1
|
Kobayashi G, Itoh H, Nakajima N. First report of the mitogenome of the invasive reef-building polychaete Ficopomatus enigmaticus (Annelida: Serpulidae) and a cryptic lineage from the Japanese Archipelago. Mol Biol Rep 2023; 50:7183-7196. [PMID: 37407804 DOI: 10.1007/s11033-023-08647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND The mitochondrial genomes (mitogenomes) of the family Serpulidae are characterized by a high nucleotide sequence divergence and a significant number of gene order rearrangements compared with other families within the phylum Annelida. However, only two of 50 genera of serpulids have mitogenomes already sequenced. In this study, we report the first sequencing and assembly of the complete mitogenome of Ficopomatus, thus providing further knowledge on mitochondrial gene sequences of Serpulidae. METHODS AND RESULTS A mitogenome of the invasive reef-building polychaete Ficopomatus enigmaticus was amplified by long PCR and sequenced using the Illumina MiSeq System. It comprised 15,853 bp and consisted of 12 protein-coding genes (atp8 was not found), 23 tRNA, and two rRNA genes. The AT and GC skew values were infrequent when compared to annelid mitogenomes but similar to other serpulids sequenced to date (i.e., Spirobranchus and Hydroides). The mitochondrial gene order of F. enigmaticus was highly rearranged compared to other serpulids. To amplify 16S rRNA gene sequences, we developed a 16S rRNA primer set by modifying the universal primer set 16SarL/16SbrH. We detected the 16S rRNA sequence of F. enigmaticus deposited in GenBank erroneously characterized as of serpulid origin. We reported for the first time the presence of two lineages of F. enigmaticus in Japan, which have already been identified in California, Australia, and the Mediterranean. CONCLUSIONS The first mitochondrial genome of F. enigmaticus showed a unique gene order rearrangement, corroborating the remarkable diversity in the previously reported mitogenomes of other serpulid species. The presence of the two lineages of F. enigmaticus identified for the first time in Japan represents another case of cryptic invasion. The first 16S rRNA gene sequences of F. enigmaticus obtained in the present study can be used as reference sequences in future DNA metabarcoding studies.
Collapse
Affiliation(s)
- Genki Kobayashi
- Ishinomaki Senshu University, 1 Shinmito Minamisakai, Ishinomaki, Miyagi, 986-8580, Japan.
| | - Hajime Itoh
- National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Nobuyoshi Nakajima
- National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
2
|
Zhang Z, Li J, Zhang X, Lin B, Chen J. Comparative mitogenomes provide new insights into phylogeny and taxonomy of the subfamily Xenocyprinae (Cypriniformes: Cyprinidae). Front Genet 2022; 13:966633. [DOI: 10.3389/fgene.2022.966633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Xenocyprinae is a cyprinid subfamily that not only has a discrete geographic distribution but also has a long history dating to the Early Miocene. However, it is controversial whether systematic classification and some species validity of Xenocyprinae exist, as well as its phylogenetic relationships and evolutionary history. In the present study, we first reviewed the description and taxonomic history of Xenocyprinae, and then the complete mitochondrial genome of Distoechodon compressus, an endemic and locally distributed species belonging to Xenocyprinae, was sequenced and annotated. Finally, all the mitogenomes of Xenocyprinae were compared to reconstruct the phylogenetic relationship and estimate the divergence time. The results showed that the mitogenomes are similar in organization and structure with 16618–16630 bp length from 12 mitogenomes of eight species. Phylogenetic analysis confirmed the monology of Xenocyprinae and illustrated three clades within the Xenocyprinae to consist of ambiguous generic classification. Plagiognathops is a valid genus located at the base of the phylogenetic tree. The genus Xenocypris was originally monophyletic, but X. fangi was excluded. Divergence time estimation revealed that the earliest divergence within Xenocyprinae occurred approximately 12.1 Mya when Plagiognathops separated from the primitive Xenocypris. The main two clades (Xenocypris and (Distoechodon + Pseudobrama + X. fangi)) diverged 10.0 Mya. The major divergence of Xenocyprinae species possibly occurred in the Middle to Late Miocene and Late Pliocene, suggesting that speciation and diversifications could be attributed to the Asian monsoon climate. This study clarifies some controversial issues of systematics and provides essential information on the taxonomy and phylogeny of the subfamily Xenocyprinae.
Collapse
|
3
|
Kobayashi G, Itoh H, Kojima S. Mitogenome of a stink worm (Annelida: Travisiidae) includes degenerate group II intron that is also found in five congeneric species. Sci Rep 2022; 12:4449. [PMID: 35292662 PMCID: PMC8924214 DOI: 10.1038/s41598-022-08103-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/25/2022] [Indexed: 12/05/2022] Open
Abstract
Mitogenomes are useful for inferring phylogenetic relationships between organisms. Although the mitogenomes of Annelida, one of the most morphologically and ecologically diverse metazoan groups have been well sequenced, those of several families remain unexamined. This study determined the first mitogenome from the family Travisiidae (Travisia sanrikuensis), analyzed its mitogenomic features, and reconstructed a phylogeny of Sedentaria. The monophyly of the Terebellida + Arenicolida + Travisiidae clade is supported by molecular phylogenetic analysis. The placement of Travisiidae is unclear because of the lack of mitogenomes from closely related lineages. An unexpected intron appeared within the cox1 gene of T. sanrikuensis and in the same positions of five undescribed Travisia spp. Although the introns are shorter (790–1386 bp) than other group II introns, they can be considered degenerate group II introns due to type II intron maturase open reading frames, found in two of the examined species, and motifs characteristic of group II introns. This is likely the first known case in metazoans where mitochondrial group II introns obtained by a common ancestor are conserved in several descendants. Insufficient evolutionary time for intron loss in Travisiidae, or undetermined mechanisms may have helped maintain the degenerate introns.
Collapse
Affiliation(s)
- Genki Kobayashi
- Seto Marine Biological Laboratory, Field Science Education and Research Center, Kyoto University, 459 Shirahama, Nishimuro, Wakayama, 649-2211, Japan.
| | - Hajime Itoh
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Shigeaki Kojima
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| |
Collapse
|
4
|
Abstract
Annelida is a ubiquitous, common and diverse group of organisms, found in terrestrial, fresh waters and marine environments. Despite the large efforts put into resolving the evolutionary relationships of these and other Lophotrochozoa, and the delineation of the basal nodes within the group, these are still unanswered. Annelida holds an enormous diversity of forms and biological strategies alongside a large number of species, following Arthropoda, Mollusca, Vertebrata and perhaps Platyhelminthes, among the species most rich in phyla within Metazoa. The number of currently accepted annelid species changes rapidly when taxonomic groups are revised due to synonymies and descriptions of a new species. The group is also experiencing a recent increase in species numbers as a consequence of the use of molecular taxonomy methods, which allows the delineation of the entities within species complexes. This review aims at succinctly reviewing the state-of-the-art of annelid diversity and summarizing the main systematic revisions carried out in the group. Moreover, it should be considered as the introduction to the papers that form this Special Issue on Systematics and Biodiversity of Annelids.
