1
|
Valencia-Montoya WA, Pierce NE, Bellono NW. Evolution of Sensory Receptors. Annu Rev Cell Dev Biol 2024; 40:353-379. [PMID: 38985841 PMCID: PMC11526382 DOI: 10.1146/annurev-cellbio-120123-112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Sensory receptors are at the interface between an organism and its environment and thus represent key sites for biological innovation. Here, we survey major sensory receptor families to uncover emerging evolutionary patterns. Receptors for touch, temperature, and light constitute part of the ancestral sensory toolkit of animals, often predating the evolution of multicellularity and the nervous system. In contrast, chemoreceptors exhibit a dynamic history of lineage-specific expansions and contractions correlated with the disparate complexity of chemical environments. A recurring theme includes independent transitions from neurotransmitter receptors to sensory receptors of diverse stimuli from the outside world. We then provide an overview of the evolutionary mechanisms underlying sensory receptor diversification and highlight examples where signatures of natural selection are used to identify novel sensory adaptations. Finally, we discuss sensory receptors as evolutionary hotspots driving reproductive isolation and speciation, thereby contributing to the stunning diversity of animals.
Collapse
Affiliation(s)
- Wendy A Valencia-Montoya
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; ,
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; ,
| |
Collapse
|
2
|
Kimura A, Go AC, Markow T, Ranz JM. Evidence of Nonrandom Patterns of Functional Chromosome Organization in Danaus plexippus. Genome Biol Evol 2024; 16:evae054. [PMID: 38488057 PMCID: PMC10972686 DOI: 10.1093/gbe/evae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 05/01/2024] Open
Abstract
Our understanding on the interplay between gene functionality and gene arrangement at different chromosome scales relies on a few Diptera and the honeybee, species with quality reference genome assemblies, accurate gene annotations, and abundant transcriptome data. Using recently generated 'omic resources in the monarch butterfly Danaus plexippus, a species with many more and smaller chromosomes relative to Drosophila species and the honeybee, we examined the organization of genes preferentially expressed at broadly defined developmental stages (larva, pupa, adult males, and adult females) at both fine and whole-chromosome scales. We found that developmental stage-regulated genes do not form more clusters, but do form larger clusters, than expected by chance, a pattern consistent across the gene categories examined. Notably, out of the 30 chromosomes in the monarch genome, 12 of them, plus the fraction of the chromosome Z that corresponds to the ancestral Z in other Lepidoptera, were found enriched for developmental stage-regulated genes. These two levels of nonrandom gene organization are not independent as enriched chromosomes for developmental stage-regulated genes tend to harbor disproportionately large clusters of these genes. Further, although paralogous genes were overrepresented in gene clusters, their presence is not enough to explain two-thirds of the documented cases of whole-chromosome enrichment. The composition of the largest clusters often included paralogs from more than one multigene family as well as unrelated single-copy genes. Our results reveal intriguing patterns at the whole-chromosome scale in D. plexippus while shedding light on the interplay between gene expression and chromosome organization beyond Diptera and Hymenoptera.
Collapse
Affiliation(s)
- Ashlyn Kimura
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92647, USA
| | - Alwyn C Go
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - Therese Markow
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato, GTO 36824, México
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92647, USA
| |
Collapse
|
3
|
Karn RC, Yazdanifar G, Pezer Ž, Boursot P, Laukaitis CM. Androgen-Binding Protein (Abp) Evolutionary History: Has Positive Selection Caused Fixation of Different Paralogs in Different Taxa of the Genus Mus? Genome Biol Evol 2021; 13:6377336. [PMID: 34581786 PMCID: PMC8525912 DOI: 10.1093/gbe/evab220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/14/2022] Open
Abstract
Comparison of the androgen-binding protein (Abp) gene regions of six Mus genomes provides insights into the evolutionary history of this large murid rodent gene family. We identified 206 unique Abp sequences and mapped their physical relationships. At least 48 are duplicated and thus present in more than two identical copies. All six taxa have substantially elevated LINE1 densities in Abp regions compared with flanking regions, similar to levels in mouse and rat genomes, although nonallelic homologous recombination seems to have only occurred in Mus musculus domesticus. Phylogenetic and structural relationships support the hypothesis that the extensive Abp expansion began in an ancestor of the genus Mus. We also found duplicated Abpa27's in two taxa, suggesting that previously reported selection on a27 alleles may have actually detected selection on haplotypes wherein different paralogs were lost in each. Other studies reported that a27 gene and species trees were incongruent, likely because of homoplasy. However, L1MC3 phylogenies, supposed to be homoplasy-free compared with coding regions, support our paralog hypothesis because the L1MC3 phylogeny was congruent with the a27 topology. This paralog hypothesis provides an alternative explanation for the origin of the a27 gene that is suggested to be fixed in the three different subspecies of Mus musculus and to mediate sexual selection and incipient reinforcement between at least two of them. Finally, we ask why there are so many Abp genes, especially given the high frequency of pseudogenes and suggest that relaxed selection operates over a large part of the gene clusters.
Collapse
Affiliation(s)
- Robert C Karn
- Gene Networks in Neural and Developmental Plasticity, Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| | | | - Željka Pezer
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Pierre Boursot
- Institut des Sciences de l'Evolution Montpellier, Université de Montpellier, CNRS, IRD, France
| | - Christina M Laukaitis
- Carle Health and Carle Illinois College of Medicine, University of Illinois, Urbana-Champaign, USA
| |
Collapse
|
4
|
Lyu L, Hu L, Han L, Zhang J, Sun J, Wan X, Wang L, Yan H, Che C. Lacrimal androgen-binding proteins protect against Aspergillus fumigatus keratitis in mice. Int Immunopharmacol 2020; 88:106940. [PMID: 32916626 DOI: 10.1016/j.intimp.2020.106940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
AIM To clarify the regulatory mechanisms of lacrimal androgen-binding proteins (ABPs) in mice with keratitis caused by Aspergillus fumigatus (A. fumigatus). METHODS Mouse models of A. fumigatus keratitis were established. Lacrimal glands were removed after 24 h for general and histological comparison. Lacrimal ABPs were detected by qRT-PCR and quantitative proteomic analysis, or were detected by qRT-PCR after subconjunctival or lacrimal gland injection with dexamethasone. Unique inflammatory factors were detected by qRT-PCR, Western blot and/or immunofluorescence. Interleukin-1β (IL-1β) was injected into the lacrimal gland to explore the relationship between IL-1β and lacrimal ABPs. RESULTS The lacrimal glands of mice with fungal keratitis were larger than normal mice and these structures became disorganized. Moreover, the expression of ABP ε and ABP δ were increased. Subconjunctival injection with dexamethasone could reduce the size of the lacrimal gland and increase the expression of ABP ε and ABP δ, while lacrimal gland injection with dexamethasone had no obvious effects. The expression of IL-1β in the lacrimal gland of mice with A. fumigatus keratitis was increased. When IL-1β was injected into the lacrimal gland, the lacrimal gland enlarged and the expression of ABP ε and ABP δ decreased. CONCLUSION Lacrimal glands contributed to protection in fungal keratitis, which was not due to the involvement of inflammatory cells in mice. ABP δ and ABP ε of mice were involved in reducing the severity of corneal damage in mice with A. fumigatus keratitis. Moreover, the expression of IL-1β and ABP δ and ABP ε were intrinsically linked.
