1
|
Transcriptome profile of skeletal muscle using different sources of dietary fatty acids in male pigs. Funct Integr Genomics 2023; 23:73. [PMID: 36867299 DOI: 10.1007/s10142-023-00997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
Pork is of great importance in world trade and represents the largest source of fatty acids in the human diet. Lipid sources such as soybean oil (SOY), canola (CO), and fish oil (FO) are used in pig diets and influence blood parameters and the ratio of deposited fatty acids. In this study, the main objective was to evaluate changes in gene expression in porcine skeletal muscle tissue resulting from the dietary oil sources and to identify metabolic pathways and biological process networks through RNA-Seq. The addition of FO in the diet of pigs led to intramuscular lipid with a higher FA profile composition of C20:5 n-3, C22:6 n-3, and SFA (C16:0 and C18:0). Blood parameters for the FO group showed lower cholesterol and HDL content compared with CO and SOY groups. Skeletal muscle transcriptome analyses revealed 65 differentially expressed genes (DEG, FDR 10%) between CO vs SOY, and 32 DEG for CO vs FO, and 531 DEG for SOY vs FO comparison. Several genes, including AZGP1, PDE3B, APOE, PLIN1, and LIPS, were found to be down-regulated in the diet of the SOY group compared to the FO group. The enrichment analysis revealed DEG involved in lipid metabolism, metabolic diseases, and inflammation between the oil groups, with specific gene functions in each group and altered blood parameters. The results provide mechanisms to help us understand the behavior of genes according to fatty acids.
Collapse
|
2
|
Weng RC. Dietary supplementation with different types of fiber in gestation and lactation: effects on sow serum biochemical values and performance. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:1323-1331. [PMID: 32054223 PMCID: PMC7322642 DOI: 10.5713/ajas.19.0545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/18/2019] [Indexed: 11/27/2022]
Abstract
Objective Three types of dietary fiber were fed to sows during gestation and lactation stages to monitor their physiological and metabolic adaptations during the pre-partum period and to determine how these effects may influence the lactation period and sow performance. Methods Soon after breeding, 54 sows were selected and were fed with 20% supplementation as fed of wheat bran (WB), soya hulls (SH), or rice hulls (RH) in diets during gestation and lactation. Sows were weighed, backfat thickness was measured ultrasonically and jugular blood samples were collected from all sows. The litter size was equalized to 10, by fostering piglets from sows on the same treatment. Results Sows gained 22.0, 21.8, and 25.5 kg of net maternal body weight during gestation (for WB, SH, and RH sows, respectively; p = 0.007). There was no treatment effect on the body weight change during lactation (p = 0.158), however RH sows consumed an average of 133.66 kg of feed, WB sows took 121.29 kg and SH sows took 126.77 kg during lactation (p<0.001). The SH litters gained an average of 59.34 kg of weight during lactation, while other litters gained 51.58 and 49.98 kg (for WB and RH litters, respectively; p<0.001). Exception for aspartate aminotransferase and alanine aminotransferase, measured serum biochemical values were broadly in agreement with earlier reports. Despite the use of additional vegetable oil to balance the energy level, RH sows still had lower concentrations of serum triglycerides in late gestation. Conclusion Different types of fibrous ingredients in the gestation diet influenced most of the investigated reference values for sows. The values of serum biochemical parameters were generally not affected by fiber type during the lactation stage. The SH supplementation for sows is an effective approach to give heavier litters at birth and weaning and to increase voluntary feed intake in early lactation.