Collapse
|
5
|
Kobayashi G, Itoh H, Fukuda H, Kojima S. The complete mitochondrial genome of the sand bubbler crab Scopimera globosa and its phylogenetic position. Genomics 2020; 113:831-839. [PMID: 33091547 DOI: 10.1016/j.ygeno.2020.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/29/2020] [Accepted: 10/16/2020] [Indexed: 01/19/2023]
Abstract
The mitochondrial genome has become commonly used for the molecular phylogenetic analysis of animals. Most phylogenetic studies on brachyurans using mitogenome sequences have indicated the paraphyly of superfamilies Grapsoidea and Ocypodoidea but taxon sampling remains limited. The phylogenetic position of Scopimera has been tested in several previous studies using nuclear and/or mitochondrial DNA sequences, but the phylogenetic relationship within the family remains to be resolved. We newly sequenced the complete mitochondrial genome of the sand bubbler crab Scopimera globosa (Ocypodoidea: Dotillidae). Scopimera globosa was clustered with Ilyoplax despite the morphological similarity between Scopimera and Dotilla. The mitochondrial gene order of S. globosa was unique, whereas that of other genera in the family was the same. These results suggest that phylogenetic analysis based on mitogenome sequences and gene order comparison would provide a more robust phylogeny of Dotillidae.
Collapse
Affiliation(s)
- Genki Kobayashi
- Seto Marine Biological Laboratory, Field Science Education and Research Center, Kyoto University, 459 Shirahama, Nishimuro, Wakayama 649-2211, Japan.
| | - Hajime Itoh
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Hideki Fukuda
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Shigeaki Kojima
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
6
|
Affiliation(s)
- Samuel Abalde
- Departamento de Biodiversidad y Biología Evolutiva; Museo Nacional de Ciencias Naturales (MNCN-CSIC); Madrid Spain
| | - Manuel J. Tenorio
- Departamento CMIM y Q. Inorgánica-INBIO, Facultad de Ciencias; Universidad de Cádiz; Puerto Real Spain
| | - Juan E. Uribe
- Departamento de Biodiversidad y Biología Evolutiva; Museo Nacional de Ciencias Naturales (MNCN-CSIC); Madrid Spain
- Department of Invertebrate Zoology, Smithsonian Institution; National Museum of Natural History; Washington District of Columbia USA
- Grupo de Evolución, Sistemática y Ecología Molecular; Universidad del Magdalena; Santa Marta Colombia
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva; Museo Nacional de Ciencias Naturales (MNCN-CSIC); Madrid Spain
| |
Collapse
|
7
|
Kocot KM, Struck TH, Merkel J, Waits DS, Todt C, Brannock PM, Weese DA, Cannon JT, Moroz LL, Lieb B, Halanych KM. Phylogenomics of Lophotrochozoa with Consideration of Systematic Error. Syst Biol 2018; 66:256-282. [PMID: 27664188 DOI: 10.1093/sysbio/syw079] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/24/2016] [Indexed: 01/13/2023] Open
Abstract
Phylogenomic studies have improved understanding of deep metazoan phylogeny and show promise for resolving incongruences among analyses based on limited numbers of loci. One region of the animal tree that has been especially difficult to resolve, even with phylogenomic approaches, is relationships within Lophotrochozoa (the animal clade that includes molluscs, annelids, and flatworms among others). Lack of resolution in phylogenomic analyses could be due to insufficient phylogenetic signal, limitations in taxon and/or gene sampling, or systematic error. Here, we investigated why lophotrochozoan phylogeny has been such a difficult question to answer by identifying and reducing sources of systematic error. We supplemented existing data with 32 new transcriptomes spanning the diversity of Lophotrochozoa and constructed a new set of Lophotrochozoa-specific core orthologs. Of these, 638 orthologous groups (OGs) passed strict screening for paralogy using a tree-based approach. In order to reduce possible sources of systematic error, we calculated branch-length heterogeneity, evolutionary rate, percent missing data, compositional bias, and saturation for each OG and analyzed increasingly stricter subsets of only the most stringent (best) OGs for these five variables. Principal component analysis of the values for each factor examined for each OG revealed that compositional heterogeneity and average patristic distance contributed most to the variance observed along the first principal component while branch-length heterogeneity and, to a lesser extent, saturation contributed most to the variance observed along the second. Missing data did not strongly contribute to either. Additional sensitivity analyses examined effects of removing taxa with heterogeneous branch lengths, large amounts of missing data, and compositional heterogeneity. Although our analyses do not unambiguously resolve lophotrochozoan phylogeny, we advance the field by reducing the list of viable hypotheses. Moreover, our systematic approach for dissection of phylogenomic data can be applied to explore sources of incongruence and poor support in any phylogenomic data set. [Annelida; Brachiopoda; Bryozoa; Entoprocta; Mollusca; Nemertea; Phoronida; Platyzoa; Polyzoa; Spiralia; Trochozoa.].
Collapse
Affiliation(s)
- Kevin M Kocot
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA.,Department of Biological Sciences and Alabama Museum of Natural History, 307 Mary Harmon Bryant Hall, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Torsten H Struck
- Natural History Museum, Department of Research and Collections, University of Oslo, PO Box 1172 Blindern, N-0318 Oslo, Norway
| | - Julia Merkel
- Johannes Gutenberg University, Institute of Zoology, 55099 Mainz, Germany
| | - Damien S Waits
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA
| | - Christiane Todt
- University Museum of Bergen, The Natural History Collections, University of Bergen, Allégaten 41, 5007 Bergen, Norway
| | - Pamela M Brannock
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA
| | - David A Weese
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA.,Department of Biological and Environmental Sciences, Georgia College and State University, Campus Box 81, Milledgeville, GA 31061 USA
| | - Johanna T Cannon
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA.,Department of Zoology, Naturhistoriska riksmuseet, Box 50007, 104 05 Stockholm, Sweden
| | - Leonid L Moroz
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, FL 32080, USA
| | - Bernhard Lieb
- Johannes Gutenberg University, Institute of Zoology, 55099 Mainz, Germany
| | - Kenneth M Halanych
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
8
|
Williams ST, Foster PG, Hughes C, Harper EM, Taylor JD, Littlewood DTJ, Dyal P, Hopkins KP, Briscoe AG. Curious bivalves: Systematic utility and unusual properties of anomalodesmatan mitochondrial genomes. Mol Phylogenet Evol 2017; 110:60-72. [PMID: 28274686 DOI: 10.1016/j.ympev.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/26/2017] [Accepted: 03/02/2017] [Indexed: 11/29/2022]
Abstract
Mitogenomic trees for Bivalvia have proved problematic in the past, but several highly divergent lineages were missing from these analyses and increased representation of these groups may yet improve resolution. Here, we add seven new sequences from the Anomalodesmata and one unidentified semelid species (Bryopa lata, Euciroa cf. queenslandica, Laternula elliptica, Laternula truncata, Lyonsia norwegica, Myadora brevis, Tropidomya abbreviata, "Abra" sp.). We show that relationships in a mitogenomic tree for the Class are improved by the addition of seven anomalodesmatans from this highly divergent clade, but are still not completely consistent with relationships recovered in studies of nuclear genes. We suggest that some anomalous relationships (for instance the non-monophyly of Bivalvia) may be partially explained by compositional heterogeneity in the mitogenome and suggest that the addition of more taxa may help resolve both this effect and possible instances of long branch attraction. We also identify several curious features about anomalodesmatan mitogenomes. For example, many protein-coding gene boundaries are poorly defined in marine bivalves, but particularly so in anomalodesmatans, primarily due to non-conserved boundary sequences. The use of transcriptomic and genomic data together enabled better definition of gene boundaries, the identification of possible pseudogenes and suggests that most genes are translated monocistronically, which contrasts with many other studies. We also identified a possible case of gene duplication of ND5 in Myadora brevis (Myochamidae). Mitogenome size in the Anomalodesmata ranges from very small compact molecules, with the smallest for Laternula elliptica (Laternulidae) only 14,622bp, to Bryopa lata (Clavagellidae) which is at least 31,969bp long and may be >40,000bp. Finally, sampled species show a high degree of sequence divergence and variable gene order, although intraspecific variation in Laternula elliptica is very low.
