1
|
Petretto E, Dettori ML, Luigi-Sierra MG, Noce A, Pazzola M, Vacca GM, Molina A, Martínez A, Goyache F, Carolan S, Amills M. Investigating the footprint of post-domestication dispersal on the diversity of modern European, African and Asian goats. Genet Sel Evol 2024; 56:55. [PMID: 39068382 PMCID: PMC11282621 DOI: 10.1186/s12711-024-00923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Goats were domesticated in the Fertile Crescent about 10,000 years before present (YBP) and subsequently spread across Eurasia and Africa. This dispersal is expected to generate a gradient of declining genetic diversity with increasing distance from the areas of early livestock management. Previous studies have reported the existence of such genetic cline in European goat populations, but they were based on a limited number of microsatellite markers. Here, we have analyzed data generated by the AdaptMap project and other studies. More specifically, we have used the geographic coordinates and estimates of the observed (Ho) and expected (He) heterozygosities of 1077 European, 1187 African and 617 Asian goats belonging to 38, 43 and 22 different breeds, respectively, to find out whether genetic diversity and distance to Ganj Dareh, a Neolithic settlement in western Iran for which evidence of an early management of domestic goats has been obtained, are significantly correlated. RESULTS Principal component and ADMIXTURE analyses revealed an incomplete regional differentiation of European breeds, but two genetic clusters representing Northern Europe and the British-Irish Isles were remarkably differentiated from the remaining European populations. In African breeds, we observed five main clusters: (1) North Africa, (2) West Africa, (3) East Africa, (4) South Africa, and (5) Madagascar. Regarding Asian breeds, three well differentiated West Asian, South Asian and East Asian groups were observed. For European and Asian goats, no strong evidence of significant correlations between Ho and He and distance to Ganj Dareh was found. In contrast, in African breeds we detected a significant gradient of diversity, which decreased with distance to Ganj Dareh. CONCLUSIONS The detection of a genetic cline associated with distance to the Ganj Dareh in African but not in European or Asian goat breeds might reflect differences in the post-domestication dispersal process and subsequent migratory movements associated with the management of caprine populations from these three continents.
Collapse
Affiliation(s)
- Elena Petretto
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Maria Luisa Dettori
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy
| | - María Gracia Luigi-Sierra
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Antonia Noce
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy
| | | | - Antonio Molina
- Department of Genetics, University of Cordoba, 14071, Córdoba, Spain
| | - Amparo Martínez
- Department of Genetics, University of Cordoba, 14071, Córdoba, Spain
| | - Félix Goyache
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, 33394, Gijón, Spain
| | | | - Marcel Amills
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
2
|
|
3
|
Goyache F, Pérez-Pardal L, Fernández I, Traoré A, Menéndez-Arias NA, Álvarez I. Ancient autozygous segments subject to positive selection suggest adaptive immune responses in West African cattle. Gene 2021; 803:145899. [PMID: 34400278 DOI: 10.1016/j.gene.2021.145899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022]
Abstract
Small-sized and trypanotolerant West African taurine (Bos taurus) cattle are a unique case of human-mediated process of adaptation to a challenging environment. Extensive gene flow with Sahelian zebu (B. indicus), bigger and with some resistance to tick attack, occurred for centuries and allowed the apparition of stable crossbred populations (sanga) having intermediate characteristics. Up to 237 individuals belonging to 10 different taurine, zebu and sanga cattle populations sampled in Benin, Burkina Faso and Niger were typed using the BovineHD BeadChip of Illumina to identify signatures of selection, assessed using three different Extended-Haplotype-Homozygosity-based statistics, overlapping with ancient, originated 1024 or 2048 generations ago, Homozygosity-By-Descent segments in the cattle genome. Candidate genomic regions were defined ensuring their importance within cattle type and using zebu as reference. Functional annotation analysis identified four statistically significant Annotation Clusters in taurine cattle (from ACt1 to ACt4), one (ACs1) in sanga, and another (ACz1) in zebu cattle, fitting well with expectations. ACt1 included genes primarily associated with innate immunity; ACt2 involved bitter taste receptor genes of importance to adaptation to changing environments; ACt3 included 68 genes coding ATP-binding proteins, some of them located on trypanotolerance-related QTL regions, that can partially underlie immune response and the additive mechanism of trypanotolerance; ACt4 was associated with growth and small size (NPPC gene); ACs1 included genes involved in immune response; and ACz1 is related with ectoparasite resistance. Our results provide a new set of genomic areas and candidate genes giving new insights on the genomic impact of adaptation in West African cattle.
