof-of-principle that it is possible to "brew" biologically active moth pheromone components through in vitro co-expression of pheromone biosynthetic enzymes, without having to provide supplementary precursors. Substrates present in the yeast alone appear to be sufficient.
Collapse
Affiliation(s)
- Åsa K Hagström
- Pheromone Group, Department of Biology, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
34
|
Gu SH, Wu KM, Guo YY, Pickett JA, Field LM, Zhou JJ, Zhang YJ. Identification of genes expressed in the sex pheromone gland of the black cutworm Agrotis ipsilon with putative roles in sex pheromone biosynthesis and transport. BMC Genomics 2013; 14:636. [PMID: 24053512 PMCID: PMC3849270 DOI: 10.1186/1471-2164-14-636] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 09/13/2013] [Indexed: 11/26/2022] Open
Abstract
Background One of the challenges in insect chemical ecology is to understand how insect pheromones are synthesised, detected and degraded. Genome wide survey by comparative sequencing and gene specific expression profiling provide rich resources for this challenge. A. ipsilon is a destructive pest of many crops and further characterization of the genes involved in pheromone biosynthesis and transport could offer potential targets for disruption of their chemical communication and for crop protection. Results Here we report 454 next-generation sequencing of the A. ipsilon pheromone gland transcriptome, identification and expression profiling of genes putatively involved in pheromone production, transport and degradation. A total of 23473 unigenes were obtained from the transcriptome analysis, 86% of which were A. ipsilon specific. 42 transcripts encoded enzymes putatively involved in pheromone biosynthesis, of which 15 were specifically, or mainly, expressed in the pheromone glands at 5 to 120-fold higher levels than in the body. Two transcripts encoding for a fatty acid synthase and a desaturase were highly abundant in the transcriptome and expressed more than 40-fold higher in the glands than in the body. The transcripts encoding for 2 acetyl-CoA carboxylases, 1 fatty acid synthase, 2 desaturases, 3 acyl-CoA reductases, 2 alcohol oxidases, 2 aldehyde reductases and 3 acetyltransferases were expressed at a significantly higher level in the pheromone glands than in the body. 17 esterase transcripts were not gland-specific and 7 of these were expressed highly in the antennae. Seven transcripts encoding odorant binding proteins (OBPs) and 8 encoding chemosensory proteins (CSPs) were identified. Two CSP transcripts (AipsCSP2, AipsCSP8) were highly abundant in the pheromone gland transcriptome and this was confirmed by qRT-PCR. One OBP (AipsOBP6) were pheromone gland-enriched and three OBPs (AipsOBP1, AipsOBP2 and AipsOBP4) were antennal-enriched. Based on these studies we proposed possible A. ipsilon biosynthesis pathways for major and minor sex pheromone components. Conclusions Our study identified genes potentially involved in sex pheromone biosynthesis and transport in A. ipsilon. The identified genes are likely to play essential roles in sex pheromone production, transport and degradation and could serve as targets to interfere with pheromone release. The identification of highly expressed CSPs and OBPs in the pheromone gland suggests that they may play a role in the binding, transport and release of sex pheromones during sex pheromone production in A. ipsilon and other Lepidoptera insects.
Collapse
Affiliation(s)
- Shao-Hua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Buček A, Vogel H, Matoušková P, Prchalová D, Záček P, Vrkoslav V, Šebesta P, Svatoš A, Jahn U, Valterová I, Pichová I. The role of desaturases in the biosynthesis of marking pheromones in bumblebee males. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:724-731. [PMID: 23727612 DOI: 10.1016/j.ibmb.2013.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 06/02/2023]
Abstract
Bumblebee males (Hymenoptera) produce species-specific labial gland secretions called marking pheromones (MPs). MPs generally consist of terpenoids and fatty-acid-derived aliphatic compounds with various chain lengths predominantly containing one or no double bonds. The unsaturated fatty-acid-derived MP components were hypothesized to be produced by fatty acid desaturases (FADs) that exhibit diverse substrate specificities. To address this hypothesis, we isolated and functionally characterized FADs from three bumblebee species: Bombus lucorum, Bombus terrestris, and Bombus lapidarius. By employing RNA sequencing of the male labial glands and fat bodies of B. lucorum and B. terrestris, we identified five paralogous FAD-like sequences but only two FAD lineages were abundant and differentially expressed in the labial glands. We found that abundant FAD lineages were also expressed in the labial gland and fat body of Bombus lapidarius. Functional characterization of FADs in a yeast expression system confirmed that Δ4-FADs exhibited a unique Δ4-desaturase activity exclusively on 14-carbon fatty acyls and Δ9-FADs displayed Δ9-desaturase activity on 14- to 18-carbon fatty acyls. These results indicate that Δ9-FADs are involved in the biosynthesis of major unsaturated components of MPs in B. lucorum and B. lapidarius despite the diverse MP composition of these bumblebee species. The contribution of lipases, acyltransferases, esterases, and fatty acid reductases to production of the species-specific MP composition is also discussed in light of the transcriptomic data obtained in this study.