Collapse
Affiliation(s)
- S T Williams
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom.
| | - P G Foster
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom
| | - C Hughes
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom
| | - E M Harper
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - J D Taylor
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom
| | - D T J Littlewood
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom
| | - P Dyal
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom
| | - K P Hopkins
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom; Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, United Kingdom(1)
| | - A G Briscoe
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom
| |
Collapse
|
9
|
Mitochondrial genome of the Christmas tree worm Spirobranchus giganteus (Annelida: Serpulidae) reveals a high substitution rate among annelids. Gene 2017; 605:43-53. [DOI: 10.1016/j.gene.2016.12.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/05/2016] [Accepted: 12/23/2016] [Indexed: 12/26/2022]
|
10
|
Qu XJ, Jin JJ, Chaw SM, Li DZ, Yi TS. Multiple measures could alleviate long-branch attraction in phylogenomic reconstruction of Cupressoideae (Cupressaceae). Sci Rep 2017; 7:41005. [PMID: 28120880 PMCID: PMC5264392 DOI: 10.1038/srep41005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022] Open
Abstract
Long-branch attraction (LBA) is a major obstacle in phylogenetic reconstruction. The phylogenetic relationships among Juniperus (J), Cupressus (C) and the Hesperocyparis-Callitropsis-Xanthocyparis (HCX) subclades of Cupressoideae are controversial. Our initial analyses of plastid protein-coding gene matrix revealed both J and C with much longer stem branches than those of HCX, so their sister relationships may be attributed to LBA. We used multiple measures including data filtering and modifying, evolutionary model selection and coalescent phylogenetic reconstruction to alleviate the LBA artifact. Data filtering by strictly removing unreliable aligned regions and removing substitution saturation genes and rapidly evolving sites could significantly reduce branch lengths of subclades J and C and recovered a relationship of J (C, HCX). In addition, using coalescent phylogenetic reconstruction could elucidate the LBA artifact and recovered J (C, HCX). However, some valid methods for other taxa were inefficient in alleviating the LBA artifact in J-C-HCX. Different strategies should be carefully considered and justified to reduce LBA in phylogenetic reconstruction of different groups. Three subclades of J-C-HCX were estimated to have experienced ancient rapid divergence within a short period, which could be another major obstacle in resolving relationships. Furthermore, our plastid phylogenomic analyses fully resolved the intergeneric relationships of Cupressoideae.
Collapse
Affiliation(s)
- Xiao-Jian Qu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jian-Jun Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Nankang District, Taipei 11529, Taiwan
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
11
|
Oceguera-Figueroa A, Manzano-Marín A, Kvist S, Moya A, Siddall ME, Latorre A. Comparative Mitogenomics of Leeches (Annelida: Clitellata): Genome Conservation and Placobdella-Specific trnD Gene Duplication. PLoS One 2016; 11:e0155441. [PMID: 27176910 PMCID: PMC4866719 DOI: 10.1371/journal.pone.0155441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/28/2016] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial DNA sequences, often in combination with nuclear markers and morphological data, are frequently used to unravel the phylogenetic relationships, population dynamics and biogeographic histories of a plethora of organisms. The information provided by examining complete mitochondrial genomes also enables investigation of other evolutionary events such as gene rearrangements, gene duplication and gene loss. Despite efforts to generate information to represent most of the currently recognized groups, some taxa are underrepresented in mitochondrial genomic databases. One such group is leeches (Annelida: Hirudinea: Clitellata). Herein, we expand our knowledge concerning leech mitochondrial makeup including gene arrangement, gene duplication and the evolution of mitochondrial genomes by adding newly sequenced mitochondrial genomes for three bloodfeeding species: Haementeria officinalis, Placobdella lamothei and Placobdella parasitica. With the inclusion of three new mitochondrial genomes of leeches, a better understanding of evolution for this organelle within the group is emerging. We found that gene order and genomic arrangement in the three new mitochondrial genomes is identical to previously sequenced members of Clitellata. Interestingly, within Placobdella, we recovered a genus-specific duplication of the trnD gene located between cox2 and atp8. We performed phylogenetic analyses using 12 protein-coding genes and expanded our taxon sampling by including GenBank sequences for 39 taxa; the analyses confirm the monophyletic status of Clitellata, yet disagree in several respects with other phylogenetic hypotheses based on morphology and analyses of non-mitochondrial data.
Collapse
Affiliation(s)
- Alejandro Oceguera-Figueroa
- Laboratorio de Helmintología, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
- Research Collaborator, Department of Invertebrate Zoology, Smithsonian Institution. National Museum of Natural History, Washington D. C., United States of America
| | - Alejandro Manzano-Marín
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Catedrático José Beltrán 2, 46008, Paterna, Valencia, Spain
| | - Sebastian Kvist
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, ON, M5S 2C6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Catedrático José Beltrán 2, 46008, Paterna, Valencia, Spain
- Área de Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Avenida de Catalunya 21, 46020, Valencia, Spain
| | - Mark E. Siddall
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, United States of America
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Catedrático José Beltrán 2, 46008, Paterna, Valencia, Spain
- Área de Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Avenida de Catalunya 21, 46020, Valencia, Spain
| |
Collapse
|
12
|
|
13
|
|
14
|
Richter S, Schwarz F, Hering L, Böggemann M, Bleidorn C. The Utility of Genome Skimming for Phylogenomic Analyses as Demonstrated for Glycerid Relationships (Annelida, Glyceridae). Genome Biol Evol 2015; 7:3443-62. [PMID: 26590213 PMCID: PMC4700955 DOI: 10.1093/gbe/evv224] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glyceridae (Annelida) are a group of venomous annelids distributed worldwide from intertidal to abyssal depths. To trace the evolutionary history and complexity of glycerid venom cocktails, a solid backbone phylogeny of this group is essential. We therefore aimed to reconstruct the phylogenetic relationships of these annelids using Illumina sequencing technology. We constructed whole-genome shotgun libraries for 19 glycerid specimens and 1 outgroup species (Glycinde armigera). The chosen target genes comprise 13 mitochondrial proteins, 2 ribosomal mitochondrial genes, and 4 nuclear loci (18SrRNA, 28SrRNA, ITS1, and ITS2). Based on partitioned maximum likelihood as well as Bayesian analyses of the resulting supermatrix, we were finally able to resolve a robust glycerid phylogeny and identified three clades comprising the majority of taxa. Furthermore, we detected group II introns inside the cox1 gene of two analyzed glycerid specimens, with two different insertions in one of these species. Moreover, we generated reduced data sets comprising 10 million, 4 million, and 1 million reads from the original data sets to test the influence of the sequencing depth on assembling complete mitochondrial genomes from low coverage genome data. We estimated the coverage of mitochondrial genome sequences in each data set size by mapping the filtered Illumina reads against the respective mitochondrial contigs. By comparing the contig coverage calculated in all data set sizes, we got a hint for the scalability of our genome skimming approach. This allows estimating more precisely the number of reads that are at least necessary to reconstruct complete mitochondrial genomes in Glyceridae and probably non-model organisms in general.