Collapse
Affiliation(s)
- Leyu Lyu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Liting Hu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lin Han
- Gout Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jie Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jintao Sun
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiaomei Wan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Limei Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Haijing Yan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Chengye Che
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
5
|
Baldwin MW, Ko MC. Functional evolution of vertebrate sensory receptors. Horm Behav 2020; 124:104771. [PMID: 32437717 DOI: 10.1016/j.yhbeh.2020.104771] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Sensory receptors enable animals to perceive their external world, and functional properties of receptors evolve to detect the specific cues relevant for an organism's survival. Changes in sensory receptor function or tuning can directly impact an organism's behavior. Functional tests of receptors from multiple species and the generation of chimeric receptors between orthologs with different properties allow for the dissection of the molecular basis of receptor function and identification of the key residues that impart functional changes in different species. Knowledge of these functionally important sites facilitates investigation into questions regarding the role of epistasis and the extent of convergence, as well as the timing of sensory shifts relative to other phenotypic changes. However, as receptors can also play roles in non-sensory tissues, and receptor responses can be modulated by numerous other factors including varying expression levels, alternative splicing, and morphological features of the sensory cell, behavioral validation can be instrumental in confirming that responses observed in heterologous systems play a sensory role. Expression profiling of sensory cells and comparative genomics approaches can shed light on cell-type specific modifications and identify other proteins that may affect receptor function and can provide insight into the correlated evolution of complex suites of traits. Here we review the evolutionary history and diversity of functional responses of the major classes of sensory receptors in vertebrates, including opsins, chemosensory receptors, and ion channels involved in temperature-sensing, mechanosensation and electroreception.
Collapse
Affiliation(s)
| | - Meng-Ching Ko
- Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
6
|
Lyu LY, Wang Q, Xu Q, Zhao WY, Yang H, Che CY. The expression of lacrimal androgen-binding proteins in mice Pseudomonas aeruginosa keratitis. Int J Ophthalmol 2020; 13:7-10. [PMID: 31956564 DOI: 10.18240/ijo.2020.01.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
AIM To investigate the expression of lacrimal androgen-binding proteins (ABPs) in mice Pseudomonas aeruginosa (P. aeruginosa) keratitis. METHODS P. aeruginosa mice model from different gender was developed by intra-stromal injection. The expression of lacrimal ABPs in lacrimal gland specimens from P. aeruginosa keratitis mice was detected by the quantitative polymerase chain reaction (qRT-PCR). Corneal virulence was evaluated based on clinical scores. To study the mechanism of lacrimal ABPs' expression, experimental subjects were pre-treated with 4E-BP1 inhibitor, and were used to evaluate the expression levels by qRT-PCR. RESULTS Compared with control groups, the expression of ABPα, ABPη and ABPζ in lacrimal gland from P. aeruginosa keratitis mice had no meaningful changes, while ABPε and ABPδ were significantly higher at 1d after infection. The expression of ABPδ in lacrimal gland of male mice was higher than female mice, regardless of whether or not P. aeruginosa keratitis occurred. After 4E-BP1 inhibitor subconjunctival injection or lacrimal injection, the expression of ABPδ and ABPε has no significant change compared with the control group. CONCLUSION ABPδ and ABPε secreted by mice lacrimal gland may involve in the progress of alleviating the severity of corneal damage in P. aeruginosa keratitis. The expression of ABPδ and ABPε upon P. aeruginosa infection is independent of cap-dependent mRNA translation activated by 4E-BP1.
Collapse
Affiliation(s)
- Le-Yu Lyu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Qian Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Qiang Xu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Wen-Yi Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Hua Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Cheng-Ye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
7
|
Another cat and mouse game: Deciphering the evolution of the SCGB superfamily and exploring the molecular similarity of major cat allergen Fel d 1 and mouse ABP using computational approaches. PLoS One 2018. [PMID: 29771985 DOI: 10.1371/journal.pone.0197618.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian secretoglobin (SCGB) superfamily contains functionally diverse members, among which the major cat allergen Fel d 1 and mouse salivary androgen-binding protein (ABP) display similar subunits. We searched for molecular similarities between Fel d 1 and ABP to examine the possibility that they play similar roles. We aimed to i) cluster the evolutionary relationships of the SCGB superfamily; ii) identify divergence patterns, structural overlap, and protein-protein docking between Fel d 1 and ABP dimers; and iii) explore the residual interaction between ABP dimers and steroid binding in chemical communication using computational approaches. We also report that the evolutionary tree of the SCGB superfamily comprises seven unique palm-like clusters, showing the evolutionary pattern and divergence time tree of Fel d 1 with 28 ABP paralogs. Three ABP subunits (A27, BG27, and BG26) share phylogenetic relationships with Fel d 1 chains. The Fel d 1 and ABP subunits show similarities in terms of sequence conservation, identical motifs and binding site clefts. Topologically equivalent positions were visualized through superimposition of ABP A27:BG27 (AB) and ABP A27:BG26 (AG) dimers on a heterodimeric Fel d 1 model. In docking, Fel d 1-ABP dimers exhibit the maximum surface binding ability of AG compared with that of AB dimers and the several polar interactions between ABP dimers with steroids. Hence, cat Fel d 1 is an ABP-like molecule in which monomeric chains 1 and 2 are the equivalent of the ABPA and ABPBG monomers, respectively. These findings suggest that the biological and molecular function of Fel d 1 is similar to that of ABP in chemical communication, possibly via pheromone and/or steroid binding.
Collapse
|
8
|
Durairaj R, Pageat P, Bienboire-Frosini C. Another cat and mouse game: Deciphering the evolution of the SCGB superfamily and exploring the molecular similarity of major cat allergen Fel d 1 and mouse ABP using computational approaches. PLoS One 2018; 13:e0197618. [PMID: 29771985 PMCID: PMC5957422 DOI: 10.1371/journal.pone.0197618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/05/2018] [Indexed: 11/19/2022] Open
Abstract
The mammalian secretoglobin (SCGB) superfamily contains functionally diverse members, among which the major cat allergen Fel d 1 and mouse salivary androgen-binding protein (ABP) display similar subunits. We searched for molecular similarities between Fel d 1 and ABP to examine the possibility that they play similar roles. We aimed to i) cluster the evolutionary relationships of the SCGB superfamily; ii) identify divergence patterns, structural overlap, and protein-protein docking between Fel d 1 and ABP dimers; and iii) explore the residual interaction between ABP dimers and steroid binding in chemical communication using computational approaches. We also report that the evolutionary tree of the SCGB superfamily comprises seven unique palm-like clusters, showing the evolutionary pattern and divergence time tree of Fel d 1 with 28 ABP paralogs. Three ABP subunits (A27, BG27, and BG26) share phylogenetic relationships with Fel d 1 chains. The Fel d 1 and ABP subunits show similarities in terms of sequence conservation, identical motifs and binding site clefts. Topologically equivalent positions were visualized through superimposition of ABP A27:BG27 (AB) and ABP A27:BG26 (AG) dimers on a heterodimeric Fel d 1 model. In docking, Fel d 1-ABP dimers exhibit the maximum surface binding ability of AG compared with that of AB dimers and the several polar interactions between ABP dimers with steroids. Hence, cat Fel d 1 is an ABP-like molecule in which monomeric chains 1 and 2 are the equivalent of the ABPA and ABPBG monomers, respectively. These findings suggest that the biological and molecular function of Fel d 1 is similar to that of ABP in chemical communication, possibly via pheromone and/or steroid binding.