Collapse
Affiliation(s)
- Aleš Buček
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hagström AK, Walther A, Wendland J, Löfstedt C. Subcellular localization of the fatty acyl reductase involved in pheromone biosynthesis in the tobacco budworm, Heliothis virescens (Noctuidae: Lepidoptera). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:510-521. [PMID: 23537692 DOI: 10.1016/j.ibmb.2013.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/05/2013] [Accepted: 03/08/2013] [Indexed: 06/02/2023]
Abstract
Sex pheromone components are produced in specialized glands of female moths via well-characterized biosynthetic pathways, where a Fatty Acyl Reductase (FAR) is often essential for producing the specific ratio of the different pheromone components. The subcellular localization and membrane topology of FARs is important for understanding how pheromones are synthesized and exported to the exterior for release. We investigated the subcellular localization of HvFAR from the noctuid moth Heliothis virescens by producing recombinant fusion proteins with green fluorescent protein (GFP) in yeast. A C-terminally tagged construct was localized to the endoplasmic reticulum (ER) and retained full reductive activity on a broad range of saturated and unsaturated fatty acyl precursors. In contrast, an N-terminally-tagged construct was poorly expressed in the cytoplasm and was not enzymatically active, indicating that HvFAR requires a free N-terminal for both proper targeting and catalytic activity. A series of truncations of the N-and C-termini of HvFAR was conducted based on in silico-predicted hydrophobic domains and transmembrane regions. The N-terminally truncated protein was found in the cytoplasm and did not retain activity, emphasizing the importance of the N-terminal for FAR function. In addition, the orientation in the membrane of the C-terminus-tagged HvFAR-GFP construct was analyzed using a fluorescence protease protection (FPP) assay, implying that the C-terminal of HvFAR is orientated towards the cytoplasm. These results, together with previous data on the localization of desaturases, confirm the importance of the ER as a subcellular site of pheromone production.
Collapse
Affiliation(s)
- Asa K Hagström
- Pheromone Group, Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden.
| | | | | | | |
Collapse
|
37
|
Groot AT, Staudacher H, Barthel A, Inglis O, Schöfl G, Santangelo RG, Gebauer-Jung S, Vogel H, Emerson J, Schal C, Heckel DG, Gould F. One quantitative trait locus for intra- and interspecific variation in a sex pheromone. Mol Ecol 2013; 22:1065-80. [PMID: 23294019 DOI: 10.1111/mec.12171] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 12/27/2022]
Abstract
Even though premating isolation is hypothesized to be a major driving force in speciation, its genetic basis is poorly known. In the noctuid moth Heliothis subflexa, one group of sex pheromone components, the acetates, emitted by the female, plays a crucial isolating role in preventing interspecific matings to males of the closely related Heliothis virescens, in which females do not produce acetates and males are repelled by them. We previously found intraspecific variation in acetates in H. subflexa: females in eastern North America contain significantly more acetates than females in Western Mexico. Here we describe the persistence of this intraspecific variation in laboratory-reared strains and the identification of one major quantitative trait locus (QTL), explaining 40% of the variance in acetate amounts. We homologized this intraspecific QTL to our previously identified interspecific QTL using restriction-associated DNA (RAD) tags. We found that a major intraspecific QTL overlaps with one of the two major interspecific QTL. To identify candidate genes underlying the acetate variation, we investigated a number of gene families with known or suspected acetyl- or acyltransferase activity. The most likely candidate genes did not map to our QTL, so that we currently hypothesize that a transcription factor underlies this QTL. Finding a single, large QTL that impacts variation in pheromone blends between and within species is, to our knowledge, the first such example for traits that have been demonstrated to affect premating isolation.