Collapse
Affiliation(s)
- Sandy Richter
- Molecular Evolution and Animal Systematics, Institute of Biology, University of Leipzig, Germany
| | - Francine Schwarz
- Molecular Evolution and Animal Systematics, Institute of Biology, University of Leipzig, Germany
| | - Lars Hering
- Animal Evolution & Development, Institute of Biology, University of Leipzig, Germany Department of Zoology, Institute of Biology, University of Kassel, Germany
| | | | - Christoph Bleidorn
- Molecular Evolution and Animal Systematics, Institute of Biology, University of Leipzig, Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
15
|
Capa M, Aguado MT, Bakken T. Phylogenetic hypothesis of Sphaerodoridae Malmgren, 1867 (Annelida) and its position within Phyllodocida. Cladistics 2015; 32:335-350. [DOI: 10.1111/cla.12134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 11/29/2022] Open
Affiliation(s)
- María Capa
- Norwegian University of Science and Technology; NTNU University Museum; NO-7491 Trondheim Norway
| | - M. Teresa Aguado
- Departamento de Biología (Zoología); Universidad Autónoma de Madrid; Cantoblanco 28049 Madrid Spain
| | - Torkild Bakken
- Norwegian University of Science and Technology; NTNU University Museum; NO-7491 Trondheim Norway
| |
Collapse
|
16
|
Pang S, Stones RJ, Ren MM, Liu XG, Wang G, Xia HJ, Wu HY, Liu Y, Xie Q. GPU MrBayes V3.1: MrBayes on Graphics Processing Units for Protein Sequence Data. Mol Biol Evol 2015; 32:2496-7. [PMID: 26012905 DOI: 10.1093/molbev/msv129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We present a modified GPU (graphics processing unit) version of MrBayes, called ta(MC)(3) (GPU MrBayes V3.1), for Bayesian phylogenetic inference on protein data sets. Our main contributions are 1) utilizing 64-bit variables, thereby enabling ta(MC)(3) to process larger data sets than MrBayes; and 2) to use Kahan summation to improve accuracy, convergence rates, and consequently runtime. Versus the current fastest software, we achieve a speedup of up to around 2.5 (and up to around 90 vs. serial MrBayes), and more on multi-GPU hardware. GPU MrBayes V3.1 is available from http://sourceforge.net/projects/mrbayes-gpu/.
Collapse
Affiliation(s)
- Shuai Pang
- College of Computer and Control Engineering, Nankai University, Tianjin, China College of Software, Nankai University, Tianjin, China
| | - Rebecca J Stones
- College of Computer and Control Engineering, Nankai University, Tianjin, China College of Software, Nankai University, Tianjin, China
| | - Ming-Ming Ren
- College of Computer and Control Engineering, Nankai University, Tianjin, China College of Software, Nankai University, Tianjin, China
| | - Xiao-Guang Liu
- College of Computer and Control Engineering, Nankai University, Tianjin, China College of Software, Nankai University, Tianjin, China
| | - Gang Wang
- College of Computer and Control Engineering, Nankai University, Tianjin, China College of Software, Nankai University, Tianjin, China
| | - Hong-ju Xia
- College of Computer and Control Engineering, Nankai University, Tianjin, China College of Software, Nankai University, Tianjin, China
| | - Hao-Yang Wu
- College of Life Science, Nankai University, Tianjin, China
| | - Yang Liu
- College of Life Science, Nankai University, Tianjin, China
| | - Qiang Xie
- College of Life Science, Nankai University, Tianjin, China
| |
Collapse
|
17
|
Abstract
Elucidating relationships among early animal lineages has been difficult, and recent phylogenomic analyses place Ctenophora sister to all other extant animals, contrary to the traditional view of Porifera as the earliest-branching animal lineage. To date, phylogenetic support for either ctenophores or sponges as sister to other animals has been limited and inconsistent among studies. Lack of agreement among phylogenomic analyses using different data and methods obscures how complex traits, such as epithelia, neurons, and muscles evolved. A consensus view of animal evolution will not be accepted until datasets and methods converge on a single hypothesis of early metazoan relationships and putative sources of systematic error (e.g., long-branch attraction, compositional bias, poor model choice) are assessed. Here, we investigate possible causes of systematic error by expanding taxon sampling with eight novel transcriptomes, strictly enforcing orthology inference criteria, and progressively examining potential causes of systematic error while using both maximum-likelihood with robust data partitioning and Bayesian inference with a site-heterogeneous model. We identified ribosomal protein genes as possessing a conflicting signal compared with other genes, which caused some past studies to infer ctenophores and cnidarians as sister. Importantly, biases resulting from elevated compositional heterogeneity or elevated substitution rates are ruled out. Placement of ctenophores as sister to all other animals, and sponge monophyly, are strongly supported under multiple analyses, herein.
Collapse
|
18
|
Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic. Nat Commun 2014; 5:5117. [PMID: 25283608 DOI: 10.1038/ncomms6117] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 09/01/2014] [Indexed: 11/08/2022] Open
Abstract
Of all obligate intracellular bacteria, Wolbachia is probably the most common. In general, Wolbachia are either widespread, opportunistic reproductive parasites of arthropods or essential mutualists in a single group of filarial nematodes, including many species of medical significance. To date, a robust phylogenetic backbone of Wolbachia is lacking and consequently, many Wolbachia-related phenomena cannot be discussed in a broader evolutionary context. Here we present the first comprehensive phylogenomic analysis of Wolbachia supergroup relationships based on new whole-genome-shotgun data. Our results suggest that Wolbachia has switched between its two major host groups at least twice. The ability of some arthropod-infecting Wolbachia to universally infect and to adapt to a broad range of hosts quickly is restricted to a single monophyletic lineage (containing supergroups A and B). Thus, the currently observable pandemic has likely a single evolutionary origin and is unique within the radiation of Wolbachia strains.
Collapse
|
19
|
Andrade SCS, Montenegro H, Strand M, Schwartz ML, Kajihara H, Norenburg JL, Turbeville JM, Sundberg P, Giribet G. A Transcriptomic Approach to Ribbon Worm Systematics (Nemertea): Resolving the Pilidiophora Problem. Mol Biol Evol 2014; 31:3206-15. [DOI: 10.1093/molbev/msu253] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
20
|
The molecular symplesiomorphies shared by the stem groups of metazoan evolution: can sites as few as 1% have a significant impact on recognizing the phylogenetic position of myzostomida? J Mol Evol 2014; 79:63-74. [PMID: 25128981 DOI: 10.1007/s00239-014-9635-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Although it is clear that taxon sampling, alignments, gene sampling, tree reconstruction methods and the total length of the sequences used are critical to the reconstruction of evolutionary history, weakly supported or misleading nodes exist in phylogenetic studies with no obvious flaw in those aspects. The phylogenetic studies focusing on the basal part of bilaterian evolution are such a case. During the past decade, Myzostomida has appeared in the basal part of Bilateria in several phylogenetic studies of Metazoa. However, most researchers have entertained only two competing hypotheses about the position of Myzostomida-an affinity with Annelida and an affinity with Platyhelminthes. In this study, dozens of symplesiomorphies were discovered by means of ancestral state reconstruction in the complete 18S and 28S rDNAs shared by the stem groups of Metazoa. By contrastive analysis on the datasets with or without such symplesiomorphic sites, we discovered that Myzostomida and other basal groups are basal lineages of Bilateria due to the corresponding symplesiomorphies shared with earlier lineages. As such, symplesiomorphies account for approximately 1-2% of the whole dataset have an essential impact on phylogenetic inference, and this study reminds molecular systematists of the importance of carrying out ancestral state reconstruction at each site in sequence-based phylogenetic studies. In addition, reasons should be explored for the low support of the hypothesis that Myzostomida belongs to Annelida in the results of phylogenomic studies. Future phylogenetic studies concerning Myzostomida should include all of the basal lineages of Bilateria to avoid directly neglecting the stand-alone basal position of Myzostomida as a potential hypothesis.