Collapse
Affiliation(s)
- Félix Goyache
- SERIDA-Deva, Camino de Rioseco 1225, E-33394-Gijón, Spain.
| | | | - Iván Fernández
- SERIDA-Deva, Camino de Rioseco 1225, E-33394-Gijón, Spain
| | - Amadou Traoré
- Institut de l'Environnement et des Recherches Agricoles (INERA), Ouagadougou 04 BP 8645, Burkina Faso
| | | | - Isabel Álvarez
- SERIDA-Deva, Camino de Rioseco 1225, E-33394-Gijón, Spain
| |
Collapse
|
4
|
Population Structure Assessed Using Microsatellite and SNP Data: An Empirical Comparison in West African Cattle. Animals (Basel) 2021; 11:ani11010151. [PMID: 33440799 PMCID: PMC7827059 DOI: 10.3390/ani11010151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Projection of genetic variability on geographic maps is a useful strategy to ascertain population structure and gene flow events when previous genetic information on the scenarios analyzed is not high. Here, we compared the performance of microsatellite sets and Single Nucleotide Polymorphism (SNP) arrays to identify the population structure and between-populations identity in a sample of West African cattle. Large SNP arrays were superior in detecting the population structure due to a more precise assessment of genotypic information of the individuals. However, the projection of genetic parameters on geographical maps was comparable between the SNP and microsatellite data. Geographic-based analyses of genetic variation areuseful inavoiding overinterpretation of the results obtained. Microsatellite markers can still be useful, particularly if the research focuses on non-model organisms or if either the funding or the availability of efficient hardware and software to handle large datasets is limited. Abstract A sample of 185 West African cattle belonging to nine different taurine, sanga, and zebu populations was typed using a set of 33 microsatellites and the BovineHD BeadChip of Illumina. The information provided by each type of marker was summarized via clustering methods and principal component analyses (PCA). The aim was to assess differences in performance between both marker types for the identification of population structure and the projection of genetic variability on geographical maps. In general, both microsatellites and Single Nucleotide Polymorphism (SNP) allowed us to differentiate taurine cattle from zebu and sanga cattle, which, in turn, would form a single population. Pearson and Spearman correlation coefficients computed among the admixture coefficients (fitting K = 2) and the eigenvectors corresponding to the first two factors identified using PCA on both microsatellite and SNP data were statistically significant (most of them having p < 0.0001) and high. However, SNP data allowed for a better fine-scale identification of population structure within taurine cattle: Lagunaire cattle from Benin were separated from two different N’Dama cattle samples. Furthermore, when clustering analyses assumed the existence of two parental populations only (K = 2), the SNPs could differentiate a different genetic background in Lagunaire and N’Dama cattle. Although the two N’Dama cattle populations had very different breeding histories, the microsatellite set could not separate the two N’Dama cattle populations. Classic bidimensional dispersion plots constructed using factors identified via PCA gave different shapes for microsatellites and SNPs: plots constructed using microsatellite polymorphism would suggest the existence of weakly differentiated, highly intermingled, subpopulations. However, the projection of the factors identified on synthetic maps gave comparable images. This would suggest that results on population structuring must be interpreted with caution. The geographic projection of genetic variation on synthetic maps avoids interpretations that go beyond the results obtained, particularly when previous information on the analyzed populations is scant. Factors influencing the performance of the projection of genetic parameters on geographic maps, together with restrictions that may affect the election of a given type of markers, are discussed.
Collapse
|
5
|
Álvarez I, Fernández I, Traoré A, Pérez-Pardal L, Menéndez-Arias NA, Goyache F. Ancient Homozygosity Segments in West African Djallonké Sheep Inform on the Genomic Impact of Livestock Adaptation to the Environment. Animals (Basel) 2020; 10:E1178. [PMID: 32664651 PMCID: PMC7401600 DOI: 10.3390/ani10071178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022] Open
Abstract
A sample of Burkina Faso Djallonké (West African Dwarf) sheep was analyzed to identify stretches of homozygous segments (runs of homozygosity; ROH) overlapping with ancient homozygosity-by-descent (HBD) segments. HBD segments were considered ancient if they were likely to be inherited from ancestors living from 1024 to 2048 generations ago, roughly coinciding with the time in which sheep entered into West Africa. It is hypothesized that such homozygous segments can inform on the effect of the sheep genome of human-mediated selection for adaptation to this harsh environment. PLINK analyses allowed to identify a total of 510 ROH segments in 127 different individuals that could be summarized into 124 different ROH. A total of 32,968 HBD segments were identified on 119 individuals using the software ZooRoH. HBD segments inherited from ancestors living 1024 and 2048 generations ago were identified on 61 individuals. The overlap between consensus ROH identified using PLINK and HBD fragments putatively assigned to generations 1024 and 2048 gave 108 genomic areas located on 17 different ovine chromosomes which were considered candidate regions for gene-annotation enrichment analyses. Functional annotation allowed to identify six statistically significant functional clusters involving 50 candidate genes. Cluster 1 was involved in homeostasis and coagulation; functional clusters 2, 3, and 6 were associated to innate immunity, defense against infections, and white blood cells proliferation and migration, respectively; cluster 4 was involved in parasite resistance; and functional cluster 5, formed by 20 genes, was involved in response to stress. The current analysis confirms the importance of genomic areas associated to immunity, disease resistance, and response to stress for adaptation of sheep to the challenging environment of humid Sub-Saharan West Africa.