Collapse
Affiliation(s)
- A T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Semi-selective fatty acyl reductases from four heliothine moths influence the specific pheromone composition. PLoS One 2012; 7:e37230. [PMID: 22615947 PMCID: PMC3353883 DOI: 10.1371/journal.pone.0037230] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/16/2012] [Indexed: 11/26/2022] Open
Abstract
Background Sex pheromones are essential in moth mate communication. Information on pheromone biosynthetic genes and enzymes is needed to comprehend the mechanisms that contribute to specificity of pheromone signals. Most heliothine moths use sex pheromones with (Z)–11–hexadecenal as the major component in combination with minor fatty aldehydes and alcohols. In this study we focus on four closely related species, Heliothis virescens, Heliothis subflexa, Helicoverpa armigera and Helicoverpa assulta, which use (Z)–11–hexadecenal, (Z)–9–tetradecanal, and (Z)–9–hexadecenal in different ratios in their pheromone blend. The components are produced from saturated fatty acid precursors by desaturation, β–oxidation, reduction and oxidation. Results We analyzed the composition of fatty acyl pheromone precursors and correlated it to the pheromone composition. Next, we investigated whether the downstream fatty–acyl reduction step modulates the ratio of alcohol intermediates before the final oxidation step. By isolating and functionally characterizing the Fatty Acyl Reductase (pgFAR) from each species we found that the pgFARs were active on a broad set of C8 to C16 fatty acyl substrates including the key pheromone precursors, Z9–14, Z9–16 and Z11–16:acyls. When presenting the three precursors in equal ratios to yeast cultures expressing any of the four pgFARs, all reduced (Z)–9–tetradecenoate preferentially over (Z)–11–hexadecenoate, and the latter over (Z)–9–hexadecenoate. Finally, when manipulating the precursor ratios in vitro, we found that the pgFARs display small differences in the biochemical activity on various substrates. Conclusions We conclude that a pgFAR with broad specificity is involved in heliothine moth pheromone biosynthesis, functioning as a semi–selective funnel that produces species–specific alcohol product ratios depending on the fatty–acyl precursor ratio in the pheromone gland. This study further supports the key role of these in pheromone biosynthesis and emphasizes the interplay between the pheromone fatty acyl precursors and the Lepidoptera specific pgFARs in shaping the pheromone composition.
Collapse
|
39
|
Albre J, Liénard MA, Sirey TM, Schmidt S, Tooman LK, Carraher C, Greenwood DR, Löfstedt C, Newcomb RD. Sex pheromone evolution is associated with differential regulation of the same desaturase gene in two genera of leafroller moths. PLoS Genet 2012; 8:e1002489. [PMID: 22291612 PMCID: PMC3266893 DOI: 10.1371/journal.pgen.1002489] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 12/04/2011] [Indexed: 11/29/2022] Open
Abstract
Chemical signals are prevalent in sexual communication systems. Mate recognition has been extensively studied within the Lepidoptera, where the production and recognition of species-specific sex pheromone signals are typically the defining character. While the specific blend of compounds that makes up the sex pheromones of many species has been characterized, the molecular mechanisms underpinning the evolution of pheromone-based mate recognition systems remain largely unknown. We have focused on two sets of sibling species within the leafroller moth genera Ctenopseustis and Planotortrix that have rapidly evolved the use of distinct sex pheromone blends. The compounds within these blends differ almost exclusively in the relative position of double bonds that are introduced by desaturase enzymes. Of the six desaturase orthologs isolated from all four species, functional analyses in yeast and gene expression in pheromone glands implicate three in pheromone biosynthesis, two Δ9-desaturases, and a Δ10-desaturase, while the remaining three desaturases include a Δ6-desaturase, a terminal desaturase, and a non-functional desaturase. Comparative quantitative real-time PCR reveals that the Δ10-desaturase is differentially expressed in the pheromone glands of the two sets of sibling