Collapse
|
21
|
Struck TH. TreSpEx-Detection of Misleading Signal in Phylogenetic Reconstructions Based on Tree Information. Evol Bioinform Online 2014; 10:51-67. [PMID: 24701118 PMCID: PMC3972080 DOI: 10.4137/ebo.s14239] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 12/16/2022] Open
Abstract
Phylogenies of species or genes are commonplace nowadays in many areas of comparative biological studies. However, for phylogenetic reconstructions one must refer to artificial signals such as paralogy, long-branch attraction, saturation, or conflict between different datasets. These signals might eventually mislead the reconstruction even in phylogenomic studies employing hundreds of genes. Unfortunately, there has been no program allowing the detection of such effects in combination with an implementation into automatic process pipelines. TreSpEx (Tree Space Explorer) now combines different approaches (including statistical tests), which utilize tree-based information like nodal support or patristic distances (PDs) to identify misleading signals. The program enables the parallel analysis of hundreds of trees and/or predefined gene partitions, and being command-line driven, it can be integrated into automatic process pipelines. TreSpEx is implemented in Perl and supported on Linux, Mac OS X, and MS Windows. Source code, binaries, and additional material are freely available at http://www.annelida.de/research/bioinformatics/software.html.
Collapse
|
22
|
Fernández R, Laumer CE, Vahtera V, Libro S, Kaluziak S, Sharma PP, Pérez-Porro AR, Edgecombe GD, Giribet G. Evaluating topological conflict in centipede phylogeny using transcriptomic data sets. Mol Biol Evol 2014; 31:1500-13. [PMID: 24674821 DOI: 10.1093/molbev/msu108] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Relationships between the five extant orders of centipedes have been considered solved based on morphology. Phylogenies based on samples of up to a few dozen genes have largely been congruent with the morphological tree apart from an alternative placement of one order, the relictual Craterostigmomorpha, consisting of two species in Tasmania and New Zealand. To address this incongruence, novel transcriptomic data were generated to sample all five orders of centipedes and also used as a test case for studying gene-tree incongruence. Maximum likelihood and Bayesian mixture model analyses of a data set composed of 1,934 orthologs with 45% missing data, as well as the 389 orthologs in the least saturated, stationary quartile, retrieve strong support for a sister-group relationship between Craterostigmomorpha and all other pleurostigmophoran centipedes, of which the latter group is newly named Amalpighiata. The Amalpighiata hypothesis, which shows little gene-tree incongruence and is robust to the influence of among-taxon compositional heterogeneity, implies convergent evolution in several morphological and behavioral characters traditionally used in centipede phylogenetics, such as maternal brood care, but accords with patterns of first appearances in the fossil record.
Collapse
Affiliation(s)
- Rosa Fernández
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| | - Christopher E Laumer
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| | - Varpu Vahtera
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MAZoological Museum, Department of Biology, University of Turku, Turku, Finland
| | - Silvia Libro
- Marine Science Center, Northeastern University, Nahant, MA
| | | | - Prashant P Sharma
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY
| | - Alicia R Pérez-Porro
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MACentre d'Estudis Avançats de Blanes (CEAB-CSIC), Catalonia, Spain
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
| | - Gonzalo Giribet
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| |
Collapse
|
23
|
Weigert A, Helm C, Meyer M, Nickel B, Arendt D, Hausdorf B, Santos SR, Halanych KM, Purschke G, Bleidorn C, Struck TH. Illuminating the Base of the Annelid Tree Using Transcriptomics. Mol Biol Evol 2014; 31:1391-401. [DOI: 10.1093/molbev/msu080] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
24
|
Wey-Fabrizius AR, Herlyn H, Rieger B, Rosenkranz D, Witek A, Welch DBM, Ebersberger I, Hankeln T. Transcriptome data reveal Syndermatan relationships and suggest the evolution of endoparasitism in Acanthocephala via an epizoic stage. PLoS One 2014; 9:e88618. [PMID: 24520404 PMCID: PMC3919803 DOI: 10.1371/journal.pone.0088618] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 01/15/2014] [Indexed: 11/25/2022] Open
Abstract
The taxon Syndermata comprises the biologically interesting wheel animals ("Rotifera": Bdelloidea + Monogononta + Seisonidea) and thorny-headed worms (Acanthocephala), and is central for testing superordinate phylogenetic hypotheses (Platyzoa, Gnathifera) in the metazoan tree of life. Recent analyses of syndermatan phylogeny suggested paraphyly of Eurotatoria (free-living bdelloids and monogononts) with respect to endoparasitic acanthocephalans. Data of epizoic seisonids, however, were absent, which may have affected the branching order within the syndermatan clade. Moreover, the position of Seisonidea within Syndermata should help in understanding the evolution of acanthocephalan endoparasitism. Here, we report the first phylogenomic analysis that includes all four higher-ranked groups of Syndermata. The analyzed data sets comprise new transcriptome data for Seison spec. (Seisonidea), Brachionus manjavacas (Monogononta), Adineta vaga (Bdelloidea), and Paratenuisentis ambiguus (Acanthocephala). Maximum likelihood and Bayesian trees for a total of 19 metazoan species were reconstructed from up to 410 functionally diverse proteins. The results unanimously place Monogononta basally within Syndermata, and Bdelloidea appear as the sister group to a clade comprising epizoic Seisonidea and endoparasitic Acanthocephala. Our results support monophyly of Syndermata, Hemirotifera (Bdelloidea + Seisonidea + Acanthocephala), and Pararotatoria (Seisonidea + Acanthocephala), rejecting monophyly of traditional Rotifera and Eurotatoria. This serves as an indication that early acanthocephalans lived epizoically or as ectoparasites on arthropods, before their complex lifecycle with arthropod intermediate and vertebrate definite hosts evolved.
Collapse
Affiliation(s)
| | - Holger Herlyn
- Institute of Anthropology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Benjamin Rieger
- Institute of Molecular Genetics, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - David Rosenkranz
- Institute of Anthropology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexander Witek
- Institute of Molecular Genetics, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - David B. Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Ingo Ebersberger
- Institute for Cell Biology and Neuroscience, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Thomas Hankeln
- Institute of Molecular Genetics, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
25
|
Hartikainen H, Waeschenbach A, Wöss E, Wood T, Okamura B. Divergence and species discrimination in freshwater bryozoans (Bryozoa: Phylactolaemata). Zool J Linn Soc 2013. [DOI: 10.1111/zoj.12025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hanna Hartikainen
- Department of Life Sciences; Natural History Museum; Cromwell Road London SW7 5BD UK
| | - Andrea Waeschenbach
- Department of Life Sciences; Natural History Museum; Cromwell Road London SW7 5BD UK
| | - Emmy Wöss
- Department of Freshwater Ecology; University of Vienna; Althanstrasse 14 A-1090 Wien Austria
| | - Timothy Wood
- Department of Biological Sciences; Wright State University; 3640 Colonel Glenn Highway Dayton OH 45435 USA
| | - Beth Okamura
- Department of Life Sciences; Natural History Museum; Cromwell Road London SW7 5BD UK
| |
Collapse
|
26
|
Mitochondrial genomes to the rescue--Diurodrilidae in the myzostomid trap. Mol Phylogenet Evol 2013; 68:312-26. [PMID: 23563272 DOI: 10.1016/j.ympev.2013.03.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/19/2013] [Accepted: 03/26/2013] [Indexed: 11/20/2022]
Abstract
Diurodrilidae is a taxon of Lophotrochozoa comprising about six, exclusively interstitial species, which are up to 500μm long and dorsoventrally flattened. Traditionally, Diurodrilidae had been regarded as an annelid family. However, recently Diurodrilidae had been excluded from Annelida and been placed in closer relationship to platyzoan taxa based on both morphological and nuclear rRNA data. Since both, Diurodrilidae and platyzoan taxa, exhibit long branches in the molecular analyses, the close relationship might be due to a long branch attraction artifact. The annelid taxon Myzostomida had been trapped in a similar long branch attraction artifact with platyzoan taxa using nuclear rRNA data, but determination of the nearly complete mitochondrial genome of myzostomids revealed their annelid affinity. Therefore, we determined the nearly complete mitochondrial genome of Diurodrilus subterraneus as well as new nuclear rRNA data for D. subterraneus and some platyzoan taxa. All our analyses of nuclear rRNA and mitochondrial sequence and gene order data presented herein clearly place Diurodrilidae within Annelida and with strong nodal support values in some analyses. Therefore, the previously suggested exclusion of Diurodrilidae from Annelida and its close relationship with platyzoan taxa can be attributed to a long branch artifact. Morphological data do not unambiguously support a platyzoan affinity of Diurodrilidae, but instead would also be in line with a progenetic origin of Diurodrilidae within Annelida.