Collapse
Affiliation(s)
- Ruey-Chee Weng
- Department of Animal Science, National Pingtung University of Science and Technology, Neipu Pingtung 91201, Taiwan
| |
Collapse
|
3
|
Integrating genome and transcriptome profiling for elucidating the mechanism of muscle growth and lipid deposition in Pekin ducks. Sci Rep 2017. [PMID: 28630415 PMCID: PMC5476626 DOI: 10.1038/s41598-017-04178-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Muscle growth and lipid deposition are co-ordinately regulated processes. Cherry Valley Pekin duck is a lean-type duck breed with high growth rate, whereas the native Pekin duck of China has high lipid deposition. Phenotypic analysis showed that native Pekin ducks have smaller fibre diameter and larger density in the breast muscle at 3 weeks of age and higher intramuscular fat content at 6 weeks of age than those in Cherry Valley Pekin ducks. We detected 17 positively selected genes (PSGs) by comparing genes mainly involved with muscle organ development, muscle contraction, peroxisome proliferator activated receptor signalling pathway, and fatty acid metabolism. In all, 52 and 206 differentially expressed genes (DEGs) were identified in transcriptomic comparisons between the two breeds at 3 and 6 weeks of age, respectively, which could potentially affect muscle growth and lipid deposition. Based on the integration of PSGs and DEGs and their functional annotations, we found that 11 and 10 genes were correlated with muscle growth and lipid deposition, respectively. Identification of candidate genes controlling quantitative traits of duck muscle might aid in elucidating the mechanisms of muscle growth and lipid deposition and could help in improving duck breeding.
Collapse
|
4
|
Ding YY, Zhang W, Zhang MQ, Fu K, Chen WP, Ding C, He XL, Zhang XD, Huang L, Yin ZJ. Functional and association studies of the cholesteryl ester transfer protein (CETP) gene in a Wannan Black pig model. Anim Genet 2015; 46:702-6. [PMID: 26477338 DOI: 10.1111/age.12370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 10/22/2022]
Abstract
Some polymorphisms of the human CETP gene are causally and significantly associated with serum lipids levels; however, the information regarding this gene in pigs is sparse. To evaluate the effects of CETP on blood lipid traits and fat deposition in pig, porcine CETP tissue expression patterns were observed by quantitative real-time polymerase chain reaction (qPCR) first. High expression was detected in liver, spleen, gluteus medius (GM) muscle and backfat. A de novo polymorphism (AF333037:g.795C>T) in the intron 1 region of porcine CETP was identified. This polymorphism was further genotyped by direct sequencing of the PCR products of 390 Wannan Black pigs, a Chinese native breed population. Association analyses at 45 and 300 days of age revealed highly significant associations between CETP genotypes and serum lipid traits. Furthermore, this polymorphism was proved to be associated with differences in liver CETP mRNA levels: pigs at 300 days of age with the TT genotype had higher levels than did those with other genotypes (P = 0.021). Additionally, analysis at 300 days of age showed that GM CETP mRNA expression correlated positively with serum lipids levels as well as with carcass backfat thickness and intramuscular fat content in GM. These results indicate that CETP is involved in serum, adipose and muscle lipid metabolism in pigs. The mechanisms underlying such relationships and their functional implications are worthy of further research.
Collapse
Affiliation(s)
- Y Y Ding
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, P. R., China
| | - W Zhang
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, P. R., China
| | - M Q Zhang
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, P. R., China
| | - K Fu
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, P. R., China
| | - W P Chen
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, P. R., China
| | - C Ding
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, P. R., China
| | - X L He
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, P. R., China
| | - X D Zhang
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, P. R., China
| | - L Huang
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, P. R., China
| | - Z J Yin