Collapse
Affiliation(s)
- Isabel Álvarez
- Servicio Regional de Investigación y Desarrollo Agroalimentario, E-33394 Gijón, Spain; (I.Á.); (I.F.); (N.A.M.-A.)
| | - Iván Fernández
- Servicio Regional de Investigación y Desarrollo Agroalimentario, E-33394 Gijón, Spain; (I.Á.); (I.F.); (N.A.M.-A.)
| | - Amadou Traoré
- Institut de l’Environnement et des RecherchesAgricoles (INERA), 8645 Ouagadougou BP, Burkina Faso;
| | | | - Nuria A. Menéndez-Arias
- Servicio Regional de Investigación y Desarrollo Agroalimentario, E-33394 Gijón, Spain; (I.Á.); (I.F.); (N.A.M.-A.)
| | - Félix Goyache
- Servicio Regional de Investigación y Desarrollo Agroalimentario, E-33394 Gijón, Spain; (I.Á.); (I.F.); (N.A.M.-A.)
| |
Collapse
|
6
|
Álvarez I, Fernández I, Traoré A, Pérez-Pardal L, Menéndez-Arias NA, Goyache F. Genomic scan of selective sweeps in Djallonké (West African Dwarf) sheep shed light on adaptation to harsh environments. Sci Rep 2020; 10:2824. [PMID: 32071365 PMCID: PMC7028950 DOI: 10.1038/s41598-020-59839-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
The Djallonké (West African Dwarf) sheep is a small-sized haired sheep resulting from a costly evolutionary process of natural adaptation to the harsh environment of West Africa including trypanosome challenge. However, genomic studies carried out in this sheep are scant. In this research, genomic data of 184 Djallonké sheep (and 12 Burkina-Sahel sheep as an outgroup) generated using medium-density SNP Chips were analyzed. Three different statistics (iHS, XP-EHH and nSL) were applied to identify candidate selection sweep regions spanning genes putatively associated with adaptation of sheep to the West African environment. A total of 207 candidate selection sweep regions were defined. Gene-annotation enrichment and functional annotation analyses allowed to identify three statistically significant functional clusters involving 12 candidate genes. Genes included in Functional Clusters associated to selection signatures were mainly related to metabolic response to stress, including regulation of oxidative and metabolic stress and thermotolerance. The bovine chromosomal areas carrying QTLs for cattle trypanotolerance were compared with the regions on which the orthologous functional candidate cattle genes were located. The importance of cattle BTA4 for trypanotolerant response might have been conserved between species. The current research provides new insights on the genomic basis for adaptation and highlights the importance of obtaining information from non-cosmopolite livestock populations managed in harsh environments.
Collapse
Affiliation(s)
- Isabel Álvarez
- Servicio Regional de Investigación y Desarrollo Agroalimentario, E-33394, Gijón, Spain
| | - Iván Fernández
- Servicio Regional de Investigación y Desarrollo Agroalimentario, E-33394, Gijón, Spain
| | - Amadou Traoré
- Institut de l'Environnement et des Recherches Agricoles (INERA), Ouagadougou, 04 BP 8645, Burkina Faso
| | | | | | - Félix Goyache
- Servicio Regional de Investigación y Desarrollo Agroalimentario, E-33394, Gijón, Spain.