species, consistent with differences in the pheromone blend in both species pairs. In the pheromone glands of species that utilize (Z)-8-tetradecenyl acetate as sex pheromone component (Ctenopseustis obliquana and Planotortrix octo), the expression levels of the Δ10-desaturase are significantly higher than in the pheromone glands of their respective sibling species (C. herana and P. excessana). Our results demonstrate that interspecific sex pheromone differences are associated with differential regulation of the same desaturase gene in two genera of moths. We suggest that differential gene regulation among members of a multigene family may be an important mechanism of molecular innovation in sex pheromone evolution and speciation. Chemical signals are prevalent in sexual communication systems, especially within the Lepidoptera where sex pheromones are typically one of the defining characteristics of species. We have isolated six desaturases from two groups of sibling species of leafroller moths belonging to the genera Ctenopseustis and Planotortrix. Functional analyses in yeast and quantitative RT–PCR indicate that three of the desaturases are involved in the biosynthesis of sex pheromone components in these species. One of three enzymes is a Δ10-desaturase that is differentially expressed in the pheromone glands of the two sets of sibling species, consistent with differences in the pheromone blend in both species pairs. In the pheromone glands of species that utilize (Z)-8-tetradecenyl acetate as sex pheromone component (C. obliquana and P. octo), the expression levels of the Δ10-desaturase are significantly higher than pheromone gland expression levels in their sibling species (C. herana and P. excessana). Our results demonstrate that interspecific sex pheromone differences are associated with differential regulation of the same desaturase gene in these two genera of moths. Based on these findings differential gene regulation among members of a multigene family may be an important mechanism of molecular innovation in sex pheromone evolution and speciation.
Collapse
Affiliation(s)
- Jérôme Albre
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Palmerston North, New Zealand
| | | | - Tamara M. Sirey
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Silvia Schmidt
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Palmerston North, New Zealand
| | - Leah K. Tooman
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Palmerston North, New Zealand
| | - Colm Carraher
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - David R. Greenwood
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Richard D. Newcomb
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Palmerston North, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
40
|
Ding BJ, Liénard MA, Wang HL, Zhao CH, Löfstedt C. Terminal fatty-acyl-CoA desaturase involved in sex pheromone biosynthesis in the winter moth (Operophtera brumata). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:715-722. [PMID: 21651981 DOI: 10.1016/j.ibmb.2011.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 05/30/2023]
Abstract
The winter moth (Operophtera brumata L., Lepidoptera: Geometridae) utilizes a single hydrocarbon, 1,Z3,Z6,Z9-nonadecatetraene, as its sex pheromone. We tested the hypothesis that a fatty acid precursor, Z11,Z14,Z17,19-nonadecanoic acid, is biosynthesized from α-linolenic acid, through chain elongation by one 2-carbon unit, and subsequent methyl-terminus desaturation. Our results show that labeled α-linolenic acid is indeed incorporated into the pheromone component in vivo. A fatty-acyl-CoA desaturase gene that we found to be expressed in the abdominal epidermal tissue, the presumed site of biosynthesis for type II pheromones, was characterized and expressed heterologously in a yeast system. The transgenic yeast expressing this insect derived gene could convert Z11,Z14,Z17-eicosatrienoic acid into Z11,Z14,Z17,19-eicosatetraenoic acid. These results provide evidence that a terminal desaturation step is involved in the winter moth pheromone biosynthesis, prior to the decarboxylation.
Collapse
Affiliation(s)
- Bao-Jian Ding
- Functional Zoology, Department of Biology, Lund University, Sölvegatan 37, SE-22362 Lund, Sweden.