Collapse
|
27
|
Deep metazoan phylogeny: When different genes tell different stories. Mol Phylogenet Evol 2013; 67:223-33. [DOI: 10.1016/j.ympev.2013.01.010] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/08/2013] [Accepted: 01/12/2013] [Indexed: 11/30/2022]
|
28
|
Mallatt J, Craig CW, Yoder MJ. Nearly complete rRNA genes from 371 Animalia: Updated structure-based alignment and detailed phylogenetic analysis. Mol Phylogenet Evol 2012; 64:603-17. [DOI: 10.1016/j.ympev.2012.05.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 12/30/2022]
|
29
|
Hartmann S, Helm C, Nickel B, Meyer M, Struck TH, Tiedemann R, Selbig J, Bleidorn C. Exploiting gene families for phylogenomic analysis of myzostomid transcriptome data. PLoS One 2012; 7:e29843. [PMID: 22276131 PMCID: PMC3262807 DOI: 10.1371/journal.pone.0029843] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 12/06/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In trying to understand the evolutionary relationships of organisms, the current flood of sequence data offers great opportunities, but also reveals new challenges with regard to data quality, the selection of data for subsequent analysis, and the automation of steps that were once done manually for single-gene analyses. Even though genome or transcriptome data is available for representatives of most bilaterian phyla, some enigmatic taxa still have an uncertain position in the animal tree of life. This is especially true for myzostomids, a group of symbiotic (or parasitic) protostomes that are either placed with annelids or flatworms. METHODOLOGY Based on similarity criteria, Illumina-based transcriptome sequences of one myzostomid were compared to protein sequences of one additional myzostomid and 29 reference metazoa and clustered into gene families. These families were then used to investigate the phylogenetic position of Myzostomida using different approaches: Alignments of 989 sequence families were concatenated, and the resulting superalignment was analyzed under a Maximum Likelihood criterion. We also used all 1,878 gene trees with at least one myzostomid sequence for a supertree approach: the individual gene trees were computed and then reconciled into a species tree using gene tree parsimony. CONCLUSIONS Superalignments require strictly orthologous genes, and both the gene selection and the widely varying amount of data available for different taxa in our dataset may cause anomalous placements and low bootstrap support. In contrast, gene tree parsimony is designed to accommodate multilocus gene families and therefore allows a much more comprehensive data set to be analyzed. Results of this supertree approach showed a well-resolved phylogeny, in which myzostomids were part of the annelid radiation, and major bilaterian taxa were found to be monophyletic.
Collapse
Affiliation(s)
- Stefanie Hartmann
- Department of Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Conrad Helm
- University of Leipzig, Institute for Biology II, Molecular Evolution and Systematics of Animals, Leipzig, Germany
| | - Birgit Nickel
- Max Planck Institute for Evolutionary Anthropology, Department of Evolutionary Genetics, Leipzig, Germany
| | - Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, Department of Evolutionary Genetics, Leipzig, Germany
| | | | - Ralph Tiedemann
- Department of Evolutionary Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Joachim Selbig
- Department of Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Christoph Bleidorn
- University of Leipzig, Institute for Biology II, Molecular Evolution and Systematics of Animals, Leipzig, Germany
- Department of Evolutionary Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
30
|
|
31
|
Rehm P, Borner J, Meusemann K, von Reumont BM, Simon S, Hadrys H, Misof B, Burmester T. Dating the arthropod tree based on large-scale transcriptome data. Mol Phylogenet Evol 2011; 61:880-7. [DOI: 10.1016/j.ympev.2011.09.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 09/01/2011] [Accepted: 09/05/2011] [Indexed: 01/15/2023]
|
32
|
Waeschenbach A, Taylor PD, Littlewood DTJ. A molecular phylogeny of bryozoans. Mol Phylogenet Evol 2011; 62:718-35. [PMID: 22126903 DOI: 10.1016/j.ympev.2011.11.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/10/2011] [Accepted: 11/16/2011] [Indexed: 11/30/2022]
Abstract
We present the most comprehensive molecular phylogeny of bryozoans to date. Our concatenated alignment of two nuclear ribosomal and five mitochondrial genes includes 95 taxa and 13,292 nucleotide sites, of which 8297 were included. The number of new sequences generated during this project are for each gene:ssrDNA (32), lsrDNA (22), rrnL (38), rrnS (35), cox1 (37), cox3 (34), and cytb (44). Our multi-gene analysis provides a largely stable topology across the phylum. The major groups were unambiguously resolved as (Phylactolaemata (Cyclostomata (Ctenostomata, Cheilostomata))), with Ctenostomata paraphyletic. Within Phylactolaemata, (Stephanellidae, Lophopodidae) form the earliest divergent clade. Fredericellidae is not resolved as a monophyletic family and forms a clade together with Plumatellidae, Cristatellidae and Pectinatellidae, with the latter two as sister taxa. Hyalinella and Gelatinella nest within the genus Plumatella. Cyclostome taxa fall into three major clades: i. (Favosipora (Plagioecia, Rectangulata)); ii. (Entalophoroecia ((Diplosolen, Cardioecia) (Frondipora, Cancellata))); and iii. (Articulata ((Annectocyma, Heteroporidae) (Tubulipora (Tennysonia, Idmidronea)))), with suborders Tubuliporina and Cerioporina, and family Plagioeciidae each being polyphyletic. Ctenostomata is composed of three paraphyletic clades to the inclusion of Cheilostomata: ((Alcyonidium, Flustrellidra) (Paludicella (Anguinella, Triticella)) (Hislopia (Bowerbankia, Amathia)) Cheilostomata); Flustrellidra nests within the genus Alcyonidium, and Amathia nests within the genus Bowerbankia. Suborders Carnosa and Stolonifera are not monophyletic. Within the cheilostomes, Malacostega is paraphyletic to the inclusion of all other cheilostomes. Conopeum is the most early divergent cheilostome, forming the sister group to ((Malacostega, Scrupariina, Inovicellina) ((Hippothoomorpha, Flustrina) (Lepraliomorpha, Umbonulomorpha))); Flustrina is paraphyletic to the inclusion of the hippothoomorphs; neither Lepraliomorpha nor Umbonulomorpha is monophyletic. Ascophorans are polyphyletic, with hippothoomorphs grouping separately from lepraliomorphs and umbonulomorphs; no cribrimorphs were included in the analysis. Results are discussed in the light of molecular and morphological evidence. Ancestral state reconstruction of larval strategy in Gymnolaemata revealed planktotrophy and lecithotrophy as equally parsimonious solutions for the ancestral condition. More comprehensive taxon sampling is expected to clarify this result. We discuss the extent of non-bryozoan contaminant sequences deposited in GenBank and their impact on the reconstruction of metazoan phylogenies and those of bryozoan interrelationships.