| |
Collapse
|
7
|
Houessou SO, Dossa LH, Diogo RVC, Ahozonlin MC, Dahouda M, Schlecht E. Confronting pastoralists' knowledge of cattle breeds raised in the extensive production systems of Benin with multivariate analyses of morphological traits. PLoS One 2019; 14:e0222756. [PMID: 31557214 PMCID: PMC6762103 DOI: 10.1371/journal.pone.0222756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022] Open
Abstract
Cross-border seasonal livestock movements in West Africa bring into close contact several cattle breeds. In the coastal countries hosting migrating herders from the Sahel, it often affects the genetic variability and geographical distribution of traditional cattle breeds, through their indiscriminate but also intended crossbreeding with larger-framed Sahelian cattle breeds. The need to secure and effectively manage this genetic variability, in order to respond to changing production and market conditions, is widely recognized by the scientific community, livestock herders and policy-makers. This however requires a comprehensive knowledge of the breeds’ characteristics. The indigenous criteria used by pastoralists to characterize and distinguish cattle breeds remain unclear and further validation is required. This study was therefore designed to document and validate herders' knowledge on cattle breeds. From June 2015 to June 2016, 803 cattle herders participated in a phenotypic breed description in seven pastoral communities across the country. Each cattle herder was asked to name and describe morphologically the different cattle breeds in his herd. Subsequently, fifteen body measurements taken on a total of 1401 adult cattle (964 cows and 439 bulls) were submitted to multivariate analyses. Participants distinguished ten different cattle breeds kept in traditional herds according to six primary morphological traits and clearly separated zebuine from taurine breeds. These results were consistent with those of the multivariate analyses of the measured traits. However, herders’ classification approach proved to be more accurate in distinguishing breeds within the zebuine subspecies. Hence, while metric measurements and molecular genetic analyses are promising approaches to fill the knowledge gap on the diversity of local farm animal genetic resources, they should integrate livestock herders’ traditional knowledge for more precision.
Collapse
Affiliation(s)
- Sandrine O. Houessou
- Ecole des Sciences et Techniques de Production Animale, Faculté des Sciences Agronomiques, Université d’Abomey- Calavi, Bénin
| | - Luc Hippolyte Dossa
- Ecole des Sciences et Techniques de Production Animale, Faculté des Sciences Agronomiques, Université d’Abomey- Calavi, Bénin
- * E-mail:
| | - Rodrigue Vivien Cao Diogo
- Département des Sciences et Techniques de Productions Animale et Halieutique, Université de Parakou, Faculté d’Agronomie, Bénin
| | - Maurice Cossi Ahozonlin
- Ecole des Sciences et Techniques de Production Animale, Faculté des Sciences Agronomiques, Université d’Abomey- Calavi, Bénin
| | - Mahamadou Dahouda
- Ecole des Sciences et Techniques de Production Animale, Faculté des Sciences Agronomiques, Université d’Abomey- Calavi, Bénin
| | - Eva Schlecht
- Animal Husbandry in the Tropics and Subtropics, University of Kassel and University of Göttingen, Germany
| |
Collapse
|
8
|
Nandolo W, Mészáros G, Banda LJ, Gondwe TN, Lamuno D, Mulindwa HA, Nakimbugwe HN, Wurzinger M, Utsunomiya YT, Woodward-Greene MJ, Liu M, Liu G, Van Tassell CP, Curik I, Rosen BD, Sölkner J. Timing and Extent of Inbreeding in African Goats. Front Genet 2019; 10:537. [PMID: 31214253 PMCID: PMC6558083 DOI: 10.3389/fgene.2019.00537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/17/2019] [Indexed: 11/13/2022] Open
Abstract
Genetic characterization of African goats is one of the current priorities in the improvement of goats in the continent. This study contributes to the characterization effort by determining the levels and number of generations to common ancestors ("age") associated with inbreeding in African goat breeds and identifies regions that contain copy number variation mistyped as being homozygous. Illumina 50k single nucleotide polymorphism genotype data for 608 goats from 31 breeds were used to compute the level and age of inbreeding at both local (marker) and global levels (FG) using a model-based approach based on a hidden Markov model. Runs of homozygosity (ROH) segments detected using the Viterbi algorithm led to ROH-based inbreeding coefficients for all ROH (FROH) and for ROH longer than 2 Mb (FROH > 2Mb). Some of the genomic regions identified as having ROH are likely to be hemizygous regions (copy number deletions) mistyped as homozygous regions. Although the proportion of these miscalled ROH is small and does not substantially affect estimates of levels of inbreeding for individual animals, the inbreeding metrics were adjusted by removing these regions from the ROH. All the inbreeding metrics varied widely across breeds, with overall means of 0.0408, 0.0370, and 0.0691 and medians of 0.0125, 0.0098, and 0.0366 for FROH, FROH > 2Mb, and FG, respectively. Several breeds (including Menabe and Sofia from Madagascar) had high proportions of recent inbreeding, while Small East African, Ethiopian, and most of the West African breeds (including West African Dwarf) had more ancient inbreeding.