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, P. R., China
| |
Collapse
|
5
|
Manunza A, Casellas J, Quintanilla R, González-Prendes R, Pena RN, Tibau J, Mercadé A, Castelló A, Aznárez N, Hernández-Sánchez J, Amills M. A genome-wide association analysis for porcine serum lipid traits reveals the existence of age-specific genetic determinants. BMC Genomics 2014; 15:758. [PMID: 25189197 PMCID: PMC4164741 DOI: 10.1186/1471-2164-15-758] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 07/25/2014] [Indexed: 01/07/2023] Open
Abstract
Background The genetic determinism of blood lipid concentrations, the main risk factor for atherosclerosis, is practically unknown in species other than human and mouse. Even in model organisms, little is known about how the genetic determinants of lipid traits are modulated by age-specific factors. To gain new insights into this issue, we have carried out a genome-wide association study (GWAS) for cholesterol (CHOL), triglyceride (TRIG) and low (LDL) and high (HDL) density lipoprotein concentrations measured in Duroc pigs at two time points (45 and 190 days). Results Analysis of data with mixed-model methods (EMMAX, GEMMA, GenABEL) and PLINK showed a low positional concordance between trait-associated regions (TARs) for serum lipids at 45 and 190 days. Besides, the proportion of phenotypic variance explained by SNPs at these two time points was also substantially different. The four analyses consistently detected two regions on SSC3 (124 Mb, CHOL and LDL at 190 days) and SSC6 (135 Mb, CHOL and TRIG at 190 days) with highly significant effects on the porcine blood lipid profile. Moreover, we have found that SNP variation within SSC3, SSC6, SSC10, SSC13 and SSC16 TARs is associated with the expression of several genes mapping to other chromosomes and related to lipid metabolism. Conclusions Our data demonstrate that the effects of genomic determinants influencing lipid concentrations in pigs, as well as the amount of phenotypic variance they explain, are influenced by age-related factors. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-758) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| |
Collapse
|
6
|
Zeng Z, Chen R, Liu C, Yang H, Chen C, Huang L. Evaluation of the causality of the low-density lipoprotein receptor gene (LDLR) for serum lipids in pigs. Anim Genet 2014; 45:665-73. [PMID: 24954195 DOI: 10.1111/age.12183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 11/30/2022]
Abstract
A significant quantitative trait locus (QTL) for low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) was identified around the LDLR gene on chromosome 2 (SSC2) in a White Duroc × Erhualian F2 resource population and Sutai pigs in our previous study. However, in previous reports, the causality of LDLR with serum lipids is controversial in pigs. To systematically assess the causality of LDLR with serum lipids, association analyses were successively performed in three populations: Sutai pigs, a White Duroc × Erhualian F2 resource population and a Duroc × (Landrace × Large White) population. We first performed a haplotype-based association study with 60K SNP genotyping data and evidenced the significant association with LDL-C and TC around the LDLR gene region. We also found that there is more than one QTL for LDL-C and TC on SSC2. Then, we evaluated the causalities of two missense mutations, c.1812C>T and c.1520A>G, with LDL-C and TC. We revealed that the c.1812C>T SNP showed the strongest association with LDL-C (P = 5.40 × 10(-11) ) and TC (P = 3.64 × 10(-8) ) and explained all the QTL effect in Sutai pigs. Haplotype analysis found that two missense SNPs locate within a 1.93-Mb haplotype block. One major haplotype showed the strongest significant association with LDL-C (P = 4.62 × 10(-18) ) and TC (P = 1.06 × 10(-9) ). However, the c.1812C>T SNP was not identified in the White Duroc × Erhualian intercross, and the association of c.1520A>G with both LDL-C and TC did not achieve significance in this F2 population, suggesting population heterogeneity. Both missense mutations were identified in the Duroc × (Landrace × Large White) population and showed significant associations with LDL-C and TC. Our data give evidence that the LDLR gene should be a candidate causative gene for LDL-C and TC in pigs, but heterogeneity exists in different populations.