Collapse
Affiliation(s)
- Rajesh Durairaj
- Department of Behavioral and Physiological Mechanisms of Adaptation (D-MPCA), Research Institute in Semiochemistry and Applied Ethology (IRSEA), APT, France
| | - Patrick Pageat
- Department of Semiochemicals Identification and Analogs Design (D-ISCA), Research Institute in Semiochemistry and Applied Ethology (IRSEA), APT, France
| | - Cécile Bienboire-Frosini
- Department of Behavioral and Physiological Mechanisms of Adaptation (D-MPCA), Research Institute in Semiochemistry and Applied Ethology (IRSEA), APT, France
| |
Collapse
|
9
|
Thybert D, Roller M, Navarro FCP, Fiddes I, Streeter I, Feig C, Martin-Galvez D, Kolmogorov M, Janoušek V, Akanni W, Aken B, Aldridge S, Chakrapani V, Chow W, Clarke L, Cummins C, Doran A, Dunn M, Goodstadt L, Howe K, Howell M, Josselin AA, Karn RC, Laukaitis CM, Jingtao L, Martin F, Muffato M, Nachtweide S, Quail MA, Sisu C, Stanke M, Stefflova K, Van Oosterhout C, Veyrunes F, Ward B, Yang F, Yazdanifar G, Zadissa A, Adams DJ, Brazma A, Gerstein M, Paten B, Pham S, Keane TM, Odom DT, Flicek P. Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes. Genome Res 2018; 28:448-459. [PMID: 29563166 PMCID: PMC5880236 DOI: 10.1101/gr.234096.117] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/05/2018] [Indexed: 12/31/2022]
Abstract
Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology.
Collapse
Affiliation(s)
- David Thybert
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Earlham Institute, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Maša Roller
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Fábio C P Navarro
- Yale University Medical School, Computational Biology and Bioinformatics Program, New Haven, Connecticut 06520, USA
| | - Ian Fiddes
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Christine Feig
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - David Martin-Galvez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Mikhail Kolmogorov
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California 92092, USA
| | - Václav Janoušek
- Department of Zoology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Wasiu Akanni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Bronwen Aken
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sarah Aldridge
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Varshith Chakrapani
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - William Chow
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Carla Cummins
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Anthony Doran
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Matthew Dunn
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Leo Goodstadt
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Kerstin Howe
- Yale University Medical School, Computational Biology and Bioinformatics Program, New Haven, Connecticut 06520, USA
| | - Matthew Howell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Ambre-Aurore Josselin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Robert C Karn
- Department of Medicine, College of Medicine, University of Arizona, Tuscon, Arizona 85724, USA
| | - Christina M Laukaitis
- Department of Medicine, College of Medicine, University of Arizona, Tuscon, Arizona 85724, USA
| | - Lilue Jingtao
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Fergal Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Stefanie Nachtweide
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald 17487, Germany
| | - Michael A Quail
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Cristina Sisu
- Yale University Medical School, Computational Biology and Bioinformatics Program, New Haven, Connecticut 06520, USA
| | - Mario Stanke
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald 17487, Germany
| | - Klara Stefflova
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Cock Van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Frederic Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier/CNRS, 34095 Montpellier, France
| | - Ben Ward
- Earlham Institute, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Fengtang Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Golbahar Yazdanifar
- Department of Medicine, College of Medicine, University of Arizona, Tuscon, Arizona 85724, USA
| | - Amonida Zadissa
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Mark Gerstein
- Yale University Medical School, Computational Biology and Bioinformatics Program, New Haven, Connecticut 06520, USA
| | - Benedict Paten
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Son Pham
- Bioturing Inc, San Diego, California 92121, USA
| | - Thomas M Keane
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Duncan T Odom
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| |
Collapse
|
10
|
Pezer Ž, Chung AG, Karn RC, Laukaitis CM. Analysis of Copy Number Variation in the Abp Gene Regions of Two House Mouse Subspecies Suggests Divergence during the Gene Family Expansions. Genome Biol Evol 2018; 9:3858091. [PMID: 28575204 PMCID: PMC5513543 DOI: 10.1093/gbe/evx099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2017] [Indexed: 12/26/2022] Open
Abstract
The Androgen-binding protein (Abp) gene region of the mouse genome contains 64 genes, some encoding pheromones that influence assortative mating between mice from different subspecies. Using CNVnator and quantitative PCR, we explored copy number variation in this gene family in natural populations of Mus musculus domesticus (Mmd) and Mus musculus musculus (Mmm), two subspecies of house mice that form a narrow hybrid zone in Central Europe. We found that copy number variation in the center of the Abp gene region is very common in wild Mmd, primarily representing the presence/absence of the final duplications described for the mouse genome. Clustering of Mmd individuals based on this variation did not reflect their geographical origin, suggesting no population divergence in the Abp gene cluster. However, copy number variation patterns differ substantially between Mmd and other mouse taxa. Large blocks of Abp genes are absent in Mmm, Mus musculus castaneus and an outgroup, Mus spretus, although with differences in variation and breakpoint locations. Our analysis calls into question the reliance on a reference genome for interpreting the detailed organization of genes in taxa more distant from the Mmd reference genome. The polymorphic nature of the gene family expansion in all four taxa suggests that the number of Abp genes, especially in the central gene region, is not critical to the survival and reproduction of the mouse. However, Abp haplotypes of variable length may serve as a source of raw genetic material for new signals influencing reproductive communication and thus speciation of mice.
Collapse
Affiliation(s)
- Željka Pezer
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Ruđer Bošković Institute, Zagreb, Croatia
| | - Amanda G Chung
- Department of Medicine, College of Medicine, University of Arizona
| | - Robert C Karn
- Department of Medicine, College of Medicine, University of Arizona
| | | |
Collapse
|
11
|
Studies of an Androgen-Binding Protein Knockout Corroborate a Role for Salivary ABP in Mouse Communication. Genetics 2017; 205:1517-1527. [PMID: 28159752 DOI: 10.1534/genetics.116.194571] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/26/2017] [Indexed: 11/18/2022] Open
Abstract
The house mouse Androgen-binding protein (Abp) gene family is comprised of 64 paralogs, 30 Abpa and 34 Abpbg, encoding the alpha (ABPA) and beta-gamma (ABPBG) protein subunits that are disulfide-bridged to form dimers in secretions. Only 14 Abp genes are expressed in distinct patterns in the lacrimal (11) and submandibular glands (3). We created a knockout mouse line lacking two of the three genes expressed in submandibular glands, Abpa27 and Abpbg27, by replacing them with the neomycin resistance gene. The knockout genotype (-/-) showed no Abpa27 or Abpbg27 transcripts in submandibular gland complementary DNA (cDNA) libraries and there was a concomitant lack of protein expression of ABPA27 and ABPBG27 in the -/- genotype saliva, shown by elimination of these two proteins from the saliva proteome and the loss of cross-reactive material in the acinar cells of the submandibular glands. We also observed a decrease in BG26 protein in the -/- animals, suggesting monomer instability. Overall, we observed no major phenotypic changes in the -/- genotype, compared with their +/+ and +/- siblings raised in a laboratory setting, including normal growth curves, tissue histology, fecundity, and longevity. The only difference is that male and female C57BL/6 mice preferred saliva of the opposite sex containing ABP statistically significantly more than saliva of the opposite sex without ABP in a Y-maze test. These results show for the first time that mice can sense the presence of ABP between saliva targets with and without ABPs, and that they spend more time investigating the target containing ABP.