Collapse
Affiliation(s)
- Wilson Nandolo
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria.,Department of Animal Science, Faculty of Agriculture, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi.,Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States
| | - Gábor Mészáros
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Liveness Jessica Banda
- Department of Animal Science, Faculty of Agriculture, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Timothy N Gondwe
- Department of Animal Science, Faculty of Agriculture, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Doreen Lamuno
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | | | | | - Maria Wurzinger
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Yuri T Utsunomiya
- School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo State University (UNESP), São Paulo, Brazil
| | - M Jennifer Woodward-Greene
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States
| | - Mei Liu
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States
| | - George Liu
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States
| | - Johann Sölkner
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| |
Collapse
|
9
|
Ibeagha-Awemu EM, Peters SO, Bemji MN, Adeleke MA, Do DN. Leveraging Available Resources and Stakeholder Involvement for Improved Productivity of African Livestock in the Era of Genomic Breeding. Front Genet 2019; 10:357. [PMID: 31105739 PMCID: PMC6499167 DOI: 10.3389/fgene.2019.00357] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/03/2019] [Indexed: 01/13/2023] Open
Abstract
The African continent is home to diverse populations of livestock breeds adapted to harsh environmental conditions with more than 70% under traditional systems of management. Animal productivity is less than optimal in most cases and is faced with numerous challenges including limited access to adequate nutrition and disease management, poor institutional capacities and lack of adequate government policies and funding to develop the livestock sector. Africa is home to about 1.3 billion people and with increasing demand for animal proteins by an ever growing human population, the current state of livestock productivity creates a significant yield gap for animal products. Although a greater section of the population, especially those living in rural areas depend largely on livestock for their livelihoods; the potential of the sector remains underutilized and therefore unable to contribute significantly to economic development and social wellbeing of the people. With current advances in livestock management practices, breeding technologies and health management, and with inclusion of all stakeholders, African livestock populations can be sustainably developed to close the animal protein gap that exists in the continent. In particular, advances in gene technologies, and application of genomic breeding in many Western countries has resulted in tremendous gains in traits like milk production with the potential that, implementation of genomic selection and other improved practices (nutrition, healthcare, etc.) can lead to rapid improvement in traits of economic importance in African livestock populations. The African livestock populations in the context of this review are limited to cattle, goat, pig, poultry, and sheep, which are mainly exploited for meat, milk, and eggs. This review examines the current state of livestock productivity in Africa, the main challenges faced by the sector, the role of various stakeholders and discusses in-depth strategies that can enable the application of genomic technologies for rapid improvement of livestock traits of economic importance.
Collapse
Affiliation(s)
- Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Sunday O. Peters
- Department of Animal Science, Berry College, Mount Berry, GA, United States
| | - Martha N. Bemji
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Abeokuta, Nigeria
| | - Matthew A. Adeleke
- School of Life Sciences, University of Kwazulu-Natal, Durban, South Africa
| | - Duy N. Do
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| |
Collapse
|
10
|
Colino-Rabanal VJ, Rodríguez-Díaz R, Blanco-Villegas MJ, Peris SJ, Lizana M. Human and ecological determinants of the spatial structure of local breed diversity. Sci Rep 2018; 8:6452. [PMID: 29691460 PMCID: PMC5915451 DOI: 10.1038/s41598-018-24641-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/26/2018] [Indexed: 02/01/2023] Open
Abstract
Since domestication, a large number of livestock breeds adapted to local conditions have been created by natural and artificial selection, representing one of the most powerful ways in which human groups have constructed niches to meet their need. Although many authors have described local breeds as the result of culturally and environmentally mediated processes, this study, located in mainland Spain, is the first aimed at identifying and quantifying the environmental and human contributions to the spatial structure of local breed diversity, which we refer to as livestock niche. We found that the more similar two provinces were in terms of human population, ecological characteristics, historical ties, and geographic distance, the more similar the composition of local breeds in their territories. Isolation by human population distance showed the strongest effect, followed by isolation by the environment, thus supporting the view of livestock niche as a socio-cultural product adapted to the local environment, in whose construction humans make good use of their ecological and cultural inheritances. These findings provide a useful framework to understand and to envisage the effects of climate change and globalization on local breeds and their livestock niches.
Collapse
Affiliation(s)
- Victor J Colino-Rabanal
- Area of Zoology, Department of Animal Biology, Parasitology, Ecology, Edaphology and Agronomic Chemistry, University of Salamanca, Campus Miguel de Unamuno, 37071, Salamanca, Spain.