Collapse
Affiliation(s)
- Z Zeng
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China
| | | | | | | | | | | |
Collapse
|
7
|
Sodhi SS, Song KD, Ghosh M, Sharma N, Lee SJ, Kim JH, Kim N, Mongre RK, Adhikari P, Kim JY, Hong SP, Oh SJ, Jeong DK. Comparative transcriptomic analysis by RNA-seq to discern differential expression of genes in liver and muscle tissues of adult Berkshire and Jeju Native Pig. Gene 2014; 546:233-42. [PMID: 24910116 DOI: 10.1016/j.gene.2014.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/29/2014] [Accepted: 06/04/2014] [Indexed: 12/16/2022]
Abstract
RNA-seq is being rapidly adopted for the profiling of the transcriptomes in different areas of biology, especially in the studies related to gene regulation. The discovery of differentially expressed genes (DEGs) between adult animals of Jeju Native Pig (JNP) and Berkshire breeds of Sus scrofa, is of particular interest for the current study. For the better understanding of the gene expression profiles of the liver and longissimus dorsi muscle, DEGs were identified via RNA-seq. Sequence reads were obtained from Illumina HiSeq2000 and mapped to the pig reference genome (Sscrofa10.2) using Tophat2. We identified 169 and 39 DEGs in the liver and muscle of JNP respectively, by comparison with Berkshire breed. Out of all identified genes, 41 genes in the liver and 9 genes in the muscle have given significant expression. Gene ontology (GO) terms of developmental process and KEGG pathway analysis showed that metabolic, immune response and protein binding were commonly enriched pathways in the two tissues. Further the heat map analysis by ArrayStar has shown the different levels of expression in JNP with respect to the Berkshire breed. The validation through real time PCR and western blotting also confirmed the differential expression of genes in both breeds. Genes pertaining to metabolic process and inflammatory and immune system are more enriched in Berkshire breed. This comparative transcriptome analysis of two tissues suggests a subset of novel marker genes which expressed differently between the JNP and Berkshire.
Collapse
Affiliation(s)
- Simrinder Singh Sodhi
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 690-756, South Korea
| | - Ki-Duk Song
- The Animal Genomics and Breeding Center, Hankyong National University, Anseong-si, Gyeonggi-do 456-749, South Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 690-756, South Korea
| | - Neelesh Sharma
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 690-756, South Korea
| | - Sung Jin Lee
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Kangwon National University, Chuncheon 200-701, South Korea
| | - Jeong Hyun Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 690-756, South Korea
| | - Nameun Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 690-756, South Korea
| | - Raj Kumar Mongre
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 690-756, South Korea
| | - Pradeep Adhikari
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 690-756, South Korea
| | - Jin Young Kim
- Institute for Livestock Promotion, Jeju-do, Jeju 690-802, South Korea
| | - Sang Pyo Hong
- Institute for Livestock Promotion, Jeju-do, Jeju 690-802, South Korea
| | - Sung Jong Oh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 690-756, South Korea
| | - Dong Kee Jeong
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 690-756, South Korea; Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 690-756, South Korea.
| |
Collapse
|
8
|
Chen C, Yang B, Zeng Z, Yang H, Liu C, Ren J, Huang L. Genetic dissection of blood lipid traits by integrating genome-wide association study and gene expression profiling in a porcine model. BMC Genomics 2013; 14:848. [PMID: 24299188 PMCID: PMC4046658 DOI: 10.1186/1471-2164-14-848] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 11/19/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Serum concentrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG) are highly heritable traits that are used clinically to evaluate risk for cardiovascular disease in humans. In this study, we applied a genome-wide association study (GWAS) in 1,075 pigs from two populations and gene expression studies on 497 liver samples to dissect the genetic basis of serum lipids in a pig model. RESULTS We totally identified 8, 5, 2 and 3 genomic loci harboring 109 SNPs that were significantly associated with LDL-C, TC, TG and the ratio of HDL-C/LDL-C in two experimental populations, respectively. In the F2 population, the most prominent SNP was identified at the SSC3: 124,769,847 bp where APOB is the well-known candidate gene. However, in the Sutai population, the most number of significant SNPs was identified at SSC2: 64.97-82.22 Mb where LDLR was identified as the candidate gene. Furthermore, we firstly reported 4 novel genomic loci in pigs harboring the LDL-C-associated SNPs. We also observed obvious population heterogeneity in the two tested populations. Through whole-genome gene expression analysis, we detected 718 trait-correlated expressions. Many of these transcripts correspond to candidate genes for blood lipids in humans. The GWAS mapped 120 cis-eQTLs and 523 trans-eQTLs for these transcripts. One gene encoding the transcript gnl|UG|Ssc#S35330332 stands out to be an important candidate gene for LDL-C by an integrative analysis of GWAS, eQTL and trait-associated expression. CONCLUSIONS We identified the genomic regions or candidate genes associated with blood lipids by an integrative analysis of GWAS, QTT and eQTL mapping in pigs. The findings would benefit the further identification of the causative genes for blood lipid traits in both pigs and humans.