Collapse
|
12
|
Franzin AM, Maruyama SR, Garcia GR, Oliveira RP, Ribeiro JMC, Bishop R, Maia AAM, Moré DD, Ferreira BR, Santos IKFDM. Immune and biochemical responses in skin differ between bovine hosts genetically susceptible and resistant to the cattle tick Rhipicephalus microplus. Parasit Vectors 2017; 10:51. [PMID: 28143523 PMCID: PMC5282843 DOI: 10.1186/s13071-016-1945-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/16/2016] [Indexed: 11/17/2022] Open
Abstract
Background Ticks attach to and penetrate their hosts’ skin and inactivate multiple components of host responses in order to acquire a blood meal. Infestation loads with the cattle tick, Rhipicephalus microplus, are heritable: some breeds carry high loads of reproductively successful ticks, whereas in others, few ticks feed and reproduce efficiently. Methods In order to elucidate the mechanisms that result in the different outcomes of infestations with cattle ticks, we examined global gene expression and inflammation induced by tick bites in skins from one resistant and one susceptible breed of cattle that underwent primary infestations with larvae and nymphs of R. microplus. We also examined the expression profiles of genes encoding secreted tick proteins that mediate parasitism in larvae and nymphs feeding on these breeds. Results Functional analyses of differentially expressed genes in the skin suggest that allergic contact-like dermatitis develops with ensuing production of IL-6, CXCL-8 and CCL-2 and is sustained by HMGB1, ISG15 and PKR, leading to expression of pro-inflammatory chemokines and cytokines that recruit granulocytes and T lymphocytes. Importantly, this response is delayed in susceptible hosts. Histopathological analyses of infested skins showed inflammatory reactions surrounding tick cement cones that enable attachment in both breeds, but in genetically tick-resistant bovines they destabilized the cone. The transcription data provided insights into tick-mediated activation of basophils, which have previously been shown to be a key to host resistance in model systems. Skin from tick-susceptible bovines expressed more transcripts encoding enzymes that detoxify tissues. Interestingly, these enzymes also produce volatile odoriferous compounds and, accordingly, skin rubbings from tick-susceptible bovines attracted significantly more tick larvae than rubbings from resistant hosts. Moreover, transcripts encoding secreted modulatory molecules by the tick were significantly more abundant in larval and in nymphal salivary glands from ticks feeding on susceptible bovines. Conclusions Compared with tick-susceptible hosts, genes encoding enzymes producing volatile compounds exhibit significantly lower expression in resistant hosts, which may render them less attractive to larvae; resistant hosts expose ticks to an earlier inflammatory response, which in ticks is associated with significantly lower expression of genes encoding salivary proteins that suppress host immunity, inflammation and coagulation. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1945-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessandra Mara Franzin
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Sandra Regina Maruyama
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Gustavo Rocha Garcia
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Rosane Pereira Oliveira
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Integrative Medicine Program, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - José Marcos Chaves Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard Bishop
- International Livestock Research Institute, Nairobi, Kenya.,Embrapa Pecuária Sudeste, São Carlos, SP, 13560-970, Brazil
| | - Antônio Augusto Mendes Maia
- Department of Basic Sciences, School of Animal Science and Food Technology, University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Daniela Dantas Moré
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | | | | |
Collapse
|
13
|
Whole Genome Sequence of Two Wild-Derived Mus musculus domesticus Inbred Strains, LEWES/EiJ and ZALENDE/EiJ, with Different Diploid Numbers. G3-GENES GENOMES GENETICS 2016; 6:4211-4216. [PMID: 27765810 PMCID: PMC5144988 DOI: 10.1534/g3.116.034751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Wild-derived mouse inbred strains are becoming increasingly popular for complex traits analysis, evolutionary studies, and systems genetics. Here, we report the whole-genome sequencing of two wild-derived mouse inbred strains, LEWES/EiJ and ZALENDE/EiJ, of Mus musculus domesticus origin. These two inbred strains were selected based on their geographic origin, karyotype, and use in ongoing research. We generated 14× and 18× coverage sequence, respectively, and discovered over 1.1 million novel variants, most of which are private to one of these strains. This report expands the number of wild-derived inbred genomes in the Mus genus from six to eight. The sequence variation can be accessed via an online query tool; variant calls (VCF format) and alignments (BAM format) are available for download from a dedicated ftp site. Finally, the sequencing data have also been stored in a lossless, compressed, and indexed format using the multi-string Burrows-Wheeler transform. All data can be used without restriction.
Collapse
|
14
|
Karn RC, Laukaitis CM. Comparative Proteomics of Mouse Tears and Saliva: Evidence from Large Protein Families for Functional Adaptation. Proteomes 2015; 3:283-297. [PMID: 28248272 PMCID: PMC5217377 DOI: 10.3390/proteomes3030283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 07/29/2015] [Accepted: 08/27/2015] [Indexed: 12/27/2022] Open
Abstract
We produced a tear proteome of the genome mouse, C57BL/6, that contained 139 different protein identifications: 110 from a two-dimensional (2D) gel with subsequent trypsin digestion, 19 from a one-dimensional (1D) gel with subsequent trypsin digestion and ten from a 1D gel with subsequent Asp-N digestion. We compared this tear proteome with a C57BL/6 mouse saliva proteome produced previously. Sixteen of the 139 tear proteins are shared between the two proteomes, including six proteins that combat microbial growth. Among the 123 other tear proteins, were members of four large protein families that have no counterparts in humans: Androgen-binding proteins (ABPs) with different members expressed in the two proteomes, Exocrine secreted peptides (ESPs) expressed exclusively in the tear proteome, major urinary proteins (MUPs) expressed in one or both proteomes and the mouse-specific Kallikreins (subfamily b KLKs) expressed exclusively in the saliva proteome. All four families have members with suggested roles in mouse communication, which may influence some aspect of reproductive behavior. We discuss this in the context of functional adaptation involving tear and saliva proteins in the secretions of mouse lacrimal and salivary glands, respectively.
Collapse
Affiliation(s)
- Robert C Karn
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA.
| | | |
Collapse
|
15
|
Babiker H, Tautz D. Molecular and phenotypic distinction of the very recently evolved insular subspecies Mus musculus helgolandicus ZIMMERMANN, 1953. BMC Evol Biol 2015; 15:160. [PMID: 26268354 PMCID: PMC4535776 DOI: 10.1186/s12862-015-0439-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 07/29/2015] [Indexed: 11/10/2022] Open
Abstract
Background Populations and subspecies of the house mouse Mus musculus were able to invade new regions worldwide in the wake of human expansion. Here we investigate the origin and colonization history of the house mouse inhabiting the small island of Heligoland on the German Bight - Mus musculus helgolandicus. It was first described by Zimmermann in 1953, based on morphological descriptions which were considered to be a mosaic between the subspecies M. m. domesticus and M. m. musculus. Since mice on islands are excellent evolutionary model systems, we have focused here on a molecular characterization and an extended phenotype analysis. Results The molecular data show that the mice from Heligoland are derived from M. m. domesticus based on mitochondrial D-loop sequences as well as on four nuclear diagnostic markers, including one each from the sex-chromosomes. STRUCTURE analysis based on 21 microsatellite markers assigns Heligoland mice to a distinct population and D-loop network analysis suggests that they are derived from a single colonization event. In spite of mice from the mainland arriving by ships, they are apparently genetically refractory against further immigration. Mutation frequencies in complete mitochondrial genome sequences date the colonization age to approximately 400 years ago. Complete genome sequences from three animals revealed a genomic admixture with M. m. musculus genomic regions with at least 6.5 % of the genome affected. Geometric morphometric analysis of mandible shapes including skull samples from two time points during the last century suggest specific adaptations to a more carnivorous diet. Conclusions The molecular and morphological analyses confirm that M. m. helgolandicus consists of a distinct evolutionary lineage with specific adaptations. It shows a remarkable resilience against genetic mixture with mainland populations of M. m. domesticus despite major disturbances in the past century and a high ship traffic. The genomic admixture with M. m. musculus genetic material may have contributed to the genomic distinction of the Heligoland mice. In spite of its young age, M. m. helgolandicus may thus be considered as a true subspecies of Mus, whose evolution was triggered through fast divergence on a small island. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0439-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiba Babiker
- Max Planck Institute for Evolutionary Biology, August-Thienemann Str. 2, 24306, Plön, Germany.