Collapse
Affiliation(s)
- Andrea Waeschenbach
- Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | | | | |
Collapse
|
33
|
Nesnidal MP, Helmkampf M, Bruchhaus I, Hausdorf B. The complete mitochondrial genome of Flustra foliacea (Ectoprocta, Cheilostomata) - compositional bias affects phylogenetic analyses of lophotrochozoan relationships. BMC Genomics 2011; 12:572. [PMID: 22111761 PMCID: PMC3285623 DOI: 10.1186/1471-2164-12-572] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 11/23/2011] [Indexed: 11/25/2022] Open
Abstract
Background The phylogenetic relationships of the lophophorate lineages, ectoprocts, brachiopods and phoronids, within Lophotrochozoa are still controversial. We sequenced an additional mitochondrial genome of the most species-rich lophophorate lineage, the ectoprocts. Although it is known that there are large differences in the nucleotide composition of mitochondrial sequences of different lineages as well as in the amino acid composition of the encoded proteins, this bias is often not considered in phylogenetic analyses. We applied several approaches for reducing compositional bias and saturation in the phylogenetic analyses of the mitochondrial sequences. Results The complete mitochondrial genome (16,089 bp) of Flustra foliacea (Ectoprocta, Gymnolaemata, Cheilostomata) was sequenced. All protein-encoding, rRNA and tRNA genes are transcribed from the same strand. Flustra shares long intergenic sequences with the cheilostomate ectoproct Bugula, which might be a synapomorphy of these taxa. Further synapomorphies might be the loss of the DHU arm of the tRNA L(UUR), the loss of the DHU arm of the tRNA S(UCN) and the unique anticodon sequence GAG of the tRNA L(CUN). The gene order of the mitochondrial genome of Flustra differs strongly from that of the other known ectoprocts. Phylogenetic analyses of mitochondrial nucleotide and amino acid data sets show that the lophophorate lineages are more closely related to trochozoan phyla than to deuterostomes or ecdysozoans confirming the Lophotrochozoa hypothesis. Furthermore, they support the monophyly of Cheilostomata and Ectoprocta. However, the relationships of the lophophorate lineages within Lophotrochozoa differ strongly depending on the data set and the used method. Different approaches for reducing heterogeneity in nucleotide and amino acid data sets and saturation did not result in a more robust resolution of lophotrochozoan relationships. Conclusion The contradictory and usually weakly supported phylogenetic reconstructions of the relationships among lophotrochozoan phyla based on mitochondrial sequences indicate that these alone do not contain enough information for a robust resolution of the relations of the lophotrochozoan phyla. The mitochondrial gene order is also not useful for inferring their phylogenetic relationships, because it is highly variable in ectoprocts, brachiopods and some other lophotrochozoan phyla. However, our study revealed several rare genomic changes like the evolution of long intergenic sequences and changes in the structure of tRNAs, which may be helpful for reconstructing ectoproct phylogeny.
Collapse
Affiliation(s)
- Maximilian P Nesnidal
- Zoological Museum of the University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | | | | | | |
Collapse
|
34
|
Wu CS, Wang YN, Hsu CY, Lin CP, Chaw SM. Loss of different inverted repeat copies from the chloroplast genomes of Pinaceae and cupressophytes and influence of heterotachy on the evaluation of gymnosperm phylogeny. Genome Biol Evol 2011; 3:1284-95. [PMID: 21933779 PMCID: PMC3219958 DOI: 10.1093/gbe/evr095] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2011] [Indexed: 12/13/2022] Open
Abstract
The relationships among the extant five gymnosperm groups--gnetophytes, Pinaceae, non-Pinaceae conifers (cupressophytes), Ginkgo, and cycads--remain equivocal. To clarify this issue, we sequenced the chloroplast genomes (cpDNAs) from two cupressophytes, Cephalotaxus wilsoniana and Taiwania cryptomerioides, and 53 common chloroplast protein-coding genes from another three cupressophytes, Agathis dammara, Nageia nagi, and Sciadopitys verticillata, and a non-Cycadaceae cycad, Bowenia serrulata. Comparative analyses of 11 conifer cpDNAs revealed that Pinaceae and cupressophytes each lost a different copy of inverted repeats (IRs), which contrasts with the view that the same IR has been lost in all conifers. Based on our structural finding, the character of an IR loss no longer conflicts with the "gnepines" hypothesis (gnetophytes sister to Pinaceae). Chloroplast phylogenomic analyses of amino acid sequences recovered incongruent topologies using different tree-building methods; however, we demonstrated that high heterotachous genes (genes that have highly different rates in different lineages) contributed to the long-branch attraction (LBA) artifact, resulting in incongruence of phylogenomic estimates. Additionally, amino acid compositions appear more heterogeneous in high than low heterotachous genes among the five gymnosperm groups. Removal of high heterotachous genes alleviated the LBA artifact and yielded congruent and robust tree topologies in which gnetophytes and Pinaceae formed a sister clade to cupressophytes (the gnepines hypothesis) and Ginkgo clustered with cycads. Adding more cupressophyte taxa could not improve the accuracy of chloroplast phylogenomics for the five gymnosperm groups. In contrast, removal of high heterotachous genes from data sets is simple and can increase confidence in evaluating the phylogeny of gymnosperms.
Collapse
Affiliation(s)
- Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Nan Wang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Chi-Yao Hsu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ching-Ping Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
35
|
Kumar S, Filipski AJ, Battistuzzi FU, Kosakovsky Pond SL, Tamura K. Statistics and truth in phylogenomics. Mol Biol Evol 2011; 29:457-72. [PMID: 21873298 DOI: 10.1093/molbev/msr202] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Phylogenomics refers to the inference of historical relationships among species using genome-scale sequence data and to the use of phylogenetic analysis to infer protein function in multigene families. With rapidly decreasing sequencing costs, phylogenomics is becoming synonymous with evolutionary analysis of genome-scale and taxonomically densely sampled data sets. In phylogenetic inference applications, this translates into very large data sets that yield evolutionary and functional inferences with extremely small variances and high statistical confidence (P value). However, reports of highly significant P values are increasing even for contrasting phylogenetic hypotheses depending on the evolutionary model and inference method used, making it difficult to establish true relationships. We argue that the assessment of the robustness of results to biological factors, that may systematically mislead (bias) the outcomes of statistical estimation, will be a key to avoiding incorrect phylogenomic inferences. In fact, there is a need for increased emphasis on the magnitude of differences (effect sizes) in addition to the P values of the statistical test of the null hypothesis. On the other hand, the amount of sequence data available will likely always remain inadequate for some phylogenomic applications, for example, those involving episodic positive selection at individual codon positions and in specific lineages. Again, a focus on effect size and biological relevance, rather than the P value, may be warranted. Here, we present a theoretical overview and discuss practical aspects of the interplay between effect sizes, bias, and P values as it relates to the statistical inference of evolutionary truth in phylogenomics.