Collapse
Affiliation(s)
- Congying Chen
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Bin Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Zhijun Zeng
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Hui Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Chenlong Liu
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| |
Collapse
|
9
|
Rexroad CE, Vallejo RL, Liu S, Palti Y, Weber GM. Quantitative trait loci affecting response to crowding stress in an F(2) generation of rainbow trout produced through phenotypic selection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:613-627. [PMID: 23709047 DOI: 10.1007/s10126-013-9512-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/09/2013] [Indexed: 06/02/2023]
Abstract
Selective breeding programs for salmonids typically aim to improve traits associated with growth and disease resistance. It has been established that stressors common to production environments can adversely affect these and other traits which are important to producers and consumers. Previously, we employed phenotypic selection to create families that exhibit high or low plasma cortisol concentrations in response to crowding stress. Subsequent crosses of high × low phenotypes founded a multigenerational breeding scheme with the aim of dissecting the genetic basis for variation underlying stress response through the identification of quantitative trait loci (QTL). Multiple methods of QTL analyses differing in their assumptions of homozygosity of the causal alleles in the grandparental generation yielded similar results in the F1 generation, and the analysis of two stress response phenotype measurement indexes were highly correlated. In the current study, we conducted a genome scan with microsatellites to detect QTL in the F2 generation of two families created through phenotypic selection and having larger numbers of offspring than families screened in the previous generation. Seven suggestive and three significant QTL were detected, seven of which were not previously detected in the National Center for Cool and Cold Water Aquaculture germplasm, bringing the total number of chromosomes containing significant and suggestive stress response QTL to 4 and 15, respectively. One significant QTL which peaks at 7 cM on chromosome Omy12 spans 12 cM and explains 25 % of the phenotypic variance in family 2008052 particularly warrants further investigation. Five QTL with significant parent-of-origin effects were detected in family 2008052, including two QTL on Omy12. The 95 % confidence intervals for the remaining QTL we detected were broad, requiring validation and fine mapping with other genotyping approaches and mapping strategies. These results will facilitate identification of potential casual alleles that can be employed in strategies aimed at better understanding the genetic and physiological basis of stress responses to crowding in rainbow trout aquaculture production.
Collapse
Affiliation(s)
- Caird E Rexroad
- USDA/ARS National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA.
| | | | | | | | | |
Collapse
|
10
|
Casellas J, Vidal O, Pena RN, Gallardo D, Manunza A, Quintanilla R, Amills M. Genetics of serum and muscle lipids in pigs. Anim Genet 2013; 44:609-19. [DOI: 10.1111/age.12049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2013] [Indexed: 01/31/2023]
Affiliation(s)
- J. Casellas
- Departament de Ciència Animal i dels Aliments; Universitat Autònoma de Barcelona; Bellaterra 08193 Spain
| | - O. Vidal
- Departament de Biologia; Universitat de Girona; Girona 17071 Spain
| | - R. N. Pena
- Departament de Producció Animal; Universitat de Lleida; Lleida 25198 Spain
| | - D. Gallardo
- Departament de Ciència Animal i dels Aliments; Universitat Autònoma de Barcelona; Bellaterra 08193 Spain
| | - A. Manunza
- Department of Animal Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Universitat Autònoma de Barcelona; Bellaterra 08193 Spain
| | | | - M. Amills
- Department of Animal Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Universitat Autònoma de Barcelona; Bellaterra 08193 Spain
| |
Collapse
|
11
|
Kogelman LJA, Kadarmideen HN, Mark T, Karlskov-Mortensen P, Bruun CS, Cirera S, Jacobsen MJ, Jørgensen CB, Fredholm M. An f2 pig resource population as a model for genetic studies of obesity and obesity-related diseases in humans: design and genetic parameters. Front Genet 2013; 4:29. [PMID: 23515185 PMCID: PMC3600696 DOI: 10.3389/fgene.2013.00029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/22/2013] [Indexed: 12/24/2022] Open