| | - Diethard Tautz
- Max Planck Institute for Evolutionary Biology, August-Thienemann Str. 2, 24306, Plön, Germany.
| |
Collapse
|
16
|
Selection shaped the evolution of mouse androgen-binding protein (ABP) function and promoted the duplication of Abp genes. Biochem Soc Trans 2015; 42:851-60. [PMID: 25109968 DOI: 10.1042/bst20140042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present article, we summarize two aspects of our work on mouse ABP (androgen-binding protein): (i) the sexual selection function producing incipient reinforcement on the European house mouse hybrid zone, and (ii) the mechanism behind the dramatic expansion of the Abp gene region in the mouse genome. Selection unifies these two components, although the ways in which selection has acted differ. At the functional level, strong positive selection has acted on key sites on the surface of one face of the ABP dimer, possibly to influence binding to a receptor. A different kind of selection has apparently driven the recent and rapid expansion of the gene region, probably by increasing the amount of Abp transcript, in one or both of two ways. We have shown previously that groups of Abp genes behave as LCRs (low-copy repeats), duplicating as relatively large blocks of genes by NAHR (non-allelic homologous recombination). The second type of selection involves the close link between the accumulation of L1 elements and the expansion of the Abp gene family by NAHR. It is probably predicated on an initial selection for increased transcription of existing Abp genes and/or an increase in Abp gene number providing more transcriptional sites. Either or both could increase initial transcript production, a quantitative change similar to increasing the volume of a radio transmission. In closing, we also provide a note on Abp gene nomenclature.
Collapse
|
17
|
Karn RC, Chung AG, Laukaitis CM. Did androgen-binding protein paralogs undergo neo- and/or Subfunctionalization as the Abp gene region expanded in the mouse genome? PLoS One 2014; 9:e115454. [PMID: 25531410 PMCID: PMC4274081 DOI: 10.1371/journal.pone.0115454] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
The Androgen-binding protein (Abp) region of the mouse genome contains 30 Abpa genes encoding alpha subunits and 34 Abpbg genes encoding betagamma subunits, their products forming dimers composed of an alpha and a betagamma subunit. We endeavored to determine how many Abp genes are expressed as proteins in tears and saliva, and as transcripts in the exocrine glands producing them. Using standard PCR, we amplified Abp transcripts from cDNA libraries of C57BL/6 mice and found fifteen Abp gene transcripts in the lacrimal gland and five in the submandibular gland. Proteomic analyses identified proteins corresponding to eleven of the lacrimal gland transcripts, all of them different from the three salivary ABPs reported previously. Our qPCR results showed that five of the six transcripts that lacked corresponding proteins are expressed at very low levels compared to those transcripts with proteins. We found 1) no overlap in the repertoires of expressed Abp paralogs in lacrimal gland/tears and salivary glands/saliva; 2) substantial sex-limited expression of lacrimal gland/tear expressed-paralogs in males but no sex-limited expression in females; and 3) that the lacrimal gland/tear expressed-paralogs are found exclusively in ancestral clades 1, 2 and 3 of the five clades described previously while the salivary glands/saliva expressed-paralogs are found only in clade 5. The number of instances of extremely low levels of transcription without corresponding protein production in paralogs specific to tears and saliva suggested the role of subfunctionalization, a derived condition wherein genes that may have been expressed highly in both glands ancestrally were down-regulated subsequent to duplication. Thus, evidence for subfunctionalization can be seen in our data and we argue that the partitioning of paralog expression between lacrimal and salivary glands that we report here occurred as the result of adaptive evolution.
Collapse
Affiliation(s)
- Robert C. Karn
- College of Medicine, University of Arizona, Tucson, Arizona, 85724, United States of America
- * E-mail:
| | - Amanda G. Chung
- College of Medicine, University of Arizona, Tucson, Arizona, 85724, United States of America
| | - Christina M. Laukaitis
- College of Medicine, University of Arizona, Tucson, Arizona, 85724, United States of America
| |
Collapse
|
18
|
McCormick H, Cursons R, Wilkins RJ, King CM. Location of a contact zone between Mus musculus domesticus and M. m. domesticus with M. m. castaneus mtDNA in southern New Zealand. Mamm Biol 2014. [DOI: 10.1016/j.mambio.2014.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Janoušek V, Karn RC, Laukaitis CM. The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family. BMC Evol Biol 2013; 13:107. [PMID: 23718880 PMCID: PMC3669608 DOI: 10.1186/1471-2148-13-107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/14/2013] [Indexed: 12/01/2022] Open
Abstract
Background Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Results Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. Conclusions We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of an NAHR-related breakpoint in the most recent duplication are the main contributions of our study.
Collapse
Affiliation(s)
- Václav Janoušek
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague 128 43, Czech Republic
| | | | | |
Collapse
|
20
|
Evolution of the ABPA subunit of androgen-binding protein expressed in the submaxillary glands in New and Old World rodent taxa. J Mol Evol 2013; 76:324-31. [PMID: 23636475 DOI: 10.1007/s00239-013-9561-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
The salivary androgen-binding proteins (ABPs) are members of the secretoglobin gene family present in mammals. Each ABP is a heterodimer assembled as an ABPA subunit encoded by an Abpa gene and linked by disulfide bridges to an ABPBG subunit encoded by an Abpbg gene. The ABP dimers are secreted into the saliva of mice and then transferred to the pelage after grooming and subsequently to the environment allowing an animal to mark territory with a biochemical signal. The putative role of the mouse salivary ABPs is that of pheromones mediating mate selection resulting in assortative mating in the Mus musculus species complex. We focused on comparing patterns of molecular evolution between the Abpa genes expressed in the submaxillary glands of species of New World and Old World muroids. We found that in both sets of rodents the Abpa genes expressed in the submaxillary glands appear to be evolving under a similar evolutionary regime, with relatively high nonsynonymous substitution rates, suggesting that ABP might play a similar biological role in both systems. Thus, ABP could be involved with mate recognition and species isolation in New World as well as Old World muroids.
Collapse
|
21
|
Karn RC, Laukaitis CM. The roles of gene duplication, gene conversion and positive selection in rodent Esp and Mup pheromone gene families with comparison to the Abp family. PLoS One 2012; 7:e47697. [PMID: 23094077 PMCID: PMC3477143 DOI: 10.1371/journal.pone.0047697] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/18/2012] [Indexed: 11/22/2022] Open
Abstract
Three proteinaceous pheromone families, the androgen-binding proteins (ABPs), the exocrine-gland secreting peptides (ESPs) and the major urinary proteins (MUPs) are encoded by large gene families in the genomes of Mus musculus and Rattus norvegicus. We studied the evolutionary histories of the Mup and Esp genes and compared them with what is known about the Abp genes. Apparently gene conversion has played little if any role in the expansion of the mouse Class A and Class B Mup genes and pseudogenes, and the rat Mups. By contrast, we found evidence of extensive gene conversion in many Esp genes although not in all of them. Our studies of selection identified at least two amino acid sites in β-sheets as having evolved under positive selection in the mouse Class A and Class B MUPs and in rat MUPs. We show that selection may have acted on the ESPs by determining K(a)/K(s) for Exon 3 sequences with and without the converted sequence segment. While it appears that purifying selection acted on the ESP signal peptides, the secreted portions of the ESPs probably have undergone much more rapid evolution. When the inner gene converted fragment sequences were removed, eleven Esp paralogs were present in two or more pairs with K(a)/K(s) >1.0 and thus we propose that positive selection is detectable by this means in at least some mouse Esp paralogs. We compare and contrast the evolutionary histories of all three mouse pheromone gene families in light of their proposed functions in mouse communication.