| | - Roberto Rodríguez-Díaz
- Area of Physical Anthropology, Department of Animal Biology, Parasitology, Ecology, Edaphology and Agronomic Chemistry, University of Salamanca, Campus Miguel de Unamuno, 37071, Salamanca, Spain
| | - María José Blanco-Villegas
- Area of Physical Anthropology, Department of Animal Biology, Parasitology, Ecology, Edaphology and Agronomic Chemistry, University of Salamanca, Campus Miguel de Unamuno, 37071, Salamanca, Spain
| | - Salvador J Peris
- Area of Zoology, Department of Animal Biology, Parasitology, Ecology, Edaphology and Agronomic Chemistry, University of Salamanca, Campus Miguel de Unamuno, 37071, Salamanca, Spain
| | - Miguel Lizana
- Area of Zoology, Department of Animal Biology, Parasitology, Ecology, Edaphology and Agronomic Chemistry, University of Salamanca, Campus Miguel de Unamuno, 37071, Salamanca, Spain
| |
Collapse
|
11
|
Usefulness of running animal models in absence of pedigrees: Estimation of genetic parameters for gastrointestinal parasite resistance traits in Djallonké sheep of Burkina Faso. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Moussa MMA, Issa M, Traoré A, Grema M, Hamani M, Fernández I, Soudré A, Álvarez I, Sanou M, Tamboura HH, Alhassane Y, Goyache F. Morphological assessment of the Zebu Bororo (Wodaabé) cattle of Niger in the West African zebu framework. Arch Anim Breed 2017. [DOI: 10.5194/aab-60-363-2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. A total of 357 adult cows and 29 sires belonging to the long-horned Niger Zebu Bororo cattle population were assessed for 13 body measurements and 11 qualitative traits. Data were jointly analysed with 311 cows and 64 sires belonging to other four West African zebu cattle populations, sampled in Burkina Faso and Benin, representative of both the short-horned and the long-horned West African zebu groups using multivariate statistical methods. Besides the other long-horned zebu breed analysed (Zebu Mbororo of Burkina Faso), Zebu Bororo cattle tended to have the highest mean values for all body measurements. Mahalanobis distance matrices further informed that pairs involving Zebu Bororo cattle had the higher differentiation of the dataset. However, contour plots constructed using eigenvalues computed via principal component analysis (PCA) illustrated a lack of differentiation among West African zebu cattle populations at the body measurements level. Correspondence analysis carried out on the 11 qualitative traits recorded allowed for ascertaining a clear differentiation between the Zebu Bororo and the other zebu cattle populations analysed which, in turn, did not show a clear differentiation at the qualitative type traits level. In our data, Zebu Bororo cattle had in high frequency qualitative features such as dropped ears, lyre-shaped horns and red-pied coat colour that are not frequently present in the other West African zebu populations analysed. A directional selection due to a rough consensus of the stock-keepers may be hypothesised. Performance of further analyses to assess the degree in which such breeding differences may be related to genetic or production differences are advised.
Collapse
|
13
|
Álvarez I, Pérez-Pardal L, Traoré A, Koudandé DO, Fernández I, Soudré A, Diarra S, Sanou M, Boussini H, Goyache F. Differences in genetic structure assessed using Y-chromosome and mitochondrial DNA markers do not shape the contributions to diversity in African sires. J Anim Breed Genet 2017; 134:393-404. [PMID: 28464302 DOI: 10.1111/jbg.12278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/25/2017] [Indexed: 11/30/2022]
Abstract
Up to 173 African sires belonging to 11 different subpopulations representative of four cattle groups were analysed for six Y-specific microsatellite loci and a mitochondrial DNA fragment. Differences in Y-chromosome and mtDNA haplotype structuring were assessed. In addition, the effect of such structuring on contributions to total genetic diversity was assessed. Thirty-five Y-chromosome and 71 mtDNA haplotypes were identified. Most Y-chromosomes analysed (73.4%) were of zebu origin (11 haplotypes). Twenty-two Y-haplotypes (44 samples) belonged to the African taurine subfamily Y2a. All mtDNA haplotypes belonged to the "African" taurine T1 haplogroup with 16 samples and nine haplotypes belonging to a recently identified subhaplogroup (T1e). Median-joining networks showed that Y-chromosome phylogenies were highly reticulated with clear separation between zebu and taurine clusters. Mitochondrial haplotypes showed a clear star-like shape with small number of mutations separating haplotypes. Mitochondrial-based FST -statistics computed between cattle groups tended to be statistically non-significant (p > .05). Most FST values computed among groups and subpopulations using Y-chromosome markers were statistically significant. AMOVA confirmed that divergence between cattle groups was only significant for Y-chromosome markers (ΦCT = 0.209). At the mitochondrial level, African sires resembled an undifferentiated population with individuals explaining 94.3% of the total variance. Whatever the markers considered, the highest contributions to total Nei's gene diversity and allelic richness were found in West African cattle. Genetic structuring had no effect on patterns of contributions to diversity.