| | | | | | | | | |
Collapse
|
41
|
Chown SL, Sørensen JG, Terblanche JS. Water loss in insects: an environmental change perspective. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1070-84. [PMID: 21640726 DOI: 10.1016/j.jinsphys.2011.05.004] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 05/15/2023]
Abstract
In the context of global environmental change much of the focus has been on changing temperatures. However, patterns of rainfall and water availability have also been changing and are expected to continue doing so. In consequence, understanding the responses of insects to water availability is important, especially because it has a pronounced influence on insect activity, distribution patterns, and species richness. Here we therefore provide a critical review of key questions that either are being or need to be addressed in this field. First, an overview of insect behavioural responses to changing humidity conditions and the mechanisms underlying sensing of humidity variation is provided. The primary sensors in insects belong to the temperature receptor protein superfamily of cation channels. Temperature-activated transient receptor potential ion channels, or thermoTRPs, respond to a diverse range of stimuli and may be a primary integrator of sensory information, such as environmental temperature and moisture. Next we touch briefly on the components of water loss, drawing attention to a new, universal model of the water costs of gas exchange and its implications for responses to a warming, and in places drying, world. We also provide an overview of new understanding of the role of the sub-elytral chamber for water conservation, and developments in understanding of the role of cuticular hydrocarbons in preventing water loss. Because of an increasing focus on the molecular basis of responses to dehydration stress we touch briefly on this area, drawing attention to the role of sugars, heat shock proteins, aquaporins, and LEA proteins. Next we consider phenotypic plasticity or acclimation responses in insect water balance after initial exposures to altered humidity, temperature or nutrition. Although beneficial acclimation has been demonstrated in several instances, this is not always the case. Laboratory studies show that responses to selection for enhanced ability to survive water stress do evolve and that genetic variation for traits underlying such responses does exist in many species. However, in others, especially tropical, typically narrowly distributed species, this appears not to be the case. Using the above information we then demonstrate that habitat alteration, climate change, biological invasions, pollution and overexploitation are likely to be having considerable effects on insect populations mediated through physiological responses (or the lack thereof) to water stress, and that these effects may often be non-intuitive.
Collapse
Affiliation(s)
- Steven L Chown
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | | | | |
Collapse
|
42
|
Allen CE, Zwaan BJ, Brakefield PM. Evolution of sexual dimorphism in the Lepidoptera. ANNUAL REVIEW OF ENTOMOLOGY 2011; 56:445-464. [PMID: 20822452 DOI: 10.1146/annurev-ento-120709-144828] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Among the animals, the Lepidoptera (moths and butterflies) are second only to beetles in number of described species and are known for their striking intra- and interspecific diversity. Within species, sexual dimorphism is a source of variation in life history (e.g., sexual size dimorphism and protandry), morphology (e.g., wing shape and color pattern), and behavior (e.g., chemical and visual signaling). Sexual selection and mating systems have been considered the primary forces driving the evolution of sexual dimorphism in the Lepidoptera, and alternative hypotheses have been neglected. Here, we examine opportunities for sexual selection, natural selection, and the interplay between the two forces in the evolution of sexual differences in the moths and butterflies. Our primary goal is to identify mechanisms that either facilitate or constrain the evolution of sexual dimorphism, rather than to resolve any perceived controversy between hypotheses that may not be mutually exclusive.
Collapse
Affiliation(s)
- Cerisse E Allen
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA.
| | | | | |
Collapse
|
43
|
Liénard MA, Löfstedt C. Functional flexibility as a prelude to signal diversity?: Role of a fatty acyl reductase in moth pheromone evolution. Commun Integr Biol 2010; 3:586-8. [PMID: 21331247 DOI: 10.4161/cib.3.6.13177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 07/27/2010] [Indexed: 11/19/2022] Open
Abstract
Sex pheromones are the hallmark of reproductive behavior in moths. Mature females perform the task of mate signaling and release bouquets of odors that attract conspecific males at long range. The pheromone chemistry follows a relatively minimal design but still the combinatorial action of a handful of specialized pheromone production enzymes has resulted in remarkably diverse sexual signals that subtly vary in structure and in number and ratio of components. In a recent article,1 we showed that a single reductase gene (pgFAR) enables the conversion of key biosynthetic fatty-acyl precursors into fatty alcohols, the immediate precursors of the multi-component pheromone in small ermine moths (Lepidoptera: Yponomeutidae). In the light of the widespread usage of multi-component pheromone blends across Lepidoptera, it is likely that the pgFAR biochemical flexibility is a regular feature of the moth pheromone machinery and polyvalent reductase genes are emerging as pivots to promote phenotypic transitions in moth mating signals. In addition, the small ermine moth pgFAR nevertheless contributes to regulating the ratio among components. Here we show that the pgFAR substrate specificity is actually counterbalancing the inherent chain-length preference of an upstream desaturase with Δ11-activity and that the enzymes together modulate the final blend ratio between the Z11-16:OH, Z11-14:OH and E11-14:OH compounds before the final acetylation.