Collapse
Affiliation(s)
- Robert C Karn
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, United States of America.
| | | |
Collapse
|
22
|
Jackson BC, Thompson DC, Wright MW, McAndrews M, Bernard A, Nebert DW, Vasiliou V. Update of the human secretoglobin (SCGB) gene superfamily and an example of 'evolutionary bloom' of androgen-binding protein genes within the mouse Scgb gene superfamily. Hum Genomics 2012; 5:691-702. [PMID: 22155607 PMCID: PMC3251818 DOI: 10.1186/1479-7364-5-6-691] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The secretoglobins (SCGBs) comprise a family of small, secreted proteins found in animals exclusively of mammalian lineage. There are 11 human SCGB genes and five pseudogenes. Interestingly, mice have 68 Scgb genes, four of which are highly orthologous to human SCGB genes; the remainder represent an 'evolutionary bloom' and make up a large gene family represented by only six counterparts in humans. SCGBs are found in high concentrations in many mammalian secretions, including fluids of the lung, lacrimal gland, salivary gland, prostate and uterus. Whereas the biological activities of most individual SCGBs have not been fully characterised, what already has been discovered suggests that this family has an important role in the modulation of inflammation, tissue repair and tumorigenesis. In mice, the large Scgb1b and Scgb2b gene families encode the androgen-binding proteins, which have been shown to play a role in mate selection. Although much has been learned about SCGBs in recent years, clearly more research remains to be done to allow a better understanding of the roles of these proteins in human health and disease. Such information is predicted to reveal valuable novel drug targets for the treatment of inflammation, as well as designing biomarkers that might identify tissue damage or cancer.
Collapse
Affiliation(s)
- Brian C Jackson
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Laukaitis CM, Mauss C, Karn RC. Congenic strain analysis reveals genes that are rapidly evolving components of a prezygotic isolation mechanism mediating incipient reinforcement. PLoS One 2012; 7:e35898. [PMID: 22558260 PMCID: PMC3338474 DOI: 10.1371/journal.pone.0035898] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/23/2012] [Indexed: 01/29/2023] Open
Abstract
Two decades ago, we developed a congenic strain of Mus musculus, called b-congenic, by replacing the androgen-binding protein Abpa27(a) allele in the C3H/HeJ genome with the Abpa27(b) allele from DBA/2J. We and other researchers used this b-congenic strain and its C3H counterpart, the a-congenic strain, to test the hypothesis that, given the choice between signals from two strains with different a27 alleles on the same genetic background, test subjects would prefer the homosubspecific one. It was our purpose in undertaking this study to characterize the segment transferred from DBA to the C3H background in producing the b-congenic strain on which a role for ABPA27 in behavior has been predicated. We determined the size of the chromosome 7 segment transferred from DBA and the genes it contains that might influence preference. We found that the "functional" DBA segment is about 1% the size of the mouse haploid genome and contains at least 29 genes expressed in salivary glands, however, only three of these encode proteins identified in the mouse salivary proteome. At least two of the three genes Abpa27, Abpbg26 and Abpbg27 encoding the subunits of androgen-binding protein ABP dimers evolved under positive selection and the third one may have also. In the sense that they are subunits of the same two functional entities, the ABP dimers, we propose that their evolutionary histories might not be independent of each other.
Collapse
Affiliation(s)
- Christina M Laukaitis
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, United States of America.
| | | | | |
Collapse
|
24
|
Duvaux L, Belkhir K, Boulesteix M, Boursot P. Isolation and gene flow: inferring the speciation history of European house mice. Mol Ecol 2011; 20:5248-64. [PMID: 22066696 DOI: 10.1111/j.1365-294x.2011.05343.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inferring the history of isolation and gene flow during species differentiation can inform us on the processes underlying their formation. Following their recent expansion in Europe, two subspecies of the house mouse (Mus musculus domesticus and Mus musculus musculus) have formed a hybrid zone maintained by hybrid incompatibilities and possibly behavioural reinforcement, offering a good model of incipient speciation. We reconstruct the history of their divergence using an approximate Bayesian computation framework and sequence variation at 57 autosomal loci. We find support for a long isolation period preceding the advent of gene flow around 200,000 generations ago, much before the formation of the European hybrid zone a few thousand years ago. The duration of the allopatric episode appears long enough (74% of divergence time) to explain the accumulation of many post-zygotic incompatibilities expressed in the present hybrid zone. The ancient contact inferred could have played a role in mating behaviour divergence and laid the ground for further reinforcement. We suggest that both subspecies originally colonized the Middle East from the northern Indian subcontinent, domesticus settling on the shores of the Persian Gulf and musculus on those of the Caspian Sea. Range expansions during interglacials would have induced secondary contacts, presumably in Iran, where they must have also interacted with Mus musculus castaneus. Future studies should incorporate this possibility, and we point to Iran and its surroundings as a hot spot for house mouse diversity and speciation studies.
Collapse
Affiliation(s)
- Ludovic Duvaux
- Université Montpellier 2, CNRS UMR 5554, Institut des Sciences de l'Evolution, CC063, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
25
|
Positive selection shaped the convergent evolution of independently expanded kallikrein subfamilies expressed in mouse and rat saliva proteomes. PLoS One 2011; 6:e20979. [PMID: 21695125 PMCID: PMC3114847 DOI: 10.1371/journal.pone.0020979] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/16/2011] [Indexed: 12/16/2022] Open
Abstract
We performed proteomics studies of salivas from the genome mouse (C57BL/6 strain) and the genome rat (BN/SsNHsd/Mcwi strain). Our goal was to identify salivary proteins with one or more of three characteristics that may indicate that they have been involved in adaptation: 1) rapid expansion of their gene families; 2) footprints of positive selection; and/or 3) sex-limited expression. The results of our proteomics studies allow direct comparison of the proteins expressed and their levels between the sexes of the two rodent species. Twelve members of the Mus musculus species-specific kallikrein subfamily Klk1b showed sex-limited expression in the mouse saliva proteomes. By contrast, we did not find any of the Rattus norvegicus species-specific kallikrein subfamily Klk1c proteins in male or female genome rat, nor transcripts in their submandibular glands. On the other hand, we detected expression of this family as transcripts in the submandibular glands of both sexes of Sprague-Dawley rats. Using the CODEML program in the PAML package, we demonstrate that the two rodent kallikrein subfamilies have apparently evolved rapidly under the influence of positive selection that continually remodeled the amino acid sites on the same face in the members of the subfamilies. Thus, although their kallikrein subfamily expansions were independent, this evolutionary pattern has occurred in parallel in the two rodent species, suggesting a form of convergent evolution at the molecular level. On the basis of this new data, we suggest that the previous speculative function of the species-specific rodent kallikreins as important solely in wound healing in males be investigated further. In addition to or instead of that function, we propose that their sex-limited expression, coupled with their rapid evolution may be clues to an as-yet-undetermined interaction between the sexes.