Collapse
Affiliation(s)
- I Álvarez
- Área de Genética y Reproducción Animal, SERIDA, Camino de Rioseco, Gijón, Spain
| | - L Pérez-Pardal
- Área de Genética y Reproducción Animal, SERIDA, Camino de Rioseco, Gijón, Spain.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - A Traoré
- INERA, Ouagadougou, Burkina Faso
| | | | - I Fernández
- Área de Genética y Reproducción Animal, SERIDA, Camino de Rioseco, Gijón, Spain
| | - A Soudré
- Université de Koudougou, Koudougou, Burkina Faso
| | - S Diarra
- IPR-IFRA Bamako (Mali), Koulikoro, Bamako
| | - M Sanou
- INERA, Ouagadougou, Burkina Faso
| | - H Boussini
- African Union Interafrican Bureau for Animal Resources, Nairobi, Kenya
| | - F Goyache
- Área de Genética y Reproducción Animal, SERIDA, Camino de Rioseco, Gijón, Spain
| |
Collapse
|
14
|
Martínez A, Manunza A, Delgado JV, Landi V, Adebambo A, Ismaila M, Capote J, El Ouni M, Elbeltagy A, Abushady AM, Galal S, Ferrando A, Gómez M, Pons A, Badaoui B, Jordana J, Vidal O, Amills M. Detecting the existence of gene flow between Spanish and North African goats through a coalescent approach. Sci Rep 2016; 6:38935. [PMID: 27966592 PMCID: PMC5155231 DOI: 10.1038/srep38935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022] Open
Abstract
Human-driven migrations are one of the main processes shaping the genetic diversity and population structure of domestic species. However, their magnitude and direction have been rarely analysed in a statistical framework. We aimed to estimate the impact of migration on the population structure of Spanish and African goats. To achieve this goal, we analysed a dataset of 1,472 individuals typed with 23 microsatellites. Population structure of African and Spanish goats was moderate (mean FST = 0.07), with the exception of the Canarian and South African breeds that displayed a significant differentiation when compared to goats from North Africa and Nigeria. Measurement of gene flow with Migrate-n and IMa coalescent genealogy samplers supported the existence of a bidirectional gene flow between African and Spanish goats. Moreover, IMa estimates of the effective number of migrants were remarkably lower than those calculated with Migrate-n and classical approaches. Such discrepancies suggest that recent divergence, rather than extensive gene flow, is the main cause of the weak population structure observed in caprine breeds.
Collapse
Affiliation(s)
- Amparo Martínez
- Departamento de Genética, Universidad de Córdoba, Córdoba 14071, Spain
| | - Arianna Manunza
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | | | - Vincenzo Landi
- Departamento de Genética, Universidad de Córdoba, Córdoba 14071, Spain
| | - Ayotunde Adebambo
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta PMB 2240, Nigeria
| | - Muritala Ismaila
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta PMB 2240, Nigeria
| | - Juan Capote
- Instituto Canario de Investigaciones Agrarias, La Laguna 38108, Tenerife, Spain
| | - Mabrouk El Ouni
- Livestock & Wildlife Laboratory, Arid Land Institute Medenine, 4119 Médenine, Tunisia
| | - Ahmed Elbeltagy
- Department of Animal Biotechnology, Animal Production Research Institute, Dokki, Giza, Egypt
| | - Asmaa M. Abushady
- Genetics Department, Faculty of Agriculture, Ain Shams University, Shubra 11241, Cairo, Egypt
| | - Salah Galal
- Animal Production Department, Faculty of Agriculture, Ain Shams University, Abbassia 11566, Cairo, Egypt
| | - Ainhoa Ferrando
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Mariano Gómez
- Servicio de Ganadería. Diputación Foral de Bizkaia. Avda. Lehendakari Aguirre n° 9-2°, 48014 Bilbao, Spain
| | - Agueda Pons
- Unitat de Races Autòctones, Servei de Millora Agrària, (SEMILLA-SAU), Son Ferriol 07198, Spain
| | - Bouabid Badaoui
- University Mohammed V, Agdal, Faculty of Sciences, 4 Av. Ibn Battota, Rabat, Morocco
| | - Jordi Jordana
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Oriol Vidal
- Departament de Biologia, Universitat de Girona, Girona 17071, Spain
| | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
15
|
Traoré A, Koudandé DO, Fernández I, Soudré A, Álvarez I, Diarra S, Diarra F, Kaboré A, Sanou M, Tamboura HH, Goyache F. Multivariate characterization of morphological traits in West African cattle
sires. Arch Anim Breed 2016. [DOI: 10.5194/aab-59-337-2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. A total of 183 adult sires belonging to nine West African cattle breeds sampled in 67 villages of Mali, Burkina Faso and Benin were assessed for 16 body measurements and 18 qualitative traits. Within type of cattle (zebu, sanga or taurine), the different breeds analysed showed large differences in body measurements. In general, taurine breeds had lower average values than the zebu breeds while sanga cattle tended to have intermediate values. Principal component analysis identified three factors characterising body measurements. Factor 1 summarised the information provided by those traits characterising the size of the individuals and explained 59.0 % of the variability. Factor 2 tended to gather information characterising the body width and explained 8.0 % of the variation. Less representative, Factor 3 (6.6 % of the variability) had no clear interpretation. Qualitative traits did not allow to distinguish among either cattle groups or breeds. Two Correspondence Analysis Dimensions computed on qualitative traits (explaining 26.2 and 15.5 % of the variability, respectively) did not allow to differentiate between zebu, sanga or taurine cattle breeds. Our results confirm that, in the framework of a general appearance, body measurements are the main criteria for differentiating West African cattle breeds. Furthermore, the current research has not allowed to identify breeding preferences on qualitative type traits in West African cattle sires. Therefore, homogenisation of the appearance of individuals within cattle breed is not expected.