Collapse
|
44
|
Wyatt TD. Pheromones and signature mixtures: defining species-wide signals and variable cues for identity in both invertebrates and vertebrates. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:685-700. [PMID: 20680632 DOI: 10.1007/s00359-010-0564-y] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 07/10/2010] [Accepted: 07/20/2010] [Indexed: 02/07/2023]
Abstract
Pheromones have been found in species in almost every part of the animal kingdom, including mammals. Pheromones (a molecule or defined combination of molecules) are species-wide signals which elicit innate responses (though responses can be conditional on development as well as context, experience, and internal state). In contrast, signature mixtures, in invertebrates and vertebrates, are variable subsets of molecules of an animal's chemical profile which are learnt by other animals, allowing them to distinguish individuals or colonies. All signature mixtures, and almost all pheromones, whatever the size of molecules, are detected by olfaction (as defined by receptor families and glomerular processing), in mammals by the main olfactory system or vomeronasal system or both. There is convergence on a glomerular organization of olfaction. The processing of all signature mixtures, and most pheromones, is combinatorial across a number of glomeruli, even for some sex pheromones which appear to have 'labeled lines'. Narrowly specific pheromone receptors are found, but are not a prerequisite for a molecule to be a pheromone. A small minority of pheromones act directly on target tissues (allohormone pheromones) or are detected by non-glomerular chemoreceptors, such as taste. The proposed definitions for pheromone and signature mixture are based on the heuristic value of separating these kinds of chemical information. In contrast to a species-wide pheromone, there is no single signature mixture to find, as signature mixtures are a 'receiver-side' phenomenon and it is the differences in signature mixtures which allow animals to distinguish each other.
Collapse
|
45
|
Weide T, Saldanha SA, Minond D, Spicer TP, Fotsing JR, Spaargaren M, Frère JM, Bebrone C, Sharpless KB, Hodder PS, Fokin VV. NH-1,2,3-Triazole-based Inhibitors of the VIM-2 Metallo-β-Lactamase: Synthesis and Structure-Activity Studies. ACS Med Chem Lett 2010; 1:150-154. [PMID: 20625539 DOI: 10.1021/ml900022q] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metallo-ß-lactamases (MBL) are an emerging cause of bacterial resistance to antibiotic treatment. The VIM-2 ß-lactamase is the most commonly encountered MBL in clinical isolates worldwide. Described here are potent and selective small molecule inhibitors of VIM-2 containing the arylsulfonyl-NH-1,2,3-triazole chemotype that potentiate the efficacy of the ß-lactam, imipenem, in E. coli.
Collapse
Affiliation(s)
- Timo Weide
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - S. Adrian Saldanha
- Lead Identification, Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458
| | - Dmitriy Minond
- Lead Identification, Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458
| | - Timothy P. Spicer
- Lead Identification, Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458
| | - Joseph R. Fotsing
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Michael Spaargaren
- Lead Identification, Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458
| | - Jean-Marie Frère
- Centre for Protein Engineering, University of Liège, Allée du 6 Août B6, Sart-Tilman 4000 Liège, Belgium
| | - Carine Bebrone
- Centre for Protein Engineering, University of Liège, Allée du 6 Août B6, Sart-Tilman 4000 Liège, Belgium
| | - K. Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Peter S. Hodder
- Lead Identification, Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458
| | - Valery V. Fokin
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
46
|
Lassance JM, Groot AT, Liénard MA, Antony B, Borgwardt C, Andersson F, Hedenström E, Heckel DG, Löfstedt C. Allelic variation in a fatty-acyl reductase gene causes divergence in moth sex pheromones. Nature 2010; 466:486-9. [PMID: 20592730 DOI: 10.1038/nature09058] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 03/23/2010] [Indexed: 11/09/2022]
Abstract
Pheromone-based behaviours are crucial in animals from insects to mammals, and reproductive isolation is often based on pheromone differences. However, the genetic mechanisms by which pheromone signals change during the evolution of new species are largely unknown. In the sexual communication system of moths (Insecta: Lepidoptera), females emit a species-specific pheromone blend that attracts males over long distances. The European corn borer, Ostrinia nubilalis, consists of two sex pheromone races, Z and E, that use different ratios of the cis and trans isomers of acetate pheromone components. This subtle difference leads to strong reproductive isolation in the field between the two races, which could represent a first step in speciation. Female sex pheromone production and male behavioural response are under the control of different major genes, but the identity of these genes is unknown. Here we show that allelic variation in a fatty-acyl reductase gene essential for pheromone biosynthesis accounts for the phenotypic variation in female pheromone production, leading to race-specific signals. Both the cis and trans isomers of the pheromone precursors are produced by both races, but the precursors are differentially reduced to yield opposite ratios in the final pheromone blend as a result of the substrate specificity of the enzymes encoded by the Z and E alleles. This is the first functional characterization of a gene contributing to intraspecific behavioural reproductive isolation in moths, highlighting the importance of evolutionary diversification in a lepidopteran-specific family of reductases. Accumulation of substitutions in the coding region of a single biosynthetic enzyme can produce pheromone differences resulting in reproductive isolation, with speciation as a potential end result.