Collapse
|
26
|
Bímová BV, Macholán M, Baird SJE, Munclinger P, Dufková P, Laukaitis CM, Karn RC, Luzynski K, Tucker PK, Piálek J. Reinforcement selection acting on the European house mouse hybrid zone. Mol Ecol 2011; 20:2403-24. [PMID: 21521395 DOI: 10.1111/j.1365-294x.2011.05106.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Behavioural isolation may lead to complete speciation when partial postzygotic isolation acts in the presence of divergent-specific mate-recognition systems. These conditions exist where Mus musculus musculus and M. m. domesticus come into contact and hybridize. We studied two mate-recognition signal systems, based on urinary and salivary proteins, across a Central European portion of the mouse hybrid zone. Introgression of the genomic regions responsible for these signals: the major urinary proteins (MUPs) and androgen binding proteins (ABPs), respectively, was compared to introgression at loci assumed to be nearly neutral and those under selection against hybridization. The preference of individuals taken from across the zone regarding these signals was measured in Y mazes, and we develop a model for the analysis of the transition of such traits under reinforcement selection. The strongest assortative preferences were found in males for urine and females for ABP. Clinal analyses confirm nearly neutral introgression of an Abp locus and two loci closely linked to the Abp gene cluster, whereas two markers flanking the Mup gene region reveal unexpected introgression. Geographic change in the preference traits matches our reinforcement selection model significantly better than standard cline models. Our study confirms that behavioural barriers are important components of reproductive isolation between the house mouse subspecies.
Collapse
Affiliation(s)
- Barbora Vošlajerová Bímová
- Department of Population Biology, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhou X, Wei Y, Xie F, Laukaitis CM, Karn RC, Kluetzman K, Gu J, Zhang QY, Roberts DW, Ding X. A novel defensive mechanism against acetaminophen toxicity in the mouse lateral nasal gland: role of CYP2A5-mediated regulation of testosterone homeostasis and salivary androgen-binding protein expression. Mol Pharmacol 2011; 79:710-23. [PMID: 21252290 DOI: 10.1124/mol.110.070045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To identify novel factors or mechanisms that are important for the resistance of tissues to chemical toxicity, we have determined the mechanisms underlying the previously observed increases in resistance to acetaminophen (APAP) toxicity in the lateral nasal gland (LNG) of the male Cyp2g1-null/Cyp2a5-low mouse. Initial studies established that Cyp2a5-null mice, but not a newly generated strain of Cyp2g1-null mice, were resistant to APAP toxicity in the LNG; therefore, subsequent studies were focused on the Cyp2a5-null mice. Compared with the wild-type (WT) male mouse, the Cyp2a5-null male mouse had intact capability to metabolize APAP to reactive intermediates in the LNG, as well as unaltered circulating levels of APAP, APAP-GSH, APAP-glucuronide, and APAP-sulfate. However, it displayed reduced tissue levels of APAP and APAP-GSH and increased tissue levels of testosterone and salivary androgen-binding protein (ABP) in the LNG. Furthermore, we found that ABP was able to compete with GSH and cellular proteins for adduction with reactive metabolites of APAP in vitro. The amounts of APAP-ABP adducts formed in vivo were greater, whereas the amounts of APAP adducts formed with other cellular proteins were substantially lower, in the LNG of APAP-treated male Cyp2a5-null mice compared with the LNG of APAP-treated male WT mice. We propose that through its critical role in testosterone metabolism, CYP2A5 regulates 1) the bioavailability of APAP and APAP-GSH (presumably through modulation of the rates of xenobiotic excretion from the LNG) and 2) the expression of ABP, which can quench reactive APAP metabolites and thereby spare critical cellular proteins from inactivation.
Collapse
Affiliation(s)
- Xin Zhou
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
A candidate subspecies discrimination system involving a vomeronasal receptor gene with different alleles fixed in M. m. domesticus and M. m. musculus. PLoS One 2010; 5. [PMID: 20844586 PMCID: PMC2936562 DOI: 10.1371/journal.pone.0012638] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 08/08/2010] [Indexed: 11/19/2022] Open
Abstract
Assortative mating, a potentially efficient prezygotic reproductive barrier, may prevent loss of genetic potential by avoiding the production of unfit hybrids (i.e., because of hybrid infertility or hybrid breakdown) that occur at regions of secondary contact between incipient species. In the case of the mouse hybrid zone, where two subspecies of Mus musculus (M. m. domesticus and M. m. musculus) meet and exchange genes to a limited extent, assortative mating requires a means of subspecies recognition. We based the work reported here on the hypothesis that, if there is a pheromone sufficiently diverged between M. m. domesticus and M. m. musculus to mediate subspecies recognition, then that process must also require a specific receptor(s), also sufficiently diverged between the subspecies, to receive the signal and elicit an assortative mating response. We studied the mouse V1R genes, which encode a large family of receptors in the vomeronasal organ (VNO), by screening Perlegen SNP data and identified one, Vmn1r67, with 24 fixed SNP differences most of which (15/24) are nonsynonymous nucleotide substitutions between M. m. domesticus and M. m. musculus. We observed substantial linkage disequilibrium (LD) between Vmn1r67 and Abpa27, a mouse salivary androgen-binding protein gene that encodes a proteinaceous pheromone (ABP) capable of mediating assortative mating, perhaps in conjunction with its bound small lipophilic ligand. The LD we observed is likely a case of association rather than residual physical linkage from a very recent selective sweep, because an intervening gene, Vmn1r71, shows significant intra(sub)specific polymorphism but no inter(sub)specific divergence in its nucleotide sequence. We discuss alternative explanations of these observations, for example that Abpa27 and Vmn1r67 are coevolving as signal and receptor to reinforce subspecies hybridization barriers or that the unusually divergent Vmn1r67 allele was not a product of fast positive selection, but was derived from an introgressed allele, possibly from Mus spretus.
Collapse
|
29
|
Karn RC, Laukaitis CM. The mechanism of expansion and the volatility it created in three pheromone gene clusters in the mouse (Mus musculus) genome. Genome Biol Evol 2009; 1:494-503. [PMID: 20333217 PMCID: PMC2839280 DOI: 10.1093/gbe/evp049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2009] [Indexed: 12/12/2022] Open
Abstract
Three families of proteinaceous pheromones have been described in the house mouse: androgen-binding proteins (ABPs), exocrine gland–secreting peptides (ESPs), and major urinary proteins (MUPs), each of which is thought to communicate different information. All three are encoded by large gene clusters in different regions of the mouse genome, clusters that have expanded dramatically during mouse evolutionary history. We report copy number variation among the most recently duplicated Abp genes, which suggests substantial volatility in this gene region. It appears that groups of these genes behave as low copy repeats (LCRs), duplicating as relatively large blocks of genes by nonallelic homologous recombination. An analysis of gene conversion suggested that it did not contribute to the very low or absent divergence among the paralogs duplicated in this way. We evaluated the ESP and MUP gene regions for signs of the LCR pattern but could find no compelling evidence for duplication of gene blocks of any significant size. Assessment of the entire Abp gene region with the Mouse Paralogy Browser supported the conclusion that substantial volatility has occurred there. This was especially evident when comparing strains with all or part of the Mus musculus musculus or Mus musculus castaneus Abp region. No particularly remarkable volatility was observed in the other two gene families, and we discuss the significance of this in light of the various roles proposed for the three families of mouse proteinaceous pheromones.