Collapse
|
16
|
Álvarez I, Pérez-Pardal L, Traoré A, Fernández I, Goyache F. Lack of haplotype structuring for two candidate genes for trypanotolerance in cattle. J Anim Breed Genet 2015; 133:105-14. [DOI: 10.1111/jbg.12181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/24/2015] [Indexed: 01/22/2023]
Affiliation(s)
- I. Álvarez
- Área de Genética y Reproducción Animal; SERIDA; Gijón Spain
| | - L. Pérez-Pardal
- CIBIO; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
| | | | - I. Fernández
- Área de Genética y Reproducción Animal; SERIDA; Gijón Spain
| | - F. Goyache
- Área de Genética y Reproducción Animal; SERIDA; Gijón Spain
| |
Collapse
|
17
|
Abstract
A total of 1015 adult cows belonging to nine West African cattle breeds were assessed for 16 body measurements and 18 qualitative traits to ascertain the existence of geographical patterns of variation. Sampling was carried out in 29 different provinces of Mali, Burkina Faso and Benin. For body measurements, taurine breeds took lower average values than the zebu breeds. Sanga cattle took intermediate values. Qualitative traits did not allow to differentiate among cattle groups (taurine, zebu or sanga) or breeds. Principal component analysis identified two factors explaining 56.4 and 9.2 % of the variance for body measurements, respectively. Two correspondence analysis dimensions computed on qualitative traits explained a small proportion of the variability (20.8 and 13.5 %, respectively). Contour plots were constructed using the eigenvalues computed for each individual and either factor or dimension identified; confidence regions calculated confirmed that body measurements clearly differentiated zebu and taurine cattle breeds while qualitative traits did not. Factor 1 was projected on a geographical map, using provinces as nodes, to assess breed-free variation for body measurements. A pattern of continuous variation from the Sahel area southwards was identified. Probably, breeding decisions promoting the crosses between zebu-like and taurine cattle are underlying this geographical pattern of variation. The implementation of selection strategies aiming at the increase of the productivity of native West African taurine cattle breeds while avoiding looses in trypanotolerant ability would be highly advisable.
Collapse
|
18
|
Álvarez I, Traoré A, Fernández I, Cuervo M, Lecomte T, Soudré A, Kaboré A, Tamboura HH, Goyache F. Assessing introgression of Sahelian zebu genes into native Bos taurus breeds in Burkina Faso. Mol Biol Rep 2014; 41:3745-54. [PMID: 24532141 DOI: 10.1007/s11033-014-3239-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 02/06/2014] [Indexed: 11/25/2022]
Abstract
A total of 350 samples were analyzed to estimate zebu gene proportions into two different taurine cattle breeds of Burkina Faso (Lobi and N'Dama) using 38 microsatellites and various statistical methodologies. West African and East African zebu samples were sequentially used as reference parental populations. Furthermore, N'Dama cattle from Congo, the composite South African Bonsmara cattle breed and a pool of European cattle were used successively as second parental populations. Independently of the methodology applied: (a) the use of West African zebu samples gave higher admixture coefficients than the East African zebu; (b) the higher zebu proportions were estimated when the European cattle was used as parental population 2; and (c) the use of the N'Dama population from Congo as parental population 2 gave the more consistent zebu proportion estimates for both the Lobi and the N'Dama breeds. In any case, the zebu admixture proportions estimated were not negligible and were always higher in the N'Dama cattle than in the Lobi cattle of Burkina Faso. This suggested that the introgression of Sahelian zebu genes into the taurine cattle of Southern West Africa can follow a complex pattern that can depend on local agro-ecological features. The current research pointed out that the estimation of admixture coefficients is highly dependent on both the assumptions underlying the methodologies applied and the selection of parental populations. Our analyses suggest that either too high or nil genetic identity between the parental and the expectedly derived populations must be avoided.
Collapse
Affiliation(s)
- I Álvarez
- SERIDA-Deva, Área de genética y Reproducción Animal, Camino de Rioseco 1225, 33394, Gijón (Asturias), Spain
| | | | | | | | | | | | | | | | | |
Collapse
|