Collapse
|
47
|
Geiler KA, Harrison RG. A Delta 11 desaturase gene genealogy reveals two divergent allelic classes within the European corn borer (Ostrinia nubilalis). BMC Evol Biol 2010; 10:112. [PMID: 20423501 PMCID: PMC2877688 DOI: 10.1186/1471-2148-10-112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 04/27/2010] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Moth pheromone mating systems have been characterized at the molecular level, allowing evolutionary biologists to study how changes in protein sequence or gene expression affect pheromone phenotype, patterns of mating, and ultimately, the formation of barriers to gene exchange. Recent studies of Ostrinia pheromones have focused on the diversity of sex pheromone desaturases and their role in the specificity of pheromone production. Here we produce a Delta 11 desaturase genealogy within Ostrinia nubilalis. We ask what has been the history of this gene, and whether this history suggests that changes in Delta 11 desaturase have been involved in the divergence of the E and Z O. nubilalis pheromone strains. RESULTS The Delta 11 desaturase gene genealogy does not differentiate O. nubilalis pheromone strains. However, we find two distinct clades, separated by 2.9% sequence divergence, that do not sort with pheromone strain, geographic origin, or emergence time. We demonstrate that these clades do not represent gene duplicates, but rather allelic variation at a single gene locus. CONCLUSIONS Analyses of patterns of variation at the Delta 11 desaturase gene in ECB suggest that this enzyme does not contribute to reproductive isolation between pheromone strains (E and Z). However, our genealogy reveals two deeply divergent allelic classes. Standing variation at loci that contribute to mate choice phenotypes may permit novel pheromone mating systems to arise in the presence of strong stabilizing selection.
Collapse
Affiliation(s)
- Kerry A Geiler
- Department of Organismic and Evolutionary Biology, Harvard University, Biological Laboratories, Divinity Road, Cambridge, MA USA
| | - Richard G Harrison
- Department of Ecology and Evolutionary Biology, Cornell University, Corson Hall, Ithaca, NY USA
| |
Collapse
|
48
|
A review of ant cuticular hydrocarbons. J Chem Ecol 2009; 35:1151-61. [PMID: 19866237 DOI: 10.1007/s10886-009-9695-4] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/04/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
We compared the published cuticular hydrocarbon (CHC) profiles of 78 ant species across 5 subfamilies. Almost 1,000 CHCs have been described for these species, composing 187 distinct homologous series and ten hydrocarbon groups. In descending order of occurrence were: n-alkanes > monomethylalkanes > dimethylalkanes > alkenes > dienes>> trimethylalkanes>> methylalkenes > methylalkadienes > trienes > tetramethylalkanes. Odd chain lengths and positions of methyl or double bonds at odd carbon numbers were far more numerous than even chain-length compounds or bond positions. Although each species possess its own unique pattern of CHCs, we found no association between CHC profile and phylogeny. The production of the biosynthetically complex compounds (e.g., methyl branched dienes) by the most primitive living ant suggests that the basic genetic architecture required to produce the rich diversity of CHCs was already present prior to their adaptive radiation. Unlike the ubiquitous n-alkanes and monomethylalkanes, there is a huge diversity of species-specific dimethylalkanes that makes them likely candidates for species and nest-mate discrimination signals.
Collapse
|