Collapse
Affiliation(s)
- Sudhir Kumar
- Center for Evolutionary Medicine and Informatics, Biodesign Institute, Arizona State University, Arizona, USA.
| | | | | | | | | |
Collapse
|
36
|
Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM, Neves RC, Rouse GW, Worsaae K, Sørensen MV. Higher-level metazoan relationships: recent progress and remaining questions. ORG DIVERS EVOL 2011. [DOI: 10.1007/s13127-011-0044-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Struck TH, Paul C, Hill N, Hartmann S, Hösel C, Kube M, Lieb B, Meyer A, Tiedemann R, Purschke G, Bleidorn C. Phylogenomic analyses unravel annelid evolution. Nature 2011; 471:95-8. [DOI: 10.1038/nature09864] [Citation(s) in RCA: 292] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 01/18/2011] [Indexed: 11/09/2022]
|
38
|
Meyer A, Witek A, Lieb B. Selecting ribosomal protein genes for invertebrate phylogenetic inferences: how many genes to resolve the Mollusca? Methods Ecol Evol 2010. [DOI: 10.1111/j.2041-210x.2010.00052.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Meusemann K, von Reumont BM, Simon S, Roeding F, Strauss S, Kück P, Ebersberger I, Walzl M, Pass G, Breuers S, Achter V, von Haeseler A, Burmester T, Hadrys H, Wägele JW, Misof B. A phylogenomic approach to resolve the arthropod tree of life. Mol Biol Evol 2010; 27:2451-64. [PMID: 20534705 DOI: 10.1093/molbev/msq130] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Arthropods were the first animals to conquer land and air. They encompass more than three quarters of all described living species. This extraordinary evolutionary success is based on an astoundingly wide array of highly adaptive body organizations. A lack of robustly resolved phylogenetic relationships, however, currently impedes the reliable reconstruction of the underlying evolutionary processes. Here, we show that phylogenomic data can substantially advance our understanding of arthropod evolution and resolve several conflicts among existing hypotheses. We assembled a data set of 233 taxa and 775 genes from which an optimally informative data set of 117 taxa and 129 genes was finally selected using new heuristics and compared with the unreduced data set. We included novel expressed sequence tag (EST) data for 11 species and all published phylogenomic data augmented by recently published EST data on taxonomically important arthropod taxa. This thorough sampling reduces the chance of obtaining spurious results due to stochastic effects of undersampling taxa and genes. Orthology prediction of genes, alignment masking tools, and selection of most informative genes due to a balanced taxa-gene ratio using new heuristics were established. Our optimized data set robustly resolves major arthropod relationships. We received strong support for a sister group relationship of onychophorans and euarthropods and strong support for a close association of tardigrades and cycloneuralia. Within pancrustaceans, our analyses yielded paraphyletic crustaceans and monophyletic hexapods and robustly resolved monophyletic endopterygote insects. However, our analyses also showed for few deep splits that were recently thought to be resolved, for example, the position of myriapods, a remarkable sensitivity to methods of analyses.
Collapse
Affiliation(s)
- Karen Meusemann
- Zoologisches Forschungsmuseum Alexander Koenig, Molecular Biology Unit, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dordel J, Fisse F, Purschke G, Struck TH. Phylogenetic position of Sipuncula derived from multi-gene and phylogenomic data and its implication for the evolution of segmentation. J ZOOL SYST EVOL RES 2010. [DOI: 10.1111/j.1439-0469.2010.00567.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Zrzavý J, Říha P, Piálek L, Janouškovec J. Phylogeny of Annelida (Lophotrochozoa): total-evidence analysis of morphology and six genes. BMC Evol Biol 2009; 9:189. [PMID: 19660115 PMCID: PMC2732625 DOI: 10.1186/1471-2148-9-189] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Accepted: 08/06/2009] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Annelida is one of the major protostome phyla, whose deep phylogeny is very poorly understood. Recent molecular phylogenies show that Annelida may include groups once considered separate phyla (Pogonophora, Echiurida, and Sipunculida) and that Clitellata are derived polychaetes. SThe "total-evidence" analyses combining morphological and molecular characters have been published for a few annelid taxa. No attempt has yet been made to analyse simultaneously morphological and molecular information concerning the Annelida as a whole. RESULTS Phylogenetic relationships within Annelida were analysed on the basis of 93 morphological characters and sequences of six genes (18S, 28S, and 16S rRNA, EF1alpha, H3, COI), altogether, 87 terminals of all annelid "families" and 3,903 informative characters, by Bayesian and maximum-parsimony methods. The analysis of the combined dataset yields the following scheme of relationships: Phyllodocida and Eunicida are monophyletic groups, together probably forming monophyletic Aciculata (incl. Orbiniidae and Parergodrilidae that form a sister group of the Eunicida). The traditional "Scolecida" and "Canalipalpata" are both polyphyletic, forming instead two clades: one including Cirratuliformia and the "sabelloid-spionoid clade" (incl. Sternaspis, Sabellidae-Serpulidae, Sabellariidae, Spionida s.str.), the other ("terebelloid-capitelloid clade") including Terebelliformia, Arenicolidae-Maldanidae, and Capitellidae-Echiurida. The Clitellata and "clitellate-like polychaetes" (Aeolosomatidae, Potamodrilidae, Hrabeiella) form a monophyletic group. The position of the remaining annelid groups is uncertain--the most problematic taxa are the Opheliidae-Scalibregmatidae clade, the Amphinomida-Aberranta clade, Apistobranchus, Chaetopteridae, Myzostomida, the Sipunculida-Dinophilidae clade, and the "core Archiannelida" (= Protodrilidae, Nerillidae, Polygordiidae, Saccocirridae). CONCLUSION The combined ("total-evidence") phylogenetic analysis provides a modified view of annelid evolution, with several higher-level taxa, i.e. Phyllodocida, Eunicida, orbinioid-parergodrilid clade (OPC), Cirratuliformia, sabelloid-spionoid clade (SSC), terebelloid-capitelloid clade (TCC), and "Clitellatomorpha". Two unorthodox clades, the "core Archiannelida" and Sipunculida-Dinophilidae, are proposed. Although the deep-level evolutionary relationships of Annelida remain poorly understood, we propose the monophyly of the Aciculata, sister-group relationships between the Eunicida and OPC, between the Cirratuliformia and SSC, and possibly also between the "Clitellatomorpha" and Oweniidae-Pogonophora clades.
Collapse
Affiliation(s)
- Jan Zrzavý
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budĕjovice, Czech Republic
- Biology Center, Academy of Sciences, Branišovská 31, 370 05 České Budĕjovice, Czech Republic
| | - Pavel Říha
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budĕjovice, Czech Republic
| | - Lubomír Piálek
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budĕjovice, Czech Republic
| | - Jan Janouškovec
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budĕjovice, Czech Republic
- Biology Center, Academy of Sciences, Branišovská 31, 370 05 České Budĕjovice, Czech Republic
| |
Collapse
|
42
|
Witek A, Herlyn H, Ebersberger I, Mark Welch DB, Hankeln T. Support for the monophyletic origin of Gnathifera from phylogenomics. Mol Phylogenet Evol 2009; 53:1037-41. [PMID: 19654049 DOI: 10.1016/j.ympev.2009.07.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 07/16/2009] [Accepted: 07/28/2009] [Indexed: 11/15/2022]
Abstract
The monophyletic origin of Spiralia within the metazoan tree of life is supported by many large-scale phylogenomic data. While there is now substantial molecular evidence for Lophotrochozoa being a monophyletic taxon within Spiralia, the phylogenetic affiliations of many other spiralian phyla remain unclear. Here we focus on the question of a monophyletic taxon Gnathifera, which was originally characterized by jaw morphology as comprising the taxa Rotifera, Acanthocephala and Gnathostomulida. Based on a large-scale molecular sequence dataset of 11,146 amino acid residues, we reconstructed phylogenetic trees of spiralian phyla using maximum-likelihood and Bayesian approaches. We obtain the first phylogenomic evidence for the clade Gnathifera, linking Syndermata (Rotifera+Acanthocephala) with Gnathostomulida. Furthermore, our data support recent findings concerning the paraphyly of Eurotatoria.
Collapse
Affiliation(s)
- Alexander Witek
- Institute of Molecular Genetics, Johannes Gutenberg-University Mainz, J.J. Becherweg 30a, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|