Collapse
Affiliation(s)
- Robert C Karn
- Department of Medicine, College of Medicine, University of Arizona, USA.
| | | |
Collapse
|
30
|
Zhou X, Zhang X, Weng Y, Fang C, Kaminsky L, Ding X. High abundance of testosterone and salivary androgen-binding protein in the lateral nasal gland of male mice. J Steroid Biochem Mol Biol 2009; 117:81-6. [PMID: 19524040 PMCID: PMC2749885 DOI: 10.1016/j.jsbmb.2009.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/29/2009] [Accepted: 06/01/2009] [Indexed: 11/17/2022]
Abstract
To better understand androgen function in the mammalian nose, we have determined the levels of testosterone (T) in the olfactory mucosa (OM, which harbors the olfactory receptor neurons) and the lateral nasal gland (LNG, which is the largest anterior nasal gland) of C57BL/6 mice. The results indicated that, in adult male mice, T levels in the LNG were substantially higher than those in the OM and other non-reproductive or non-endocrine tissues examined, including liver, kidney, and brain. Furthermore, in the LNG, the high T levels were accompanied by high levels of salivary androgen-binding protein (sABP) and low microsomal T-hydroxylase activities. The high abundance of T and sABP in the LNG suggests not only that the LNG is a storage site for androgen, but also the possibility that unusually high T levels may occur in other organs that have abundant expression of sABP but low expression of steroid-metabolizing enzymes. Our findings suggest a critical need to determine androgen levels in various organs, as well as to establish the functional significance of an unusually high T level in the LNG, a gland known for its secretion of biologically active molecules, such as odorant binding proteins and immunoglobulin A, to the nasal cavity.
Collapse
Affiliation(s)
- Xin Zhou
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, NY 12201, USA
| | - Xiuling Zhang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, NY 12201, USA
| | - Yan Weng
- Pfizer Global Research & Development, Groton/New London Laboratories, Pfizer Inc., Groton, CT 06340, USA
| | - Cheng Fang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, NY 12201, USA
| | - Laurence Kaminsky
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, NY 12201, USA
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, NY 12201, USA
- Send correspondence and galley proofs to: Dr. Xinxin Ding, Wadsworth Center, New York State Department of Health, Empire State Plaza, Box 509, Albany, NY 12201-0509, Phone: 518-486-2585, Fax: 518-473-8722,
| |
Collapse
|
31
|
Abstract
To take full advantage of the mouse as a model organism, it is essential to distinguish lineage-specific biology from what is shared between human and mouse. Investigations into shared genetic elements common to both have been well served by the draft human and mouse genome sequences. More recently, the virtually complete euchromatic sequences of the two reference genomes have been finished. These reveal a high ( approximately 5%) level of sequence duplications that had previously been recalcitrant to sequencing and assembly. Within these duplications lie large numbers of rodent- or primate-specific genes. In the present paper, we review the sequence properties of the two genomes, dwelling most on the duplications, deletions and insertions that separate each of them from their most recent common ancestor, approx. 90 million years ago. We consider the differences in gene numbers and repertoires between the two species, and speculate on their contributions to lineage-specific biology. Loss of ancient single-copy genes are rare, as are gains of new functional genes through retrotransposition. Instead, most changes to the gene repertoire have occurred in large multicopy families. It has been proposed that numbers of such 'environmental genes' rise and fall, and their sequences change, as adaptive responses to infection and other environmental pressures, including conspecific competition. Nevertheless, many such genes may be under little or no selection.
Collapse
|
32
|
Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol 2009; 7:e1000112. [PMID: 19468303 PMCID: PMC2680341 DOI: 10.1371/journal.pbio.1000112] [Citation(s) in RCA: 356] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 04/03/2009] [Indexed: 02/06/2023] Open
Abstract
A finished clone-based assembly of the mouse genome reveals extensive recent sequence duplication during recent evolution and rodent-specific expansion of certain gene families. Newly assembled duplications contain protein-coding genes that are mostly involved in reproductive function. The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non–protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not. The availability of an accurate genome sequence provides the bedrock upon which modern biomedical research is based. Here we describe a high-quality assembly, Build 36, of the mouse genome. This assembly was put together by aligning overlapping individual clones representing parts of the genome, and it provides a more complete picture than previous assemblies, because it adds much rodent-specific sequence that was previously unavailable. The addition of these sequences provides insight into both the genomic architecture and the gene complement of the mouse. In particular, it highlights recent gene duplications and the expansion of certain gene families during rodent evolution. An improved understanding of the mouse genome and thus mouse biology will enhance the utility of the mouse as a model for human disease.
Collapse
|
33
|
Logan DW, Marton TF, Stowers L. Species specificity in major urinary proteins by parallel evolution. PLoS One 2008; 3:e3280. [PMID: 18815613 PMCID: PMC2533699 DOI: 10.1371/journal.pone.0003280] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 09/05/2008] [Indexed: 11/19/2022] Open
Abstract
Species-specific chemosignals, pheromones, regulate social behaviors such as aggression, mating, pup-suckling, territory establishment, and dominance. The identity of these cues remains mostly undetermined and few mammalian pheromones have been identified. Genetically-encoded pheromones are expected to exhibit several different mechanisms for coding 1) diversity, to enable the signaling of multiple behaviors, 2) dynamic regulation, to indicate age and dominance, and 3) species-specificity. Recently, the major urinary proteins (Mups) have been shown to function themselves as genetically-encoded pheromones to regulate species-specific behavior. Mups are multiple highly related proteins expressed in combinatorial patterns that differ between individuals, gender, and age; which are sufficient to fulfill the first two criteria. We have now characterized and fully annotated the mouse Mup gene content in detail. This has enabled us to further analyze the extent of Mup coding diversity and determine their potential to encode species-specific cues. Our results show that the mouse Mup gene cluster is composed of two subgroups: an older, more divergent class of genes and pseudogenes, and a second class with high sequence identity formed by recent sequential duplications of a single gene/pseudogene pair. Previous work suggests that truncated Mup pseudogenes may encode a family of functional hexapeptides with the potential for pheromone activity. Sequence comparison, however, reveals that they have limited coding potential. Similar analyses of nine other completed genomes find Mup gene expansions in divergent lineages, including those of rat, horse and grey mouse lemur, occurring independently from a single ancestral Mup present in other placental mammals. Our findings illustrate that increasing genomic complexity of the Mup gene family is not evolutionarily isolated, but is instead a recurring mechanism of generating coding diversity consistent with a species-specific function in mammals.
Collapse
Affiliation(s)
- Darren W. Logan
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tobias F. Marton
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Lisa Stowers
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
|
35
|
Karn RC, Clark NL, Nguyen ED, Swanson WJ. Adaptive evolution in rodent seminal vesicle secretion proteins. Mol Biol Evol 2008; 25:2301-10. [PMID: 18718917 DOI: 10.1093/molbev/msn182] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Proteins involved in reproductive fitness have evolved unusually rapidly across diverse groups of organisms. These reproductive proteins show unusually high rates of amino acid substitutions, suggesting that the proteins have been subject to positive selection. We sought to identify seminal fluid proteins experiencing adaptive evolution because such proteins are often involved in sperm competition, host immunity to pathogens, and manipulation of female reproductive physiology and behavior. We performed an evolutionary screen of the mouse prostate transcriptome for genes with elevated evolutionary rates between mouse and rat. We observed that secreted rodent prostate proteins evolve approximately twice as fast as nonsecreted proteins, remarkably similar to findings in the primate prostate and in the Drosophila male accessory gland. Our screen led us to identify and characterize a group of seminal vesicle secretion (Svs) proteins and to show that the gene Svs7 is evolving very rapidly, with many amino acid sites under positive selection. Another gene in this group, Svs5, showed evidence of branch-specific selection in the rat. We also found that Svs7 is under selection in primates and, by using three-dimensional models, demonstrated that the same regions have been under selection in both groups. Svs7 has been identified as mouse caltrin, a protein involved in sperm capacitation, the process responsible for the timing of changes in sperm activity and behavior, following ejaculation. We propose that the most likely explanation of the adaptive evolution of Svs7 that we have observed in rodents and primates stems from an important function in sperm competition.
Collapse
Affiliation(s)
- Robert C Karn
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA.
| | | | | | | |
Collapse
|