Abstract
Obesity is a rising worldwide public health problem. Difficulties to precisely measure various obesity traits and the genetic heterogeneity in human have been major impediments to completely disentangle genetic factors causing obesity. The pig is a relevant model for studying human obesity and obesity-related (OOR) traits. Using founder breeds divergent with respect to obesity traits we have created an F2 pig resource population (454 pigs), which has been intensively phenotyped for 36 OOR traits. The main rationale for our study is to characterize the genetic architecture of OOR traits in the F2 pig design, by estimating heritabilities, genetic, and phenotypic correlations using mixed- and multi-trait BLUP animal models. Our analyses revealed high coefficients of variation (15–42%) and moderate to high heritabilities (0.22–0.81) in fatness traits, showing large phenotypic and genetic variation in the F2 population, respectively. This fulfills the purpose of creating a resource population divergent for OOR traits. Strong genetic correlations were found between weight and lean mass at dual-energy x-ray absorptiometry scanning (0.56–0.97). Weight and conformation also showed strong genetic correlations with slaughter traits (e.g., rg between abdominal circumference and leaf fat at slaughtering: 0.66). Genetic correlations between fat-related traits and the glucose level vary between 0.35 and 0.74 and show a strong correlation between adipose tissue and impaired glucose metabolism. Our power calculations showed a minimum of 80% power for QTL detection for all phenotypes. We revealed genetic correlations at population level, for the first time, for several difficult to measure and novel OOR traits and diseases. The results underpin the potential of the established F2 pig resource population for further genomic, systems genetics, and functional investigations to unravel the genetic background of OOR traits.
Collapse
Affiliation(s)
- Lisette J A Kogelman
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yoo CK, Cho IC, Lee JB, Jung EJ, Lim HT, Han SH, Lee SS, Ko MS, Kang T, Hwang JH, Park YS, Park HB. QTL analysis of clinical-chemical traits in an F₂ intercross between Landrace and Korean native pigs. Physiol Genomics 2012; 44:657-68. [PMID: 22496488 DOI: 10.1152/physiolgenomics.00172.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Clinical-chemical traits are essential when examining the health status of individuals. The aim of this study was to identify quantitative trait loci (QTL) and the associated positional candidate genes affecting clinical-chemical traits in a reciprocal F(2) intercross between Landrace and Korean native pigs. Following an overnight fast, 25 serum phenotypes related to clinical-chemical traits (e.g., hepatic function parameters, renal function parameters, electrolyte, lipids) were measured in >970 F(2) progeny. All experimental samples were subjected to genotyping analysis using 165 microsatellite markers located across the genome. We identified eleven genome-wide significant QTL in six chromosomal regions (SSC 2, 7, 8, 13, 14, and 15) and 59 suggestive QTL in 17 chromosomal regions (SSC 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, and 18). We also observed significant effects of reciprocal crosses on some of the traits, which would seem to result from maternal effect, QTL on sex chromosomes, imprinted genes, or genetic difference in mitochondrial DNA. The role of genomic imprinting in clinical-chemical traits also was investigated. Genome-wide analysis revealed a significant evidence for an imprinted QTL in SSC4 affecting serum amylase levels. Additionally, a series of bivariate linkage analysis provided strong evidence that QTL in SSC 2, 13, 15, and 18 have a pleiotropic effect on clinical-chemical traits. In conclusion, our study detected both novel and previously reported QTL influencing clinical-chemical traits in pigs. The identified QTL together with the positional candidate genes identified here could play an important role in elucidating the genetic structure of clinical-chemical phenotype variation in humans and swine.
Collapse
Affiliation(s)
- Chae-Kyoung Yoo
- Animal Science Major, Division of Applied Life Science (Brain Korea 21 Program) Gyeongsang National University, Jinju, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|